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A LINEAR TIME APPROACH TO THE SET MAXIMA PROBLEM*

AMOTZ BAR-NOYf, RAJEEV MOTWANI-, AND JOSEPH NAORf

Abstract. The set maxima problem is as follows: given a family of subsets ,9 of a totally ordered set X
x, xn }, find the maximum in each subset. The computational model is the comparison tree. One possible

solution is to sort the set X, which requires O(n log n) comparisons. The open question is whether set maxima
is easier than sorting.

Here, a solution is presented that requires a linear number of comparisons for the following two cases:
The sets are hyperplanes in a d-dimensional projective geometry PG(d, q). In particular, the interesting
case is PG(2, q), when the intersection of any two subsets is exactly one.
The sets are chosen randomly with probability p(n) for each element to be in a set. The random choices
are mutually independent and the number ofcomparisons needed is linear with probability approaching
asymptotically.

Key words, set maxima, comparison model, projective geometry
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1. Introduction. Let X { Xl, X be a set of n distinct elements on which
a total order is defined, and let O S,-.., Sn be a family of n nonempty sub-
sets of the base set X. The set maxima problem is as follows: compute a maxima vector
(y, .-., yn) such that yj max,. xi e Sj. }. The model ofcomputation is the comparison
tree model in which the cost of the computation is the number of comparisons between
the base elements, while any other computation is free.

This question was first posed by Graham, Yao, and Yao [GYY] in the context of
verifying partial orders. A partial order P is given and its validity is to be verified; i.e.,
for all x e P test that x is the maximum among all elements smaller than it in P. This
question is a special case of set maxima and the reader is referred to [KK] for details.

A trivial solution to the set maxima problem is to sort the elements in the set X,
which requires O(n log n) comparisons. The problem is to determine whether there
exists a more efficient solution. Deterministically, this question still remains open. A
randomized algorithm that makes only O(n log /3 n) comparisons was presented in [KK].
Recently, Goddard, King, and Schulman [GKS] gave a randomized algorithm for the
graphical local sorting problem, which was used to devise a randomized algorithm for
the set maxima problem that makes only O(n) comparisons.

Koml6s [Ko] considered the special case of the set maxima problem, which is to
verify the solution to a minimum spanning tree problem. Verifying a solution to this
problem is equivalent to checking whether every nontree edge has the maximum weight
in the simple cycle that it forms with tree edges. Koml6s presented a linear time algorithm
for this special case of the set maxima problem.

There are no nontrivial lower bounds known for this problem. Let a vector Y be
called feasible if there exists a permutation of the elements X for which Y is a maxima
vector. The difficulty in proving a lower bound seems to stem from Fredman’s proof
[GYY] that the number of distinct feasible vectors can be at most 2 2,. Therefore, the
standard information theoretic lower-bound argument cannot be applied here.

Received by the editors September 2, 1989; accepted for publication (in revised form) November 16,
1990.

? Computer Science Department, Stanford University, Stanford, California 94305. Respectively, the authors
were supported in part by a Weizmann fellowship and by Office of Naval Research contract N00014-88-K-
0166, in part by National Science Foundation grant CCR-9010517, and by Office of Naval Research contract
N00014-88-K-0166.



2 A. BAR-NOY, R. MOTWANI, AND J. NAOR

In this paper we present deterministic solutions for the following two cases. Both
algorithms require a linear number of comparisons.

1. Projective geometry. The set X corresponds to the points of the d-dimensional
projective geometry, PG(d, q), and where each hyperplane is a subset in the family
In particular, the interesting case is when the dimension is two, and any two subsets
intersect in exactly one element.

2. Probabilistic setting. The family 6 is chosen at random. For every pair xi X
and S 6’, Prob [xi SA p, where p p(n) is any arbitrary function of n; also, all
the random choices are mutually independent. We show that, with probability tending
to one, a linear number of comparisons suffice.

It was conjectured by several researchers that the set system induced by projective
planes may be a hard instance of the set maxima problem. Intuitively, the set maxima
problem becomes harder as the intersections between subsets get smaller. In a projective
plane, any two subsets intersect in exactly one element and, hence, not much "infor-
mation" is gained for other subsets from the comparisons performed within one subset.
To obtain a linear-time solution, we exploit the expansion properties for projective ge-
ometries that were established by Alon [A1 ].

In general, under the comparison tree model, most problems seem to have the same
complexity (within constant factors) in the deterministic worst-case, randomized case
and in the case where the input is drawn from some natural probability distribution.
This is especially true for problems involving sorting and selection. Thus, the randomized
algorithm of [KK], [GKS] and our probabilistic analysis seem to indicate that the set
maxima problem is easier than sorting.

It is interesting to note that both the probabilistic case and the projective geometry
are solved by the same genetic algorithm. It seems possible that some version of our
genetic algorithm might lead to an efficient solution for the general case.

The rest of the paper is organized as follows. In 2 we give some preliminaries, 3
contains the genetic algorithm, and the solutions for the projective geometry and for
randomly chosen sets are described in 4 and 5, respectively.

2. Preliminaries. Let Wx be the set of elements in X that are greater than or equal
to x. The rank of an element x e X is defined to be the cardinality of the set Wx. It is
well known AHU, pp. 97-102 that the k-selection computation, i.e., finding the element
whose rank is k, requires a linear number of comparisons. It is implicit that the output
of k-selection is (i) an element x whose rank is k, and (ii) a partition of the remaining
elements of X into two sets where one set contains all elements whose rank is greater
than k and the other set contains all elements whose rank is smaller than k.

A finite plane geometry is an incidence system containing two types of elements,
points and lines. The incidence relation is p e l; i.e., point p is on line l. A projective
geometry PG(2, q) is characterized by the following properties:

1. There is a unique line containing any two distinct points.
2. Any two lines intersect and their intersection contains exactly one point.
3. The number of points in the plane is n q2 + q + 1, where q is a prime power.
4. Each line contains exactly q + points and each point is incident on exactly

q + lines.
Higher-dimension projective geometries, PG(d, q), are defined recursively. The

incidence relation is p h; i.e., point p is on hyperplane h. The equivalent properties
are:

1. There is a unique hyperplane containing any d distinct points.
2. Any d hyperplanes intersect and their intersection contains exactly one point.
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3. The number of points is n qa + qa- + + 1, where q is a prime power.
4. Each hyperplane contains exactly qa- +... + points and each point is incident

on exactly qa-1 + + lines.
For more details on projective geometries, the reader is referred to Ba ].

3. The generic algorithm. In this section a genetic algorithm for computing the set
maxima is described. Let R be an integer sequence n >= rl >= r2 >= >= rk >= 1; the entries
of the sequence will vary in the different applications.

1. Compute the sequence Z, zl =< =< zk such that zi is the element in X whose
rank is ri. Let
(a) Z0 {xXIx <-
(b) Zi x e X zi < x <= zi + } for <= <= k 1;
c) z {x Xlz < x}.

2. For all _-< j _-< n, let Sj. Sj. f3 Zesj) where g(Sj.) is the largest index such that
S fq Zi 4 . Compute yj max {Sj}.

The set S is the reduced set ofSj, and g (S) denotes its level. Let us denote the cardinality
of the set Zesj) by h(S).

The number of comparisons performed in the genetic algorithm is

C(n)=fR(n)+ Z (I SjI 1),
j=l

where fR(n) is the number of comparisons needed to compute the sequence Z. The
maximum is computed in each S) by brute force using Sjl comparisons.

The following theorem gives a genetic bound on the complexity ofthe simultaneous
selection problem, viz., the problem of computing the sequence Z for a given rank se-
quence R.

THEOREM 3.1. For any given sequence R, the comparison complexity ofcomputing
the sequence Z is

f(n O( n( ri ri

i=0 n

where ro n and rk +1 O.

log ri-ln--r___/)),
Proof. This theorem is a well-known "folklore" fact and we will omit the proof.

Suffice it to say that the lower bound is obtained by a straightforward leaf-counting
information theory lower bound. As for the upper bound, it is obtained by a simple
recursion: choose j so that r9 <= n/2 <= r_ and find z9 and zg_ using any linear-time
selection algorithm [AHU]. Let X- { x x < xj_ 1} and X/ { x x > xg}, and the
remaining sequence can be obtained by recursing on X- and X+. ff]

4. The projective geometry. First, suppose that the base set X is represented
by points in a projective plane PG(2, q) and each line in the plane is a subset in the
family 6.

To implement the genetic algorithm for the projective plane set family, we should
first specify the entries ofthe sequence R. The requirements are that (i) R is computable
in linear time Lemma 4.1 ), and (ii) The maxima ofall the reduced sets is also computable
in linear time (Lemma 4.5 ). To find such a sequence we exploit the expansion properties
of projective geometries [A1] (Lemma 4.3). Intuitively, these properties entail that the
number of lines that are incident with a set of points Zi and not incident with any other
set Z, for j > i, is "balanced." This bounds the number of reduced sets contained in
each set Zi. The next task is to bound the sum of the cardinalities of the reduced sets.
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This is done in Lemma 4.2, which takes advantage of the block design properties of
projective planes.

The sequence R is defined as follows: for all i, <= <= k, ri In bi J, where bi, k n 1/( )] and 0 < e < 1. For this sequence R, it can be shown using Theorem
3.1 that the complexity of computing the sequence Z is O(n). However, for the sake of
completeness, the following lemma directly proves this assertion for this special case.

LEMMA 4.1. The number ofcomparisons requiredfor computing Zl, zg is O(n).
Proof. The sequence Z can be computed recursively. First, compute z2, the element

whose rank is [ n/21- el. Recursively, compute the sequence Z’, Z’l <- <- Z’k,, where
Z’ is defined analogously to Z but over the base set W:. For all i, _-< _-< k’, the rank
of z} in X is

(2i)
_--< ----< )1-ii-, (2i

Hence, we either computed z2i or the element whose rank is r2.- 1. In the latter case, z2;

is the minimum among elements in z} z} + 1]; the total number of additional com-
parisons is at most n.

Let the elements z; e Z for which is even (odd) be defined as having even (odd)
ranks. Thus, all the elements in Z that have even ranks were computed. In between every
two consecutive even-rank elements there is exactly one odd-rank element. Let di be the
number of elements ofX whose ranks are greater than Zzi and smaller than z2 + 2. The
complexity of computing Zzi + is O(di ). As 7; di <= n, the complexity of computing all
the odd-rank elements is linear. To summarize, we get the following recursive equation
forfR(n):

fR(n) =fR 2- + O(n),

and therefore fR(n) O(n). I--1
To prove that our algorithm makes a linear number of comparisons, it remains to

show that = SjI O(n). Let us first prove a general lemma for projective planes.
Let v, ..., vs be a subset of the points and let ml, "", mt be a subset of the lines.

Define the s binary matrix M such that Mo if and only if vi e mj..
LEMMA 4.2. For <-_ <= s, let ci ,= M (the number ofnonzero entries in the

ith column). Then,

Z ci <=ts+s.
i=1

Proof. First assume that for all i, c >= 2. We will prove that

(1) (c _<

The fight-hand side of is a count of the number of pairs of lines. We show that
in the left-hand side, no pair is counted more than once. For each column i, (ci2) is the
number of pairs of lines that contain v. If v mj., and also vi ink, then there cannot
be any other point that belongs to both lines. Hence, the pair of lines, mj- and mk, was
counted at most once.

Let C 7; ,s.= Ci. The left-hand side of is minimized when c C/s. Then,

s -1 N N < <
i= 2 i=l 2 2 =’

which, when reaanged, yields C N t + s.
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If for all i, ci < 2, then obviously C =< s. Consequently, if there are exactly s’, 0 =<
s’ =< s, indices such that c; >- 2, then

C <= tVs’ + s- s’) <= t+ s. vq

We will use the previous lemma to estimate the size of the reduced sets S), but first
we need some more definitions.

DEFINITION 4.1. For all 0 =< =< k:
1. S --IZ;I;
2. L;--the set of lines that intersect Z; but miss all the points in Ui<j<=k Zj;
3. t ]ti];
4. M;--the incidence matrix of Z and Zi (a li X si matrix).
The next proposition is easy to verify.
PROPOSITION 4.1. The number of nonzero entries summed over all matrices M,

0 <= <= k, is =1 ISl.
It follows from the last proposition and Lemma 4.2 that O(Y=0 tisi + =0 si)

bounds the cost of the second stage of the algorithm. We have the following bound on
s with respect to the sequence R:

[in__]_[ n ((i+l)’-‘-i-)si (i+1)_
=O n ((i+iiSi’--;

To bound ti, we need the following lemma of Alon [A1].
LEMMA 4.3 (Alon). Let Y be a nonempty set ofpoints in PG(d, q). The number

oflines that Y misses is at most O(nq/I YI).
COROLLARY 4.1. If YI ln/i-’l, then Y misses at most O(qi 1-) lines.
Let a and b be upper bounds on the number of lines missed by WZi and Wzi_,,

respectively, as implied by Alon’s lemma. As the sequence s; is decreasing, the term
i= o ti is maximized when ti b a. Hence, ti O(q(( + -)). Combining

the bounds for si and t we obtain

Vis O( n
The following lemma bounds the term (ti )/n.

LEMMA 4.4. For < e2

tiVisi ((i+ 1)---i-) 3/z

n (((i+ )i)l -)/2

((i+ )l-e__ -e)3/2)

Proof. First, we estimate c (i + )- -,
c=(i+ 1)--i1-=(i+ 1)-" 1-/--

Using the Taylor series expansion, we get

NOW,

Therefore,

2(1-e)))=2(1-e) 2
i+1 (i+1)’ <"

B (((i+ )i)I -e)I/2> il-.

O3/2((i+ 1)1--i-)3/2

(((i+ )i) -,)/2
as i5 < e/2.
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COROLLARY 4.2. It holds that

((i+ )l-e__ i1-e)3/2
i=l (((i+i)iii--,)i/ <o.

LEMMA 4.5. It holds that

ISl =o(n).
j=l

Proof. It follows from Corollary 4.2 thato tsi O(n). Also, since the sets Zi
are disjoint, it follows that Z _- <o s n. Applying Lemma 4.2 and Proposition 4.1 com-
pletes the proof. E]

Lemmas 4.1 and 4.5 yield the following theorem.
THEOREM 4.1. The algorithmfor the projective plane case requires a linear number

ofcomparisons.
Now suppose the base set element X is represented by points in a high-dimension

projective geometry PG(d, q) (d > 2), and each hyperplane is a subset in the family 9.
We give only an outline of the analysis of the algorithm for this case, as it is very similar
to the above one.

Here a simpler sequence R can be applied in the genetic algorithm to obtain linear
cost: for all i, ri /n! J. It is easy to see that the sequence Z can be computed with a
linear number of comparisons (this result is analogous to Lemma 4.1 ).

Let v, v be a subset of the points and let m, m be a subset of the
hyperplanes. Define the s binary matrix M, where Mij if and only if vi e m.

Mj.i (the number ofnonzero entries in theLEMMA 4.6. For < < s, let ci ,=
ith column). Then,

, ci=O(d’t’s(d-)/d+d’s).
i=1

Proof. The proofofLemma 4.2 can be easily emulated using the following inequality:

Cl Cs

Note that for R, si <= n/i2 and, by Lemma 4.3, i’ti <= n TM. Therefore,

(d- 1)/d < d. n
d.ti’si i(2(d 1))/d"

Now, when d > 2 is fixed we get
k, (d.t.s(d- )/d + d.s)= O(n),

i=0

and this yields the next lemma.
LEMMA 4.7. It holds that

n

Z ISI =O(n).
j=l

The next theorem follows from the above discussion.
THEOREM 4.2. The number ofcomparisons required by the algorithm for the pro-

jective geometry PG( d, q) is linear in n.
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5. The probabilistic case. We now present an algorithm for the set maxima problem
that, with high asymptotic probability, runs in linear time under the assumption that the
set family is chosen at random. The probabilistic model assumes that each element xi
belongs to a set Sj with probability p, where all the random choices are made indepen-
dently. The probability p p(n) may be any arbitrary function of n, except that we
exclude the degenerate cases where p(n) is 0 or 1.

The algorithm is an instance of the genetic algorithm with k [log_ nq and, for
<- <-_ k, ri [n/2iq. Assuming that n 2 l, for some positive integer m, the

element Z is the median of the base set, and the element zi is the median of the base
elements that are larger than zi- .

LEMMA 5.1. The rank sequence R can be computed using O(n) comparisons.

Proof. The idea is to compute the sequence z, z2, zk in that order. In general,
to compute the element zi, we need only perform a single selection from the elements
that are larger than zi- and there are ri-1 such elements. Thus, the cost of the
entire computation is the following number of comparisons:

f(n)=O(r)+O(r2)+ +O(rk)=O(n).

The nontrivial part of the analysis is to show that X,.= ,n S; } is linear in n
with high asymptotic probability. This is hard to analyze directly, so we will first dem-
onstrate that each term in the sum is stochastically dominated by a more well-behaved
random variable.

Let m(Si denote the number of elements in X that are larger than the maximum
of the set Si; in other words, re(Si) is one less than the rank of the largest element in
S The random variable of interest is C 7] ’= S }, which represents the cost
of finding the maxima ofthe sets during the second stage ofthe genetic algorithm. Recall
that S Si fq Ze(s). Define Ci [S as the contribution ofeach set Si to C; then
c=E_-1 Ci. The following lemma shows that the random variable Ci is stochastically
dominated by a random variable with the binomial distribution Bms,,v.

LEMMA 5.2. Let ( be a random variable that is the sum ofm(Si independent and
identically distributed random variables each taking the value with probability p, and
value 0 with probability p. Then, C is stochastically dominated by i.

Proof. First, observe that even though S is the sum of h(S) independent and
identically distributed Bernoulli trials, its value has been conditioned by the event that
the maximum element of Si lies in it. Thus, we know that SI is at least 1. To get
around this conditioning, we consider the following probabilistic game.

Suppose we repeatedly flip a coin with P[ head p. Let M be the number of tails
we see before the first head appears. Define to be such that r + " M + =< r 1. We
now continue flipping the coin until we have had a total of rt coin flips. The value
of the game is the random variable V, which is the total number of heads seen during
the course of the game. Consider now one who observes the outcome of the coin flips
only until the first head appears. We wish to determine the distribution of V from
the point of view of this observer. This is equivalent to determining the distribution
of V conditioned by the event that M m, for some m > 0. It is obvious that the condi-
tional distribution of V- is the sum of (rz (m + Bernoulli trials,
where the probability of a is p. Since rt + =< m + =< rt 1, it follows that (r
(m + =< m. Thus, V is one more than the sum of a Bernoulli trials, where a _-< m.

Let us now apply the above analysis to the problem at hand. Suppose we start
choosing the elements of Si, starting from the largest to the smallest. Assume that the
elements ofX are ordered as x > Xn- " Xl. We first flip a coin with P[head]
p, and include xn in Si if we see a heads. We then repeat this for x,_ 1, x,_ 2, and so on.
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It is clear that m(Si is precisely the number of tails we see before the first head appears.
At this point we have no knowledge ofthe remaining n m(Si) + coin flips. Suppose
that rt < m(Si) + =< rt / l, then is exactly ’ (Si). Clearly, the size of S is the number
ofheads we see during the first rt coin flips. The correspondence between this process
and the above game is obvious, where the value of the game V corresponds to S
Ci + 1. We now conclude that the conditional distribution of Ci (conditioned by the
event that the largest element in Si has rank m(Si + is the same as that of the sum
of a <- m(S Bernoulli trials with parameter p. This implies the desired result. V]

Define a new cost measure ( - di Since each term in the sum d stochasti-
cally dominates the corresponding term in the sum C, it follows that C is stochastically
dominated by d. It now suffices to prove that " is linear in n with high probability.
Also, note that each di is independent and distributed with the binomial distribu-
tion Bm(si),p. It then follows that is also binomially distributed as BM,p, where M= m(Si ). Thus, ifwe knew the value ofeach m(Si ), and hence ofM, the distributions
of the new cost measures would be completely determined. Unfortunately, M itself is a
random variable and this makes even the task of analyzing nontrivial.

Let us first totally characterize the distribution ofMusing the following lemma. We
assume below that n -- .LEMMA 5.3. The random variables m(Si are independent and identically distributed
i.i.d.) with a common distribution, which is geometric with parameter p. Moreover,
the random variable M has the probability generatingfunction (p.g.f.)

g(z)=
1-qz

where q p.
Proof. The random choices of the elements ofa set Si are independent and identical,

viz., Bernoulli trials with probability p. Clearly, for -_< d _-< n,

Pr m(Si d] qap.
Since we have assumed that n-- oe, this is precisely the geometric distribu-

tion. Therefore, each random variable m(Si) has the probability generating function
p/( 1- qz). Since these are i.i.d, random variables, it follows that the p.g.f, of their
sum M is the product of their p.g.f.’s Fe, p. 264 ]. V1

We can now derive some information about the distribution of d. First, observe
that E[ (] n q/p p nq because the geometric distribution has the mean q/p. Since
q < 1, it is clear that the algorithm makes a linear number ofcomparisons on the average.
To obtain sharper results we will first determine the p.g.f, for d.

LEMMA 5.4. The probability generating function (p.g.f.) for the random variable
(: is

(h(z) --q2--pqz

Proof. is the sum ofM i.i.d. Bernoulli random variables that have the common
generating function b(z) q + pz. We have already obtained the probability generating
function g(z) of M in Lemma 5.3. From [Fe, p. 287] it follows that ’s generating
function h(z) is the composition of g(z) and b(z). Thus,

h(z)=g(b(z))=
1-q(q+pz)
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We now use the following tail inequality for probability generating functions (see,
for example, KMP]) to obtain a high probability result.

THEOREM 5.1 KMP ). Let X be a positive integer-valued random variable with
the probability generatingfunction F( z). Then, for any z >= 1,

F(z)
Pr [X>- ,] <

Using this tail inequality, we obtain the following.
LEMM 5.5. Let > be any positive constant. Then, for any e > O,

Pr C >- anq] <- e- ),n.

Proof. It suffices to prove that the above statement holds for since it stochastically
dominates C. First, note that the p.g.f, for can be written as

h(z)=
1-q(q+pz) l+q(1-z)

We now use the tail inequality for p.g.f.’s, with X omq and z + e/q. This
gives us

(e)-anq(1)-ePr[>-anq]<-_ 1+

We now obtain the desired result,

Pr >_- anq] <= e-"’e" e -(" 1)en. 1--]

The next theorem follows from Lemmas 5.1 and 5.5, and the definition of the
genetic algorithm.

THEOREM 5.2. The algorithmfor theprobabilistic setfamilies makes a linear number
ofcomparisons, with high asymptotic probability.
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BROADCASTING IN BOUNDED DEGREE GRAPHS*

JEAN-CLAUDE BERMOND, PAVOL HELL, ARTHUR L. LIESTMAN,
AND JOSEPH G. PETERS

Abstract. Broadcasting is an information dissemination process in which a message is to be sent from a
single originator to all members of a network by placing calls over the communication lines of the network.
Several previous papers have investigated methods to construct sparse graphs (networks) in which this process
can be completed in minimum time from any originator. The graphs produced by these methods contain high
degree vertices. [Liestman and Peters, SIAM Journal on Discrete Mathematics, (1988), pp. 531-540] and
Bermond and Peyrat, Proceedings ofthe 19th SE Conference on Combinatorics, Graph Theory and Computing,
Congressus Numerantium, 1988, pp. 283-292 began an investigation of graphs with fixed maximum degree
in which broadcasting can be completed in near minimum time. This investigation is continued in this paper
by giving lower bounds and constructing bounded degree graphs that allow rapid broadcasting. The constructions
use ideas developed by Jerrum and Skyum [IEEE Transactions on Computers, C-33(2), 1984, pp. 190-194 ],
which allow passing from a graph with good average case behaviour to one with good worst case behaviour. In
addition, de Bruijn digraphs de Bruijn, Koninklijke Nederlandse Akademie Van Wetenschappen, Indagationes
Mathematicae, Series A, 49 (1946), pp. 758-764 ], minimum broadcast graphs, and sparse broadcast graphs
Bermond, Hell, Liestman, and Peters, Discrete Applied Mathematics, to appear are used. The resulting graphs

yield the best broadcasting time known for bounded degree graphs. Also obtained are asymptotic upper and
lower bounds for broadcasting time, as the maximum degree increases.

Key words, broadcasting, graphs, networks, bounded degree graphs, de Bruijn digraphs

AMS(MOS) subject classifications. 05C99, 68M10, 68R10, 94A05

1. Introduction. Broadcasting refers to the process of message dissemination in a
communication network whereby a message, originated by one member, is transmitted
to all members of the network. Broadcasting is accomplished by placing a series of calls
over the communication lines of the network. This is to be completed as quickly as
possible subject to the constraints that each call involves only two vertices, each call
requires one unit of time, a vertex can participate in only one call per unit of time, and
a vertex can only call a vertex to which it is adjacent.

Given a connected graph G and a message originator, vertex u, the broadcast time
ofvertex u b(u) is the minimum number oftime units required to complete broadcasting
from vertex u. It is easy to see that for any vertex u in a connected graph G with n
vertices, b(u) >= I-log2 n], since the number of informed vertices can at most double
during each time unit. The broadcast time ofa graph G b(G) is defined as the maximum
broadcast time ofany vertex u in G, i.e., b(G) max b(u)lu 6 V(G) }. For the complete
graph Kn with n >_- 2 vertices, b(Kn) [log2 n], yet Kn is not minimal with respect to this
property for any n >- 3. That is, we can remove edges from K, and still have a graph G
with n vertices such that b(G) [log2 n].

The broadcastfunction, B(n), is the minimum number of edges in any graph on n
vertices such that each vertex in the graph can broadcast in minimum time, that is, in
time [log2 n]. A minimum broadcast graph (mbg) is a graph G on n vertices having B(n)
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edges and b(G) [log2 n]. From an applications perspective, mbg’s represent the cheapest
possible communication networks (having the fewest communication lines) in which
broadcasting can be accomplished from any vertex as fast as is theoretically possible.

For a survey of results on broadcasting and related problems, see Hedetniemi,
Hedetniemi, and Liestman [14]. Slater, Cockayne, and Hedetniemi [24] showed that
given an arbitrary graph G, vertex v, and k >_- 4 as input, deciding whether b(v) >_- k is
NP-complete. In [11] Farley, Hedetniemi, Mitchell, and Proskurowski studied B(n). In
particular, they determined the values ofB(n) for n _-< 15 and noted that B(2k) k2 k-

(the k-cube is an mbg on n 2 k vertices). Mitchell and Hedetniemi [22] determined
the value for B( 17); Wang 25 found the value ofB( 18); and Bermond, Hell, Liestman,
and Peters 3 found the values ofB 19 ), B(30), and B 31 ). These studies suggest that
mbg’s are extremely difficult to find; in fact, no mbg with n vertices is known for any
value of n > 32, except for the easy values of n 2 k, where the k-cube can be used and
the recently discovered family of graphs with n 2- 2 8 ].

Since mbg’s seem to be difficult to find, several authors have devised methods to
construct sparse graphs that allow minimum time broadcasting from each vertex. We
use the term sparse broadcast graph (sbg) to denote a graph G on n vertices with "close
to" B(n) edges such that b(G) [log2 n]. In [10] Farley designed several techniques for
constructing sparse broadcast graphs with n vertices and approximately n] 2 log2 n edges,
for arbitrary values of n. Chau and Liestman 5 presented constructions based on Farley’s
techniques, which yield somewhat sparser graphs for most values of n. In 13 Grigni
and Peleg showed that B(n) O(L(n)n) for n >= 1, where L(n) denotes the exact number
of consecutive leading l’s in the binary representation of n 1. Recently, Gargano and
Vaccaro 12 gave constructions that produce the best of the known graphs for some
large values of n. Asymptotically, Grigni and Peleg’s construction (which establishes
their upper bound) produces the best of the known graphs for most values of n.

So far, the emphasis in this research has been on obtaining sparse graphs in which
each vertex can broadcast in minimum time. If these graphs are to be used in the design
ofactual networks, other considerations may override the need for minimum time broad-
casting. In particular, the constructions ofFarley, ofChau and Liestman, and ofGargano
and Vaccaro result in graphs with n vertices and average degree O(log2 n), while the
construction of Grigni and Peleg yields n vertex graphs with some vertices of degree
log2 log2 n + L(n). It may be more realistic to use a graph with fixed maximum degree
(see [1], [2], and [15]) in which every vertex can broadcast "quickly." We will use the
term bounded degree broadcast graph (bdbg) to describe a graph G on n vertices with
maximum degree A such that b(G) is "close to" b(n, A) min { b(H) IH has n vertices
and max degree A }. (Questions related to broadcasting in slightly more than minimum
time have previously been addressed by Liestman [19] and by Grigni and Peleg [13].)

In a recent paper, Liestman and Peters [20] investigated bounded degree broad-
cast graphs with maximum degrees 3 and 4. They gave lower bounds on the time re-
quired to broadcast in such graphs and presented several constructions that produce
good bounded degree broadcast graphs. Liestman and Peters showed that b(n, 3) >=
1.440 log2 n 1.769 and that if n is a power of 2, then b(n, 3) _-< 2 log2 n + 1. The
upper bound is achieved by constructing folded:shutile-exchange graphs [6]. They also
showed that b(n, 4) >_- 1.137 logz n 0.637 and that ifn is a power of 4, then b(n, 4) =<
1.625 log2 n + 2.25. The upper bound in this case is achieved by constructing folded-4-
shuffle-exchange graphs. More recently, Bermond and Peyrat [4 considered broadcasting
in de Bruijn and Kautz graphs. They were able to improve on the upper bounds of
Liestman and Peters, showing, in particular, that b(n, 4) _-< 1.5 log2 n + when n is
either a power of 2 or 3 times a power of 2.
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In this paper, we improve on the results ofLiestman and Peters [20] and ofBermond
and Peyrat 4 ]. In 2 we present general lower bounds on the time required to broadcast
in bounded degree graphs. In 3 we give the definition of de Bruijn digraphs and sum-
marize some of the work of Bermond and Peyrat [4], which will be useful in later
sections. In 4 we give some examples ofconstructions that motivate the formal definitions
of compound graphs in 5. In 6 we describe how to broadcast in compound graphs,
generalizing the work of Bermond and Peyrat [4] reported in 3. Finally, in 7 we
report the best ofthe known upper bounds on the time required to broadcast in bounded
degree graphs. All ofthese bounds are achieved by using compound graphs. In particular,
it will follow from our results that b(n, 3) =< 1.875 log2 n + 2.903 when n is 6 times a
power of 4 and that b(n, 4) -< 1.417 log2 n + 4 when n is a power of 8.

2. Lower bounds. We wish to prove a lower bound on b(n, A), the minimum b(G)
for any graph G with n vertices and maximum degree A. It will be more convenient to
first consider the quantity ata, which denotes the maximum number of vertices in a graph
of maximum degree A in which each vertex can inform all others in time t. An upper
bound on ata will clearly translate to a lower bound on b(n, A). In any broadcasting
scheme that achieves this maximum a we may assume that a vertex does not remain
idle if it has already been informed and it still has uninformed neighbours. Therefore, if
there is one informed vertex at time 0, then after time + A 1, >= 1, all the vertices
that were informed by time have informed all of their neighbours and must become
idle. Hence, ata+ a =< a+ a._ + (ata+ a- aP) 2at+ a_ a. It is also clear that
A<2Sas because at each time a vertex can inform at most one other vertex. Thus an

upper bound on a is the solution to the recurrence

(1) bsa 2S for s= 0,1, ,A, bta+A=2b+zX_l-b forallt >-1.

Note that as 2 for s 0, 1, ..., A since the s-cube, with s < A, is of degree at
most A and has 2 vertices. It is possible that at bta for all t.

For A 3, we know that as b 2, for 0 =< s =< 3. Furthermore, a43 b43 14,
as the Heawood graph (Fig. 7.1 (a)) is a cubic graph on 14 vertices with broadcast time
4. Similarly, a b3 24, as we presented in [3] a cubic graph on 24 vertices with
broadcast time 5. Also, a63 b63 40, as we presented a cubic graph on 40 vertices with
broadcast time 6 in [3]. The next value in the sequence is b37 66. We do not know
whether there is a cubic graph on 66 vertices with broadcast time 7, i.e., if a73 66.

For A 4, we know that a4 b4 2 for 0 < s < 4. For s 5, a b54 30, as
we presented (three) 4-regular graphs on 30 vertices with broadcast time 5 in [3 ].
Moreover, a b 56, as we presented a 4-regular graph on 56 vertices with broad-
cast time 6 in [3]. The next value in the sequence is b74 104 and we do not know
whether a74 104.

For A 5, we know that a6 b6 62 since there is a 5-regular graph on 62 vertices
with broadcast time 6 [23 ]. This graph is constructed by adding chords to a cycle of
length 62. In particular, when vertices are numbered consecutively around the cycle,
chords are added from each even-numbered vertex x to vertices (x + 5)mod 62,
(x 7) mod 62, and (x + 19) mod 62.

Very recently, Dinneen, Fellows, and Faber [8] solved the conjecture that a
bt for A + (see [3]) by constructing a A-regular broadcast graph with 2 a/ 2
vertices for each A >-- 3. It is easy to show that these graphs are minimum broadcast
graphs. At present, we do not know other values of > A for which at bt.

We suspect that a P b for all >= A, or at least that the values are very close. At
present, this seems difficult to prove. For example, for A 3 this would mean that
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b(n, 3) 1.440 log2 n. However, the best construction for n-vertex cubic graphs with
small diameter (see 16 or 6 ]) gives graphs with diameter 1.472 log2 n. Since the diameter
of a graph is an obvious lower bound for its broadcast time, this means that if we could
show that b(n, 3) 1.440 log2 n, then the cubic graphs that achieve this bound would
also improve the results for the diameter problem.

Note that b(n, A) is at least as large as the minimum t for which aa >= n. The best
lower bound on b(n, A) that can be obtained from is La(n) min t" ba -> n }. If
at
a bta, for all t, then La(n) would be the true optimum time for broadcasting in graphs

with n vertices and maximum degree A. In [20], the recurrence (1) was derived and
used to determine that b(n, 3) >_- L3(n) . 1.440 log2 n 1.769 and b(n, 4) >= L4(n)
1.137 log2 n 0.637. Iterated numerical techniques can be used to find other values of
ca such that La(n) ca log2 n. Table 2.1 lists values of ca for 3 =< A =< 16 that were
obtained this way. In contrast, the following careful analysis of the recurrence relation

gives the asymptotic behaviour ofLa(n) and, therefore, the best general lower bound
for b(n, A obtainable from ).

THEOREM 1. For every e > 0 and all sufficiently large n and ,
log2 e)+ 2a

log2 n+O(1)=<La(n)< 1+
+ e) log2 e]2 a log2 n.

Remark. We interpret Theorem to say that ca + (log2 e) / 2 a. We have listed
the values of + (log2 e) / 2 a in Table 2.1.

COROLLARY 2. b(n, A) >_ + (log2 e)/ 2 a) log2 n + O( )for all A and all sufficiently
large n.

Corollary 2 follows from the proof of Theorem 1.
ProofofTheorem 1. For simplicity ofnotation, let A d + 1. To solve ), consider

its characteristic equation xa +1 2xa + 0. It is known (see Miles 21 ]) that this
equation has d + distinct roots ro, rl, "", ra; that two of these roots are real, say r0
and rl r, with < r < 2; and that the remaining d- roots are complex and lie

inside the unit disk of the complex plane. (In fact, Miles studied the equation xa

xd- 0. To apply his results we need only note that xa +1 2xa +
(x 1)(xa- xa- 1).) By a standard technique [21], there exist complex
numbers So, sl, sa so that bta soro + slr] + + sdrta. Since ]r;I =< for va

TABLE 2.1
Lower bounds.

3 1.440420 1.180337
4 1.137467 1.090168
5 1.056215 1.045084
6 1.025404 1.022542
7 1.012034 1.011271
8 1.005842 1.005636
9 1.002874 1.002818
10 1.001424 1.001409
11 1.000709 1.000704
12 1.000353 1.000352
13 1.000176 1.000176
14 1.000088 1.000088
15 1.000044 1.000044
16 1.000022 1.000022

A Ca + (log2 e)/2a
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and r r > 1, we have bt O(rt). Thus it is important to estimate r. (We have just
discovered that a result similar to Lemma 3 is described by Knuth [18].)

LEMMA 3. 2 + e)/2 d < r < 2 /2 dfor all > 0 and all sufficiently large d.
Proof. Let r=2-6. Since r is the root of xd+-2xd+l =0, we have

6(2 6)d 1. We will show that /2 d < 6 < + e)/2 d. Both of these inequalities fol-
low from the fact that 1/2d)(2 1/2a) a < and (( / e)/2d)(2 / e)/2a) a > 1.
The first fact is obvious. The second fact is equivalent to + e)( + e)/2d / 1)d > 1.
For y + e)/2 d /, we can use the estimate y > e-9.y (which is valid for y e
(0, 1/2]) to obtain (1 y)d > e-:dy e-d((1 + e)/2 d) > 1/(1 + e), when d/2 d <
(In + e))/( + e). This certainly holds for any fixed e and d large enough.

To complete the proof of Theorem we need to bound La(n). Let A be fixed
and let a 2 1/2 d be the upper bound from Lemma 3. If b >= n and n is suffi-
ciently large, then will also be large enough so that bta <= Cla (for some positive c).
Thus CIOI >= n and >- 1/log_ a) log: n + O( ). This means that L,(n) >-
(1 c) log2 n + O(1). Now since log2a + log2 eln (1 1/2d/l), we can use
the fact that 1/( / log2 e In y)) > / (log: e)y for 0 < y < to obtain La(n) >=

+ log: e/2) log: n + O( for any fixed A.
For given n and A, let be such that b >= n and bt_ < n and let / 2

(( + e)/2 d) be the lower bound from Lemma 3. If n is sufficiently large, then
will be large enough so that C2t- btA_ (for some c_ > 0). Thus c:t- < n and <
1/log: ) log2 n + O( ). This means that La(n) < 1/log2 r) log: n + O( ). Now

since log:/ / log_ e In (( / e) / 2 d / )), we can use the fact that for any
e’, 0 < e’ < 1, there existsf(e’)such that if0 < y <f(e’), 1/(1 + log: eln (1 y)) <
+ (1 + e’)(log2 e)y to obtain LA(n) < (1 + ((1 + e)(1 + e’) log2 e)/2 A) log2 n +

O( for A large enough. Therefore, for any e" such that + e") > + e)( + e’), and
for any A and n sufficiently large we get LA(n) < + (( + e") log: e)/2 a) log2 n. [--]

As mentioned above, it may be the case that La(n) is the optimum broadcast time
in graphs with maximum degree A. However, at present, the best of our constructions
only achieves b(n, A) =< + c’/A) log: n asymptotically with c’ .415 (see 7).

3. Broadcasting in de Bruijn digraphs. In the remainder ofthe paper, we show how
to construct bounded degree graphs that allow rapid broadcasting. Our constructions
make use of de Bruijn digraphs, which were defined in [7]. The de Bruijn digraph
B(d, D) with indegree and outdegree d and diameter D is the digraph whose d vertices
are the words of length D on an alphabet of d letters (we will always use the alphabet
{ 0, 1, d ). There is an arc from a vertex x to a vertex y if and only if the last
D letters of x are the same as the first D letters of y; that is, there are arcs
from (Xl, xz) to the vertices (x2, "’, xz, ,) where is any letter of the alphabet.
Note that the diameter of B(d, D) is D because (x, ..., xo), (x2, "", x9, Zl),
(x3, xz, z, z2), (xz, Zl, zz-), (z, z) is a directed path of length
D joining any vertex (Xl, xz) to any other vertex (Zl, zz).

We use UB(d, D) to denote the associated undirected de Bruijn graph. That is,
UB(d, D) is the graph whose vertices are the words of length D on an alphabet of d
letters in which the vertex (Xl, xz) is adjacent to the vertices (x2, xz, ) (called
the right neighbours of (x, xz)) and the vertices (,, x, xz- 1) (called the left
neighbours of(xl, xz)). It is clear that UB(d, D) has maximum degree A 2d.

Bermond and Peyrat [4] recently investigated broadcasting in de Bruijn graphs
and presented three different broadcasting schemes. One of their schemes proves that
b(UB(d, D)) ((d + 1)/2)D + d/2. One of their other schemes (which achieves
a slightly different bound) is useful in understanding the broadcasting scheme for
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compound graphs, which follows in 6. It is the following scheme in which each
vertex (including the originator) only sends the message to its fight neighbours. A
vertex (x,... ,xD) informs its neighbours in an order that depends on 6, z= xi] mod d, the d-arity of the label (x, xD). Vertex (x, xo)
sends the message to its uninformed neighbours in the order (x2,’", xz), 6),
(x2, xn, (6 + )), (x2, xn, (6 )) (addition/subtraction modulo d).
As shown in [4], the message will arrive at any vertex (z, zz) from (x, xz)
after at most ((d + )/2)(D + time units along one of the d paths (x, xn),
(x2, "’", x, c), (x3, "’", x, , z),..., (x+2, "’", x, , z,..., z;),...,
(c, z, zz_), (z, zz), where 0 -< c =< d- 1.

Strictly speaking, in the above scheme the message may arrive at some vertex more
than once. By deleting redundant calls, a scheme can be obtained that completes the
broadcast at the appropriate time.

4. Introduction to compound graphs. Our goal is to construct graphs with bounded
degree and good (asymptotic) broadcasting time. To do this, we will use the notion of
compound graphs (see [2 ]). In particular, we will use the ideas developed by Jerrum
and Skyum [16 to construct bounded degree graphs with the best diameter currently
known. (It appears that a bounded degree graph with smallest diameter does not nec-
essarily give the best broadcasting time.) In this section, we describe some ad hoc con-
structions that give some insight into the details that are addressed more formally in later
sections.

To construct a bounded degree graph that may have good broadcasting time, begin
with a "good" digraph B, such as a de Bruijn digraph. Replace each vertex x of B by a
copy Gx of a "suitable" graph G and join the copies using the arcs of B. (If there is an
arc from x to y in B, then put an arc from Gx to G as described below.) The associated
undirected graph G[B is called the compound ofG in B. We will, however, find it useful
to refer to the directions of the arcs when describing the construction of a specific com-
pound graph or broadcast schemes for it.

For example, let B B(2, D), the de Bruijn digraph with indegree 2, outdegree 2,
and diameter D, and let G be a single edge (G K2). Replace each vertex x in B by two
new vertices (x; 0) and (x; ), joined by an edge in the new graph G[B]. The arcs
incident on x in B are redirected in G[B] so that each vertex (x; j) for j 0, has one
incoming arc and one outgoing arc. (Figure 4.1 (a) shows a vertex x in B and its incident
edges. Figure 4.1 (b) shows the corresponding vertices (x; 0) and (x; ofthe new graph
G[B and their incident edges.) The resulting graph is H K2[B(2, D) ].

Suppose we want to broadcast from vertex (x; j) in this new graph H. At time 1,
send the message to (x;j + (addition modulo 2), the other vertex in the originator’s
copy of K2. At time 2, send the message to the two copies Gx, and Gx, where xx’ and
xx" are arcs of B; that is, if x (x, xz), then x’ (x_, xz, 0) and x"

(b)

FIG. 4.1. Replacing a vertex with an edge.
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(a) (b)

(x:2) " (c)

(x:j+2)4
FIG. 4.2. Replacing a vertex with a 3-star.

(X2, xz, ). If a message arrives at time in some copy G=, then at time + send
it to the other vertex of Gz, and at time + 2 send it to the two copies Gz, and G=,,, where
zz’ and zz" are arcs of B. Since the diameter of B(2, D) is D, at time 2D the message
will have reached all copies of G, and at time 2D + all the vertices of K2[B(2, D)] are
informed.

We have constructed a graph H on n 2 2z 2Z+l vertices that is 3-regular
and has broadcast time b(H) =< 2D + 2 log2 n 1. This simple construction allows
us to match the result of Liestman and Peters [20] for graphs of maximum degree 3. As
we will see, this technique will enable us to make further improvements.

Note that in the previous example we did not specify which of the two arcs leaving
x will be associated (in the compound graph) with (x; 0) and which with (x; ). In this
case it does not matter as some vertex in both copies Gx, and Gx,, will receive the message
two units of time after it arrives in copy Gx. However, this need not always be the case,
as is illustrated by the next example.

Let B B( 3, D), the de Bruijn digraph with indegree 3, outdegree 3, and diameter
D. Replace each vertex x in B with a copy of a 3-star G consisting of vertices (x; j),
where j 0, 1, 2, 3 and edges (x; 0)(x; 3), (x; 1)(x; 3), and (x; 2)(x; 3). The arcs
incident on x in B are distributed among the vertices (x; j) for j 0, 1, 2 in G[B] so
that each vertex has one incoming arc and one outgoing arc see Figs. 4.2 (a) and 4.2 b ).

To broadcast in G[B] we can use the following scheme. If a message arrives (or
originates) at time at vertex (x; j) in some copy Gx, send it to (x; 3) at time + 1. At
time + 2, (x; 3) sends it to (x; j + 1) and (x; j) sends it to the copy Gx, joined to
Gx by the arc going out from (x; j). At time + 3, (x; 3) sends it to (x; j + 2) while

G(O, xa xo_a)

G(1 ,x xo_)
e

,’ tx;3)
G(x2 XD’(X)+I)

,%,

e2(

_
e2

G(2, x Xo_)

2" G(x2 xo, $(x) +2)

FlG. 4.3. Connections for Gx with x (x, xz).
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(x; j + sends it to the copy Gx,, joined to Gx by the arc going out from (x; j + ).
At time + 4, (x; j + 2) sends it to the copy Gx,,, joined to Gx by the arc going out
from (x; j + 2). (All additions on vertex labels are performed modulo 3.) This is illus-
trated in Fig. 4.2 (c), where the vertex labels denote the delay in transmitting the message
from (x; j). Even without specifying exactly how the arcs are connected, we can see that
the constructed graph H’ G[ B] has broadcast time b(H’) -_< 4D + 3.

If we are more specific about the connections in H’, the bound can be improved.
We will use ej to label the arc entering the vertex (x; j) and oj to label the arc leaving
(x; j), as shown in Fig. 4.3. (Of course, these labels are relative to a particular Gx.) For
any Gtx,...,xz,), e will come from G(,x,...,x,_). The arc o will join (x; j) to
G(x,...,x,,(x)+ ), where 6(x) [22/D= X ](mod 3) is the 3-arity of x. We will see in 7
that the broadcast time b(H’) is at most 3D + 6 with these connections.

5. Construction of the compound graph GIB]. We now formally describe the con-
struction of G[B], the compound of G in B. Let G be a graph on p vertices and let B
B(d, D) be the de Bruijn digraph of outdegree d, indegree d, and diameter D. The
vertices of B(d, D) are labelled (x, XD) with xi {0, 1, d 1}. G[B] is
obtained by replacing each vertex x ofB by a copy of G (denoted Gx) and by associating
with each arc xy of B an edge between Gx and Gy, as described below.

The vertices of G[B] are labelled (x; j), where x (x, x) is a vertex of B,
and j is a vertex of G. The set of vertices of the copy Gx is the set of all vertices (x; j)
with j V(G). There are d arcs entering and d arcs leaving a given Gx. An arc entering
Gx will be labelled e; if it comes from G<;,x,...,x._ ). Now we can assign the d in-arcs to
the vertices of Gx in a uniform way for all copies of G by giving a mapping g of
{0, 1, d- into V(G) so that the arc ei enters Gx by way ofthe vertex (x; g(i)).

We label the outgoing arcs o in each copy of G. In Gx, we let the arc oi go to
G<x,...,x,,i+<x)), where 6(x) is the d-arity of the vertex x (x, XD) (addition is
modulo d). The d out-arcs are assigned to the vertices of each copy of G in a uniform
way by giving a mapping f of 0, 1, d- 1} into V(G) so that the arc o starts at
(x;f(i)).

In summary, we choose two mappings fand g from 0, 1, d } to V(G).
There is an edge between (x; j) and (y; k) if and only if either x y and j is adja-
cent to k in G or xy is an arc ofB with x x XD), y X2, XD, XD + ), j
f(XD+ 6(X)) and k g(x). Note that while f and g significantly influence the
construction of G[B], we will continue to use the simplified notation G[ B], and let f
and g be determined by context.

Consider the following example, illustrated in Fig. 5.1. Let G C4, d 6, and
f(0) f(1) 0, f(2) 1, f(3) f(4) 2, f(5) 3, g(0) 0, g(1) g(2) 1,
g(3) 2, g(4) g(5) 3. For example, e3 will always enter (x; 2), since g(3) 2.
Similarly, 03 will always connect (x; 2) to the copy G(x,...,x,,(x)+ 3)since f(3 2.

The graph G[B(d, D) contains V(G) V( B(d, D)) pdD vertices. The
degree of vertex (x; j) is the sum of the degree ofj in G and the number of arcs from
B(d, D) entering and leaving (x; j), that is, d(x; j) da(j) + If-(j)l +
(Note that this is independent of x.) The sum of the degrees of the vertices of any
copy Gx is 2[E(G)[ + 2d. Note that we can always choose fand g in order to en-
sure a maximum degree A in G[B] as long as A -> max {da(j)lj V(G)} and pA >=
21E(G)I / 2d. Indeed, it suffices to choose f and g such that da(j) + If- (J) /

g-(j)l --< A, 0 -<j =<p-- 1.
In fact, for constructing bounded degree broadcast graphs, we do this back-

ward. Given the degree A that we desire for the compound graph, we choose a graph
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FIG. 5.1. Replacing a vertex with a C4.

G with maximum degree at most A, and then determine d satisfying 2d _-< pA-
21E(G)I. To obtain the maximum possible number of vertices, we will choose d
L(p A 21E(G)I)/2J.

6. Broadcast time in G[B]. In the broadcast scheme for the de Bruijn digraph B
described in 3, when a message arrives at vertex (x, xz), the vertex relays the
message to its fight neighbours (x2, xz, X). The general idea for broadcasting in
the compound graph G[B] is to simulate this scheme. In G[B], when a message first
arrives at a vertex ((x, x); j) (for some vertex j of G), we inform the other
members of this copy of G and relay the message to the "out-neighbour copies" of G
that replaced the neighbours of (x, xz).

To determine the broadcast time of G[ B], we introduce a new parameter b(G), the
smallest possible "average time" needed to transmit a message originated in a copy of G
to its out-neighbour copies. Formally, let G be a graph to which d outgoing arcs Oo, ,
Od-l have been attached. (These arcs will correspond to the arcs o; defined in G[B].)
Note that although o0, Od- significantly influence the value ofb(G), we prefer not
to make them part ofthe notation b(G). For a vertex u ofG and a particular broadcasting
scheme for u in G, let iu denote the time at which a message originated at u at time 0
will be received by the vertex at the other end of arc o;. In the compound graph, this is
an upper bound on the time at which the message will reach the copy connected to G
by 0 The value u /d)(t + + td- is the average time for a message originated
at u to arrive at the copies of G along the arcs oi under the given broadcast scheme. If
we let b(G, u) be the minimum Oftu over all possible broadcasting schemes for originator
u in G, then b(G) max {b(G, u)lu V(G)}.

The examples of Fig. 6.1 illustrate how b(G) is calculated. In each case, the vertex
labelled 0 is the originator. The label on each other vertex indicates the time at which
the vertex receives the message (assuming that the first call is received at time ). The
label at the end ofan arc indicates the time at which the message reaches the corresponding
copy of G. Figure 6.1 (a) shows the times for G K2. Since both adjacent copies receive
the message at time 2, b(K2) 2. Figure 6.1 (b) shows that if G is the 3-star, the neigh-
bouring copies receive the message at times 2, 3, and 4. Thus, b(G) 3 for this graph
G. Figure 6.1 (c) shows the time for G Tr, where T6 is a particular tree on six vertices.
With this particular graph, the neighbouring copies receive the message at times 2, 4, 4,
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FIG. 6.1. Average time.

and 5 giving b(G) 15 / 4. Figures 6.1 (d) and 6.1 (e) show the times for the two possible
nonisomorphic originators in the graph G C4, the cycle of four vertices. In both cases,
four neighbouring copies receive the message at time 3, and the two other neighbouring
copies receive the message at time 4. This gives b(Ca) 20/6. Other examples appear
in7.

THEOREM 4. b(G[B(d, D)]) =< (D + 1)b(G) + b(G).
Proof. Choose, for each vertex u of G, a broadcasting scheme in G such that

b(G, u) =< b(G). Using this scheme, if a message arrives at the vertex (x; u) in G= at
time it will be received at the other end of the arc oi at time + and we obtain a
scheme for G[B(d, D) ].

Note that by the definition of , d__- t, --< d(G).
Consider an arbitrary originator, vertex (x; j0) with x (x, xz), and a goal

copy Gy with y (y, Yz). Consider also the d paths z0 x (x, xD), Zl
(X2, "’", XD, Ol), 22 (X3, "’", XD, Ol, Yl), Zi (Xi+I, "’", XD, Ol,

Y, "", Yi-), zD (c, y, Yz-l), zz/ (Yl, Yz) in B(d, D) with
c e { 0, 1, d }. In all of these d paths in G[B(d, D)], we enter the copy Gzi,
0 =< -< D, via the same vertex, namely (zi;g(xi)). Copy GzD+, is entered via vertex
(zo / g(x)), which is different for each of the d paths. We leave the copy Gzi, <=

=< D + 1, via different vertices, as the leaving arc depends on the d-arity of z;, which
changes with a. Of course, each path also leaves copy Gzo by a different vertex. For a
fixed a (and hence a fixed path z0, Zl, zD /) we denote by O/i the subscript j of the
arc oj leading from Gz, to Gz,+ . Then the time the information arrives (on this path) at

00the goal copy Gy is t, tj0 + t’ + + t, where ji g(xi) for D
Now consider different values of a. As a takes on all of the possible values

{ 0, 1, d- }, the d-arity of z for each fixed > 0 takes all the possible values
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{ 0, 1,... d- }. It follows that the ai also takes on all of the possible values
(0, l, d }. Therefore,

d-l d-1 D D d-1, t, , , tk , tk<=(D+ 1)d(G).
a=0 i=0k=0 k=0i=0

The minimum time at which Gy is informed is min, {t,} =< 1/d Za2 t <=
(D + )b(G). Since it requires at most b(G) units of time to complete the broadcast
within Gy, we have b(G[B(d, D)]) -< (D + 1)(G) + b(G).

As noted in 3, in the above scheme the message may arrive at some vertex more
than once. By deleting redundant calls, a scheme can be obtained that completes the
broadcast at the appropriate time.

7. Upper bounds. In this section, we give examples of the construction of specific
bounded degree graphs and determine the broadcast time for these graphs. We have
determined the broadcast time of many such graphs. The best result obtained for each
degree A, 3 =< A __< 6, is given in Table 7.1.

Let us turn our attention to cubic graphs. As we saw in 4, if we let B B(2, D)
and G K2, the resulting compound graph H K2[B(2, D)] is a 3-regular graph on
n 2 2z 2z / vertices and has broadcast time b(H) -< 2D + 2 log2 n 1.
(Note that Theorem 4 gives b(H) =< 2D + 3 since the broadcast scheme described in
the proofofTheorem 4 is more general than the one developed for the specific case in 4.)
However, if we choose the 3-star as G and compound this graph with B B(3, D)
we get H’ G[B(3, D)], a graph on 4 3 D vertices. Since (G) 3 (see Fig. 6.1 (b)),
we get b(H’) =< 3D + 6 3 log3 n 3 log3 4 + 6 1.893 log2 n + 2.214. The graph
T6 of Fig. 6.1 (c) has (T6) 15/4. If we compound T6 with B B(4, D), we get
H" T6[B(4, D)], a graph on 6 4z vertices with b(H") <- (15/4)D + 31/4
15/4) log4 n 15/4) log4 6 + 31 /4 1.875 log2 n + 2.903. This is the best value we

have obtained for cubic graphs.
As A gets larger, the number of possible constructions grows rapidly and the task

offinding the best construction for a particular fixed A becomes difficult. Another approach
is to start with a particular graph that is known to be good for broadcasting, such as a
minimum broadcast graph or a sparse broadcast graph, and compound it with de Bruijn
digraphs of various degrees to obtain compound graphs for various values of A.

TABLE 7.1
Best bounds.

A G (G) d Upper bound Lower bound

3 T6 15/4 4 1.875000 1.440420
4 C8 34/8 8 1.416667 1.137467
5 40-sbg 266/40 40 1.249547 1.056215
6 C6 50/12 12 1.162262 1.025404
7 14-mbg 150/28 28 1.114364 1.012034
8 56-sbg 828/112 112 1.086010 1.005842
9 62-mbg 926/124 124 1.073847 1.002874
10 126-mbg 2138/252 252 1.063536 1.001424
11 254-mbg 4822/508 508 1.056008 1.000709
12 126-mbg 3396/378 378 1.049273 1.000353
13 254-mbg 7614/762 762 1.043712 1.000176
14 510-mbg 16824/1530 1530 1.039394 1.000088
15 1022-mbg 36786/3066 3066 1.035909 1.000044
16 2046-mbg 79788/6138 6138 1.033017 1.000022
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As an example, consider the Heawood graph (shown in Fig. 7.1 (a)), a cubic graph
that is a minimum broadcast graph on 14 vertices. Figure 7.1 (b) describes a broadcast
scheme for an arbitrary originator in the graph. (Only those edges on which calls are
made are shown.) The label on each vertex indicates the time at which the vertex receives
the message assuming that the first call is made at time 1. Note that if a vertex in this
14-vertex graph begins a broadcast at time 0, two vertices (specifically the originator and
the first vertex it calls during the scheme) will have completed all of their calls at time
3, and the remaining twelve vertices will all be involved in a final call at time 4. The two
former vertices will be "available" to call vertices external to G at time 4 and the twelve
other vertices will be "available" at time 5.

Replace each vertex in the de Bruijn digraph B B( 14, D) with a copy of G, the
Heawood graph, such that each vertex ofG has one in-arc and one out-arc. The resulting
graph is G[B( 14, D)], which is regular of degree 5. In this particular graph, each vertex
in each copy of G has one out-neighbour, so b(G) 68/14. Since b(G) 4, from
Theorem 4, b(G[B(14, D)] -< (D + 1)(68/14) + 4 (68/14)logl4 n + O(1)
1.276 log2 n + O( ).

Similarly, we could use B B(28, D). In this case, replace each vertex in B with a
copy of G, the Heawood graph, as before except that each vertex of G has two in-arcs
and two out-arcs attached. The resulting graph, G[B 28, D) ], is a regular graph ofdegree
7. Since each vertex has two out-neighbours, we get b(G) 150/28. Since b(G) 4,
Theorem 4 gives b(G[B(28, D)]) -< (D + 1)(150/28) + 4 (150/28)log28n +
O( . 1.114 log2 n + O( ). As indicated in Table 7.1, the Heawood graph produces
the best-known bounded degree graph for A 7.

In fact, ifwe wish to produce an odd degree A --> 5 compound graph, we can replace
each vertex of the de Bruijn digraph B(7(A 3), D) with a Heawood graph such that
each vertex of each Heawood graph has (A 3 )/2 in-arcs and (A 3)/2 out-arcs.

To produce a degree-4 compound graph, we can replace each vertex ofthe de Bruijn
digraph B(7, D) with a Heawood graph so that each vertex of each Heawood graph has
either one in-arc or one out-arc. If the arcs are connected arbitrarily, we can be assured
that each of the seven vertices with out-neighbours will be available by time 5, so that
b(G) 35/7 5. However, if we use the fact that the Heawood graph is bipartite and
the two vertices that are available at time 4 are adjacent, we can connect the arcs as
shown in Fig. 7.2 and guarantee that one of the vertices with an out-neighbour is avail-
able at time 4, giving b(G) 34/7. Using this connection scheme, b(G[B(7, D)]) =<
(D + )34/7 + 4 (34/7) log7 n + O( 1.730 log2 n + O( ).

4

3

3

4
(a) (b)

3 2

FIG. 7.1. Heawood graph a and its broadcast scheme b ).
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FIG. 7.2. Connection scheme.

To produce even degree A >__ 6 compound graphs, we can replace each vertex ofthe
de Bruijn digraph B(7 (A 3), D) with a Heawood graph such that the seven vertices
of one class of each Heawood graph have A/2 in-arcs and A/2 2 out-arcs, while
the vertices in the other class have A/2 2 in-arcs and A/2 out-arcs.

Let us now consider the k-cubes, one ofthe two known infinite families ofminimum
broadcast graphs. The k-cube on n 2 k vertices is regular of degree k, and all vertices
become available k + time units after the originator receives the message.

A graph of degree A can be constructed by replacing each vertex of the de Bruijn
digraph B(m2 A-Era, D) by G, the (A 2m)-cube, for any _-< m =< [(A 1)/2J, and
distributing the arcs from the de Bruijn digraph so that each vertex of each copy of G is
given m in-arcs and m out-arcs. Each vertex of a cube can inform its m new neighbours
at times A 2m + 1, A 2m + 2, A m after the message first enters the cube.
This gives (G) 7’= (2a-Em)( A 2m + i)]/[m2 a-Em] A (3m )/2. Applying
Theorem 4, we obtain

b(G[B(m2a-2m,o)])<=(D+ )(A-- (3m-- )/2)+ A-2m

(A- (3m- )/2) logm2a- 2m /7+ O(

[(A-- (3m-- )/2)/(A-- 2m + log2 m)] log2 n + O( ).

Thus,

3m-1

(2) b((A- 2m)-cube [B(m2a-2m,D)]) <- log2 n+O( ).
A- 2m + log2 m

The constant (A 3m /2)/ A 2m + log2 m) from expression (2) can be
simplified to the form + Cm/( A dm), where Cm and dm are constants depending on
m. The expression for the broadcasting time of the compound of a cube in a de Bruijn
digraph therefore has the form / Cm/( A dm)) log2 n + O( ). The smallest constant
Cm that can be obtained from expression (2) is c3 2 log2 3 0.415, so the best
asymptotic broadcasting time will result from the compound of a (A 6)-cube in a de
Bruijn digraph B 3 2 a 6, D).

THEOREM 5. b(n, A) =< + (2 log2 3)/(A 6 + log2 3)) log2 n + O( ,
/ 0.415/A) log2 n.
A graph of degree A can also be constructed by replacing each vertex of

B([(2m + 1)/212A-2m-,D)by a(A- 2m- 1)-cube for any 0 =< m _-< [A/2J 1.
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However, the resulting asymptotic broadcasting time is not as good as the result of
Theorem 5.

Another way to obtain a graph ofdegree A is to use the family ofminimum broadcast
graphs from 8]. These graphs are k-regular with n 2 k+ 2 vertices and broadcast
time k + 1. A computation similar to the computation for cubes above shows that the
best constant is obtained by compounding the A 6-regular graph from this family in
B(3 2 a-6, D). Asymptotically, this will not improve the constant of Theorem 5.
However, for any fixed A, use ofthe A 6-regular graph gives a slightly smaller constant
than the A 6)-cube.

Similar calculations have been done using various graphs G including known min-
imum broadcast graphs and sparse broadcast graphs, cycles Ci for 4, 12 and
compounds of sparse broadcast graphs in cubes. (Note that the last case involves two
compounding operations since the result ofcompounding in a cube is then compounded
in a de Bruijn digraph.) The best values that we have obtained are shown in Table 7.1.
The table shows the degree of the graph constructed (A), the graph G, the average time
b(G) needed to transmit a message originated in a copy ofG to all ofthe out-neighbour

copies, the indegree (outdegree) of the de Bruijn digraph used (d), the upper bound
obtained by this graph, and the best lower bound known. Note that the upper bound is
calculated by the simple formula b(G)/log2 d. T6 is used to denote the tree on six vertices
shown in Fig. 6.1 (c). C6 and C8 denote the cycles on six and eight vertices, respectively.
Note that although C6 is a minimum broadcast graph, C8 is not. 14-mbg indicates the
Heawood graph ofFig. 7.1 (a), a minimum broadcast graph on 14 vertices, i-mbg indicates
a minimum broadcast graph on vertices and i-sbg is used to represent a sparse broadcast
graph on vertices (see [3] and [8]).

Using a generalization of the proof of Theorem 5, we can show that the asymptotic
constant + (2 log2 3)/A of Theorem 5 is the best possible asymptotic result for
compounds in de Bruijn digraphs. Thus, the gap between the best known upper and
lower bounds cannot be eliminated even by substituting arbitrarily large minimum
broadcast graphs (which remain to be discovered) into de Bruijn digraphs.

Our technique of compounding graphs in de Bruijn digraphs does not give graphs
for all values of n. Instead of de Bruijn digraphs, we could compound in Kautz digraphs
17 (see also or 2 or sequence graphs 9 ]. This will not give asymptotic improve-
ments but will give different values of n for which the broadcasting times are the same
as in Table 7.1. Graphs for other values of n can be obtained from those described in
this paper using a technique from [20].

Acknowledgments. We thank the referees for their constructive suggestions. In
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Lemma 3 and Theorem 1.

REFERENCES

D. AMETER AND M. GREE, Graphs and Interconnection Networks, to appear.
[2] J.-C. BERMOND, C. DELORME, AND J.-J. QUISQUATER, Strategies for interconnection networks: some

methodsfrom graph theory, J. Parallel and Dist. Comput., 3 (1986), pp. 433-449.
[3] J.-C. BERMOND, P. HELL, A. L. LIESTMAN, AND J. G. PETERS, Sparse broadcast graphs, Discrete Appl.

Math., to appear.
[4] J.-C. BERMOND AND C. PEYRAT, Broadcasting in de Bruijn networks, in Proc. 19th SE Conference on

Combinatorics, Graph Theory and Computing, Congr. Numer., 1988, pp. 283-292.
5 S. C. CHAU AND A. L. LIESTMAN, Constructing minimal broadcast networks, J. Combin. Inform. System

Sci., l0 (1985), pp. 110-122.



24 BERMOND, HELL, LIESTMAN, AND PETERS

[6] F. R. K. CHUNG, Diameters ofgraphs: oM problems and new results, in Proc. 18th SE Conference on
Combinatorics, Graph Theory and Computing, Congr. Numer., 1987, pp. 295-317.

[7] N. G. DE BRUIJN, A combinatorial problem, Nederl. Akad. Wetensch. Indag. Math. Proc. Ser. A, 49
(1946), pp. 758-764.

8 M. R. FELLOWS, Algebraic constructions ofefficient broadcast networks, to appear.
[9] M. ESCUDERO, J. FABREGA, AND M. A. FIOL, Routing and expansion ofinterconnection networks based

on sequence graphs, in Proc. 5th International Symposium on Applied Mathematics, Switzerland,
1987, pp. 47-52.

10] A. FARLEY, Minimal broadcast networks, Networks, 9 (1979), pp. 313-332.
11 A. FARLEY, S. HEDETNIEMI, S. MITCHELL, AND A. PROSKUROWSKI, Minimum broadcast graphs, Discrete

Math., 25 (1979), pp. 189-193.
12 L. GARGANO AND U. VACCARO, On the construction ofminimal broadcast networks, Networks, 19 (1989),

pp. 673-689.
13] M. GRIGNI AND D. PELEG, Tight bounds on minimum broadcast networks, SIAM J. Discrete Math.,

4( 1991), pp. 207-222.
14] S. T. HEDETNIEMI, S. M. HEDETNIEMI, AND A. L. LIESTMAN, A survey ofbroadcasting and gossiping in

communication networks, Networks, 18 (1988), pp. 319-349.
15 W.D. HILLIS, The Connection Machine, Massachusetts Institute ofTechnology Press, ACM Distinguished

Dissertation, Cambridge, MA, 1985.
16] M. R. JERRUM AND S. SKYUM, Families offixed degree graphsforprocessor interconnection, IEEE Trans.

Comput. C-33 (2), 1984, pp. 190-194.
17] W. H. KnUTZ, Bounds on directed (d, k) graphs, in Theory of Cellular Logic Networks and Machines,

AFRCL68-0668 Final Report, 1968, pp. 20-28.
18] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Sec. 5.4.2, Exer. 7,

Addison-Wesley, Reading, MA, 1973.
19] A. L. LIESTMAN, Fault-tolerant broadcast graphs, Networks, 15 (1985), pp. 159-171.

[20] A. L. LIESTMAN AND J. G. PETERS, Broadcast networks ofbounded degree, SIAM J. Discrete Math.,
(1988), pp. 531-540.

[21 E. P. MILES, JR., Generalized Fibonacci numbers and matrices, Amer. Math. Monthly, 67 (1960), pp.
745-757.

22 S. MITCHELL AND S. HEDETNIEMI, A census ofminimum broadcast graphs, J. Combin. Inform. System
Sci., 5 (1980), pp. 141-151.

[23] J. G. PETERS, private communication, 1990.
24 P.J. SLATER, E. COCKAYNE, AND S. T. HEDETNIEMI, Information dissemination in trees, SIAM J. Comput.,

10 1981 ), pp. 692-701.
25 X. WANG, private communication, 1986.



SIAM J. DISC. MATH.
Vol. 5, No. 1, pp. 25-53, February 1992

(C) 1992 Society for Industrial and Applied Mathematics
003

AUGMENTING GRAPHS TO MEET
EDGE-CONNECTIVITY REQUIREMENTS*

ANDRAS FRANK

Abstract. What is the minimum number "r of edges to be added to a given graph G so that in the resulting
graph the edge-connectivity between every pair u, v of its nodes is at least a prescribed value r( u, v) ?

Generalizing earlier results of S. Sridhar and R. Chandrasekaran Integer Programming and Combinatorial
Optimization, R. Kannan and W. Pulleyblank, eds., Proceedings of a conference held at the University of
Waterloo, University of Waterloo Press, Waterloo, Ontario, Canada, 1990, pp. 467-484 (when G is the empty
graph), of K. P. Eswaran and R. E. Tarjan [SIAM Journal on Computing, 5 (1976), pp. 653-665] (when
r(u, v) 2), and of G.-R. Cai and Y.-G. Sun [Networks, 19 (1989), pp. 151-172] (when r(u, v) k >= 2),
we derive a min-max formula for "r and describe a polynomial time algorithm to compute "r. The directed
counterpart of the problem is solved in the same sense for the case when r(u, v) k >= and is shown to be
NP-complete if r(u, v) for u, v e T, and r(u, v) 0 otherwise where T is a specified subset of nodes.

A fundamental tool in the proof is the splitting theorems of W. Mader [Annals ofDiscrete Mathematics,
3 (1978), pp. 145-164] and L. Lovfisz [lecture, Prague, 1974; North-Holland, Amsterdam, 1979]. We also
rely extensively on techniques concerning submodular functions. The method makes it possible to solve a
degree-constrained version of the problem. The minimum-cost augmentation problem can also be solved in
polynomial time provided that the edge-costs arise from node-costs, while the problem for arbitrary edge-costs
was known to be NP-complete even for r(u, v) 2.

Key words, network synthesis, augmenting edge-connectivity of graphs, polymatroids, network design,
connectivity, combinatorial optimization

AMS(MOS) subject classifications. 05C, 90B, 68R

1. Introduction. A typical problem in combinatorial optimization is to find a min-
imum number, or more generally, a minimum cost, of edges to be added to a graph so
that the resulting graph satisfies some prescribed properties. In this paper we are concerned
with edge-connectivity properties.

Main problem. What is the minimum number 7 (respectively, a minimum cost)
of edges to be added to a given directed or undirected graph G so that in the resulting
graph the edge-connectivity )(u, v) between every pair { u, v } of nodes is at least a
prescribed value r( u, v)?

Here, the edge-connectivity )(u, v) of u and v means the maximum number of
pairwise edge-disjoint (directed) paths from u to v. Note that k u, v) can be interpreted
as the maximum flow value between u and v ifthe capacities ofthe edges ofG are defined
to be 1.

To distinguish between the two versions of the main problem, we will sometimes
refer to them as the "cardinality case" and "the min-cost case."

A capacitated version of the main problem is as follows.
Max-flow version. Suppose that g( u, v) is a nonnegative capacity function on the

pairs of nodes u, v (u, v V), and let r(u, v) be another nonnegative function on the
pairs of nodes that serves as a maximum flow requirement. The problem is to increase
the existing capacities so that in the resulting network the maximum flow value between
u and v is at least r( u, v) for each pair { u, v } of nodes, such that the sum of capacity
increments is minimum.
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Note that if g( u, v) and r( u, v) are integer-valued and the capacity increments are
required to be integer-valued, then the main problem is equivalent to the flow version
in the sense that a min-max result for one problem easily transforms to a min-max result
for the other. Namely, the main problem can be formulated as a max-flow version by
letting g( u, v) when (u, v) is an edge of G, and g( u, v) 0, otherwise. Conversely,
if g is integer-valued, we can define a graph having g(u, v) parallel edges between each
pair of nodes u and v; then a solution to the main problem on G yields a solution to the
integer-valued max-flow problem.

This equivalence, however, does not mean algorithmic equivalence. We are going
to develop strongly polynomial time algorithms for the more difficult max-flow aug-
mentation problem.

(A polynomial time algorithm is called stronglypolynomial ifit uses, besides ordinary
data manipulation, only the basic operations like comparing, adding, subtracting, mul-
tiplying, and dividing numbers, and if the number of these operations is independent of
the numbers occurring in the input.)

Another useful observation is that in the flow version we may get better results if
fractional increments are allowed. For example, let V := { a, b, c }, g 0, and r 1. If
only integers are allowed for the increments, then the value of the best solution is 2:
increase the capacity of edges ab and bc by 1. If we use fractional increments, then the
value of the best solution is 1.5: increase the capacity of each edge by 0.5. On the other
hand, we will see that, apart from some marginal cases, the integer-valued optimum is
at most one half larger than the fractional optimum.

It is natural to consider node-connectivity augmentation problems as well. That is,
given a prescribed value r( u, v) for each pair ofnodes u, v, what is the minimum number
(respectively, a minimum cost) of edges to be added to a given directed or undirected
graph G so that in the resulting graph there are r(u, v) openly disjoint paths between
every pair of nodes u, v? Two paths connecting u and v are called ope;ly disjoint if they
are node-disjoint, except for the end-nodes. No new contribution to this problem is given
here and we mention it merely for the sake of completeness.

We briefly summarize some known special cases for which the above augmentation
problems have been solved. Let us start with undirected graphs.

Gomory and Hu [19] algorithmically solved the fractional case of the max-flow
version of the augmentation problem where g 0. See also [8 ]. The minimum cost
version ofthe same problem was solved by Bland, Goldfarb, and Todd via the ellipsoid
method. Sridhar and Chandrasekaran [30] solved the main problem when the starting
graph is the empty graph. (Actually, they solved the integer-valued max-flow version
when g 0.) Frank and Chou [9] solved the same problem under the additional re-
quirement that no parallel edges are allowed to be added. (Note that Frank and the
present author are different.)

Suppose now that r(u, v) is identically k. When k 1, the min-cost case of the
main problem transforms into a minimum cost spanning tree problem, that is nicely
solvable. For k 2, however, the min-cost problem turns out to be NP-complete, as the
Hamiltonian circuit problem can easily be formulated in this form (see Eswaran and
Tarjan 7 ]).

Eswaran and Tarjan described a polynomial time algorithm to find a minimum
number ofnew edges the addition ofwhich makes a graph 2-edge-connected. Generalizing
this for arbitrary k >= 2, Watanabe and Nakamura [31] described a polynomial time
algorithm to find a minimum number of new edges 3/to be added to make a graph k-
edge-connected. The same problem was also solved by Cai and Sun 2 who, in addition,
provided a nice min-max formula for the minimum. Both solutions are rather compli-
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cated. Recently, Naor, Gusfield, and Martel [28] developed an efficient algorithm for
this edge-connectivity augmentation problem.

As for node-connectivity augmentation problems, we know much less. The problem
was solved by Harary [21 when r(u, v) is identically k and the starting graph is the
empty graph. For arbitrary starting graphs the case k 2 was settled by Eswaran and
Tarjan [7] and the case k 3 by Watanabe and Nakamura [32 ].

The following results concern directed graphs.
Suppose we are given a digraph G with a source s and a target t. Let r( u, v) k if

u s, v t, and r(u, v) 0 otherwise. In this case the main problem requires adding
a minimum cost of edges so that in the resulting digraph there are k edge-disjoint paths
from s to t. This problem can easily be reduced to a minimum cost flow problem in the
union graph of the new and the original edges where the costs of the original edges are
defined to be zero.

Ifwe are interested in openly disjoint paths, rather than edge-disjoint, from a source-
node s to a target-node t, then the problem can easily be reduced to the edge-disjoint
case by using a simple node-duplicating device mentioned in 8, I/11 ]. Unfortunately,
in more general cases, the node-duplicating technique does not seem to help in reducing
a node-connectivity augmentation problem to the corresponding edge-connectivity aug-
mentation problem. This is the case in the following situation.

Improve a digraph by adding a minimum cost of new edges so as to have k edge-
disjoint paths from a specified source-node to each other node. (That is, in the main
problem r(u, v) k if u s, and r( u, v) 0 otherwise.) This problem can be reduced
to a weighted matroid intersection problem where the first matroid is k times the circuit-
matroid of the underlying undirected graph (that is, a subset of edges is independent if
it is the union ofk forests) while the second matroid is a partition matroid where a subset
ofedges is independent if it contains no more than k edges entering the same node. Since
there are good algorithms for the matroid intersection problem 5 ], this problem is also
solvable in polynomial time.

We consider the openly disjoint counterpart of the preceding problem; that is, we
improve a digraph by adding a minimum cost ofnew edges so as to have k openly disjoint
paths from a specified source-node to each other node. The problem was solved in [14]
with the help ofsubmodular flows (as we were unable to reduce the problem to the edge-
disjoint case by using the node-duplicating technique).

Eswaran and Tarjan showed how to make a directed graph strongly connected by
adding a minimum number of new edges. They also showed that the minimum cost
version ofthe problem is NP-complete, as the directed Hamiltonian circuit problem can
be formulated this way. Note, however, that the problem is solvable in strongly polynomial
time if we are allowed to add a new edge (u, v) only if (v, u) is an original edge of the
digraph (see Lucchesi and Younger [25] and Frank [10 ]).

The main problem for directed graphs when r(u, v) k was solved by Fulkerson
and Shapley 16 when the starting graph is G (V, ), and by Kajitani and Ueno 22
when the starting graph is a directed tree.

Finally, we mention a paper of Gusfield [20] in which a linear time algorithm is
described to make a mixed graph strongly connected by adding a minimum number of
new directed edges. (A mixed graph is one with possibly directed and undirected edges.
It is called strongly connected if, for every pair of nodes u, v, there is a path from u to v
that consists of directed edges in the fight direction and arbitrary undirected edges.)

The main purposes of the present paper are as follows. For undirected graphs we
completely solve the cardinality case of the main problem. Along the way we provide a
short proof of the theorem of Cai and Sun. For directed graphs, we solve the cardinality
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case if r(i, j) k. We also consider degree-constrained and minimum-cost augmentations
for both directed and undirected graphs. The proofs give rise to algorithms that are
strongly polynomial even in the max-flow version.

One basic tool in the proof is the so-called splitting technique. We are going to use
three theorems. One is due to Lovfisz, while the other two are due to Mader. To make
the paper as self-contained as possible, we prove Lovsz’s theorem 24 here, as well as
one of the two Mader theorems 26 ], 27 ]. A relatively simple proof of Mader’s other
splitting-off theorem is given in a separate paper [12].

We consider whether there is a solution to the augmentation problem for directed
graphs when r(u, v) is arbitrary. Unlike the undirected case this problem turns out to
be NP-complete even for the following simple demand function. Let T be a subset of
nodes and s a specified node not in T. Define r(s, v) if v e T, and r(s, v) 0
otherwise. (In other words, the problem of finding a minimum number of edges to be
added to G so that in the augmented digraph every element of T is reachable from s is
NP-complete.)

For both the directed and the undirected case, the method makes it possible to solve
a degree-constrained version when, in addition, upper and lower bounds are imposed at
every node for the number of newly added edges incident to that node. We will show
that in the above cases the minimum-cost augmentation problem can also be solved in
polynomial time, provided that the edge-costs arise from node-costs. (As we mentioned
above, the problem for arbitrary edge-costs is NP-complete even for r( u, v) 2.)

Another basic technique comes from the theory of submodular functions. (For a
survey, see [13].) We describe, however, the main results and proofs so that they can be
understood without any prior knowledge in this area. It will be clarified in a separate
section how some basic features of submodular functions and polymatroids are in the
background of our approach.

The structure ofthe paper is as follows. Section 2 comprises the necessary notations
and notions from graph theory. Section 3 describes the results on directed graphs. Fur-
thermore, a new proofofMader’s directed splitting-offtheorem is given. In 3 we provide
a simple proofofa theorem ofCai and Sun, along with some degree-constrained versions.
A new proof of Lovfisz’s splitting-off theorem is also presented. Section 5 contains the
general result for undirected graphs. Section 6 lists some notions and theorems from
polymatroid theory, while 7 and 8 explain the relationship between polymatroids and
augmentation problems. In 9 we consider the fractional augmentation problem and
algorithmic aspects.

2. Notation and basic concepts. Typically, we work with a finite ground set V. We
will not distinguish between a one-element set { x and its element x. The union of a
set X and an element y is denoted by X + y. For s, V a subset X of V is called an tg-

set is X and s X. For two sets X, Y, X Y denotes the set of elements in X, but
not in Y. X c Y denotes that X is a subset of Y and X =/= Y. Two subsets X, Y of V
are called intersecting if none ofX fq Y, X Y, Y X is empty. If, in addition, V-
(X t_J Y) is nonempty, then X, Yare called crossing. A family of subsets is called laminar
if it includes no intersecting sets.

By a partition {X, X2, Xt } of a set X, we mean a family of disjoint subsets of
X whose union is X. By a subpartition of V, we mean a partition of a subset X of V.

Let be the family of subsets of V possessing a certain property p. We say that a
memberX is maximal (with respect to p) if no member of includes Xas a proper
subset. For example, a maximal critical set means a critical set not included in any other
critical set (whatever critical means).
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Throughout, we use the term "graph" for an undirected graph and "digraph" for a
directed graph. Let G (V, E) be a graph with node set V and edge set E. We denote
an edge e connecting nodes u and v by uv or vu. This is not quite precise since there
may be parallel edges between u and v. This ambiguity, however, will not cause any
trouble. Both parallel edges and loops are allowed.

For a digraph G (V, E) a directed edge e uv is meant to be an edge from u to
v. In this case, vu means the oppositely directed edge.

For a graph or digraph G (V, E), E(X) denotes the set of edges with both end-
nodes in X and is called the set of edges induced by X. For X, Y

_
V, d(X, Y) denotes

the number of edges between X Y and Y X (in any direction) and d(X, Y)
d(V- X, Y). We denote d(X) d(X, V- X). If F

_
E and G is undirected, dF(X)

stands for the number of edges in F entering X. The number of edges incident to a node
v is called the degree of v. The contribution of a loop vv to the degree of v is, by defini-
tion, two.

Deleting an edge e means that we leave out e from E while the node set V is un-
changed. For the resulting graph, we use the notation G e. Deleting a subset C ofnodes
means that we leave out the elements of C and all the edges incident to some elements
of C. The resulting graph is denoted by G C. Splitting offa pair uv, vz of edges with
u # z means that we replace the two edges uv, vz by a new edge e uz. Note that if
u z, e is a loop.

In a digraph G (V, E) the in-degree o(X) (out-degree 6(X)) is the number of
edges entering (leaving) X. If F

_
E OF(X) stands for the number of edges from F

entering X. The contribution of a directed loop vv to the in-degree of v and to the out-
degree of v is, by definition, one.

We call an edge e (node v) of a graph G (V, E) a cut edge (cut node) if G
e (G v) has more components than G.

A graph is called k-edge-connected if d(X) >_- k for every c X c V. A digraph is
called k-edge-connected if 0(X) >= k for every c X c V.

One fundamental result from graph theory is as follows.
MENGWR’S THEORZM 2.1 (Edge-version in [8 ]). In a directed (respectively, un-

directed) graph G (V, E) there are k edge-disjoint paths from s to if and only if
o(X >= k respectively, d(X) >= k) for every tg-set X V.

In a graph or digraph h u, v) denotes the maximum number of edge-disjoint paths
from u to v. (u, v) is called the edge-connectivity from u to v. (In undirected graphs,
obviously (u, v) (v, u).) The following identities are often used throughout
the paper.

PROPOSITION 2.2. Let G be an arbitrary graph G V, E) and X, Y
_

V. Then

(2.1)

(2.2)

d(X) + d(Y) d(Xfq Y) + d(Xt_J Y) + 2d(X, Y),

d(X)+ d(Y) d(X- Y)+ d(Y-X)+ 2d(X, Y).

PROPOSITION 2.3. Let G be an arbitrary digraph G V, E) and X, Y
_

V. Then

(2.3)

(2.4)

6(X) + di(Y) 6(XFI Y) + 6(XU Y) + d(X, Y ),

p( X) + o(Y) p( XFI Y) + p( XU Y) + d(X, Y ).

If, in addition, 6 X fl Y) o(X fl Y ), then

(2.5) 6(X)+6(Y)=6(X- Y)+6(Y-X)+d(X,Y),

(2.6) o(X)+o(Y)=o(X Y)+o(Y-X)+d(X,Y).
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Each formula can easily be proved by taking into consideration the contribution of
each type of edges to the two sides.

Let S be a finite ground-set and b 2 s ._ R U { oe } a set function. We call b fully
submodular or, briefly, submodular if b(X) + b(Y) >= b(X f3 Y) + b(X U Y) holds for
every X, Y c_ S. If the inequality is required only for intersecting sets X, Y, then b is
called intersecting submodular.

A set function p is called supermodular if-p is submodular. A finite-valued set
function m is called modular if m(X) + m(Y) m(X f3 Y) + m(X U Y) holds for
every X, Y c__ S. A modular function m with m() 0 is determined by its value on
the singletons, namely rn(X) 2;( m(s) s e X).

Suppose that m V- R U oe } is a function and X c_ V. Generally, we will use
the notation m(X):= 2;(m(s):s eX)with the following exceptions: d(X)(see above)
is not Y,(d(v) v X), and the case is the same with

3. Directed graphs. Fulkerson and Shapley 16 described a method to construct
a k-edge-connected digraph on n nodes (k .-<_ n) with a minimum number of edges.
Kajitani and Ueno 22 solved the problem of optimally augmenting a directed tree in
order to get a k-edge-connected digraph. Here we solve this problem for arbitrary directed
graphs.

THEOREM 3.1. Given a directed graph G V, E) and a positive integer k, G can
be made k-edge-connected by adding at most 3" new edges ifand only if
(3.1) 2;( k p(Xi <= 3‘ and

(3.2) Z(k-6(X))<=v
holdfor every subpartition { X1, X2, X } of V.

Proof. Necessity. Suppose G’ (V, E U F) is a k-edge-connected supergraph of G,
where F denotes the set of new edges. Then every subset X of V has at least k o(Xi
new entering edges. Therefore, the number of new edges in G’ is at least 2;(k o(X ))
and (3.1) follows. (3.2) is analogous.

Let s be a node not in V, and V’ := V + s. Let G’ (V’, E’) be a digraph with in-
and out-degree functions p’ and 6’, respectively.

PROPOSITION 3.2. Suppose for A, B
B), p’(A U B)). Then p’(A f) B) p’(A U B) k and d’(A, B) O.

Proof. Applying (2.4) we obtain k + k p’(A + p’(B) p’(A 71 B) + p’(A U
B) + d’(A, B) >-_ k + k + d’(A, B), from which k p’(A B) p’(A U B) and
d’(A, B) 0 follows. [2]

We prove the sufficiency in two steps.
LEMMA 3.3. G can be extended to a digraph G’ V+ s, E’) by adding a new node

s, 3" new edges entering s, and 3" new edges leaving s in such a way thatfor every subset
XV
(3.3a) o’(X)>-k and

(3.3b) 6’(X)>-k
hoM where ’ and ’ denote the in-degree and out-degreefunction ofG’, respectively.

Note that by Menger’s theorem (3.3) is equivalent to saying that the edge-connectivity
in G’ between every pair of original nodes is at least k.

Proof. We are going to prove that it is possible to add 3" edges leaving s so that
(3.3a) is satisfied. This implies (by reorienting every edge) that it is possible to add 3"
edges entering s so that (3.3b) is satisfied.

First, we add a sufficiently large number of edges leaving s so as to satisfy (3.3a).
(It certainly will do if we add k edges from s to v for every v V.
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Second, discard new edges, one by one, as long as possible without violating (3.3a).
Let G’ denote the final extended digraph. The following claim implies the lemma.

CLAIM. IS’(S) < "y.

Proof. Call a subset X V in-critical if o’(X) k. Let S ( v V, sv is an
edge in G’}. An edge sv cannot be left out from G’ without violating (3.3a) precisely if
sv enters an in-critical set. Therefore, by the minimality of G’, there is a family
(X, X, ..., Xt } of in-critical subsets of V coveting S, and we can assume that is
minimal.

Case 1. consists of disjoint sets. Then we have kt (o’(X)" 1, ..., t)
ist(S) -- (o(Xi)" 1, ..., t) and, hence, by (3.1), iS’(s) ,(k o(Xi)" 1,

,t)__< .
Case 2. There are two intersecting members A, B of. IfA t3 B :/: V, then A t3 B

is in-critical by Proposition 3.2, and then replacing A and B in o by A t_J B we are in
contradiction with the minimal choice of t. Therefore, A t_J B V.

Let Y := V A and Y’= V B. Then is (Y) 0(A ), and is (Y2) o(B). By (3.2)
we have7 >= k- 6(Y) + k- IS(Y) k- o(A) + k- o(B) >-- k- o’(A) + k-
’() + ’(s) ’(s).

Therefore, the proof of Lemma 3.3 is complete.
The theorem immediately follows by 3’ repeated applications ofthe following theorem

of Mader 27 ].
THEOREM 3.4 ([ 27]). Suppose that for a node s of a digraph G’ (V + s, E’)

is’(s) o’(s) and the edge-connectivity between any two nodes distinctfrom s is at least
k (that is, (3.3) holds). Then for any edge st there is an edge vs such that vs and st can
be split off without violating (3.3).

Call a pair of edges vs, st splittable if they can be split off without violating (3.3).
Here we provide a (new) proof of Mader’s theorem that will be useful in 9 to improve
the complexity ofan algorithm arising from the naive implementation ofMader’s theorem.

Proof. We need the following proposition.
PROPOSITION 3.5. Suppose that is’(s) o’(s) for a node sofa digraph G’ and the

edge-connectivity between any two nodes distinctfrom s is at least k. IfX, Yare intersecting
subsets of nodes for which { s } X fq Y and IS’(X) IS’(Y) k, then IS’(X Y)
IS’(Y- X) k, and d’(X, Y) O.

Proof. Applying (2.5) we obtain k + k IS’(X) + IS’(Y) IS’(X- Y) +
IS’(Y- X) + d’(X, Y) >-_ k + k + d’(Y, Y) from which is’(Y- Y) IS’(Y- X) k
and d’(X, Y) 0 follows.

Call a subset c X V in-critical if o’(X) k and out-critical if IS’(X) k. X is
called critical if it is either out- or in-critical. (Note that V is never critical.)

PROPOSITION 3.6. Let A and B be two intersecting critical sets. Then either (i)
A t_J B is critical or (ii) B A is critical and d’(A, B) O.

Proof. If both A and B are in-critical and A U B c V, then Proposition 3.2 implies
alternative (i). If A t_J B V, then Proposition 3.5, when applied to X V + s A,
Y V + s B, implies (ii). The situation is analogous if both A and B are out-
critical. Finally, let A be in-critical and B out-critical. Proposition 3.2, when applied to
A and V + s B, implies (ii).

A pair vs, st } of edges is not splittable precisely if there is a critical set containing
both v and t. Therefore, if there is no critical set containing t, any pair { vs, st } is
splittable.

For two intersecting critical sets A, B containing t, only alternative (i) may hold in
Proposition 3.6 since the existence of edge st implies d’(A, B) > 0. Therefore, the union
M of all critical sets containing is critical again.
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We claim that there is an edge vs with v e V- M. We indirectly suppose that no
such an edge exists. IfM is in-critical, then di’( V- M) < p’(M) k, contradicting (3.3b).
IfM is out-critical, then di’(s) p’(s) implies that p’( V M) 6’(M + s) < 6’(M) k,
contradicting (3.3a).

By the choice of M, no critical set contains both v and t; therefore, vs and st are
splittable.

Our next problem is to. find an augmentation of minimum cardinality if upper and
lower bounds are imposed both on the in-degrees and the out-degrees of the digraph of
newly added edges. LetJn --< gin andfont --< gout be four nonnegative integer-valued func-
tions on V (infinite values are allowed for gin and gout). (Recall that gin(X) denotes
(gin(1)) V X).)

THEOREM 3.7. Given a directed graph G V, E) and a positive integer k, G can
be made k-edge-connected by adding a set F ofprecisely 3" new edges so that

(3.4a) f,n(V)<=pf(V)<=gin(V) and

(3.4b) font(1) F(1) gout(

holdfor every node v ofG ifand only if

(3.5a) k-p(X)<=gin(X) and

(3.5b) k-b(X)<=gout(X)

holdfor every subset X V, and

(3.6a) Z,(k-p(Xi):i 1,... ,t)+fn(Xo)<=3’,

(3.6b) Z,(k-6(X):i= 1,"" ,t)+fout(Xo)<=3"

holdfor every partition { Xo, X X2, Xt } of V where Xo may be empty.
(At this point we emphasize that both in this theorem and later theorems, degree-

constrained augmentations loops are allowed to be added to G. It may be interesting to
consider the problem when loops are not allowed.)

Proof of the necessity. Suppose that there is a required set F of new edges. Then
k <= p(X) + OF(X) <= p(X) q- (pF(I)): I) X) <= p(X) -1- gin(X), and (3.5a) follows.
The proof of (3.5b) is analogous. Similarly, pF(Xi >- k p(Xi and PF( V >= f,n (V) and
hence [El >_- Z,(pF(Xi):i 0, 1,’’’, t) >= Z,(k- p(Xi):i 1,’", t) +J;n(Xo), and
(3.6a) follows. (3.6b) is analogous again.

To prove the sufficiency, we can apply the method of the proof of Theorem 3.1.
Here, we only outline this, and a formal proof is postponed to 8, where the use of
polymatroids make clear why such a proof works. The sketch below also indicates an
algorithm to find a desired augmentation.

Sketch ofthe proofofsujficiency. We can assume that gin and gout is finite, since if
gin(I)), say, is infinite, then gi(v) can be revised to be max (k, 3",An(V)). This modification
does not destroy the necessary conditions.

Extend G by a new node s. For each node v e V, add gin (v) parallel edges from s
to v, and gout(V) parallel edges from v to s. 3.5 ensures that (3.3) holds for the extended
digraph G’. Since 3’ --< min (gin(V), gout(V)), we have p’(s) >-_ 3" and 6’(s) >-_ 3". Now
delete new edges, one by one, so that (3.3) continues to hold and each node v has at
leastfn(v) newly entering andfont(v) newly leaving edges. This deletion procedure stops
when the current in-degree and out-degree of s is 3". If we can reach such a situation,
then Mader’s splitting-off theorem can be applied, and we are done.

The only trouble may arise if 6’(s) > 3" and no new edge leaving s can be left out,
or if p’(s) > 3" and no new edge entering s can be left out. Suppose that the first case
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occurs (the second is analogous). Now a new edge sv may not be left out because sv
either enters an in-critical set or p’(v) fn (V). That is, the set { v: p’(v) > fn(v) } can
be covered by a family XI, Xt } of in-critical sets. Suppose that is as small
as possible. If consists of disjoint sets, then Xo, XI, Xt } violates (3.6a), where
Xo := V- U(Xi: 1, ..., t). If includes two intersecting sets A and B, then A
B V and the partition {Y0, Y1, Y2} of V, where Yo := A fq B, YI := V- A, and
Y2 := V- B, violates (3.6b).

We are interested in degree-constrained augmentation when there is no requirement
for the number of new edges; see the following theorem.

THEOREM 3.8. Given a directed graph G V, E) and a positive integer k, G can
be made k-edge-connected by adding a set F ofnew edges satisfying (3.4) ifand only if
(3.5) holds, and

(3.7a) Z(k-p(Xi):i 1,... ,t)+fn(Xo)<=a,

(3.7b) ,(k-6(Xi):i 1,"" ,t)+fout(Xo)<=a

hold for every partition Xo, X, X2, Xt ) of V where Xo may be empty and a :=
min (gout(V), gin(V)).

Proof. (3.5) is clearly necessary. To see the necessity of (3.7), let F be a set of new
edges satisfying the requirements. Then Z(k p(X; ): 1, t) + fn Xo <= F[ <=
a, and (3.7a) follows. (3.7b) is analogous.

To see the sufficiency, observe that by choosing 3" := a if a is finite and 3" :=
kl VI +fn(V) +fout(V)) ifa , condition (3.6) follows from (3.7), and then Theorem
3.7 applies.

Let us consider the minimum cost k-edge-connected augmentations. As we men-
tioned in the Introduction, if costs are assigned to the edges, the problem is NP-complete
even if k 1. Suppose now that Cin V -- R+ and Cout V -- R+ are two nonnegative
cost functions on the node-set V of G. Our object is to find a k-edge-connected augmen-
tation of G for which ZOF(I))Cin(1) -[- F(l))Cout(l)) is minimum, where F is the newly
added edges. The algorithm is a version ofthe proofofLemma 3.3, in which the selection
ofnew edges to be discarded is governed by the cost ofthe end-nodes in a greedy fashion.

ALGORITHM TO FIND A MINIMUM NODE-COST k-EDGE-CONNECTED
AUGMENTATION OF A DIGRAPH

Add a new node s to V.

PART 1. Add k new parallel edges from s to v for every v V. (For the resulting
digraph G’, (3.3a) holds.) Assume that the new edgesJ],J, are ordered according to
the decreasing order of the qn costs of their end-node ui. (The order of parallel edges
from s to ui does not matter.) Go through the new edges in the given order and discard
anf if this can be done without destroying (3.3a). Let 3"1 be the number of remaining
new edges.

PART 2. Add k new parallel edges from v to s for every v V. (For the resulting
digraph G’, (3.3b) holds.) Assume that the new edges J], J, are ordered according
to the decreasing order of the Cout costs of their tail-node ui. (The order of parallel edges
from ui to s does not matter.) Go through the new edges in the given order and discard
anf if this can be done without destroying (3.3b). Let 3"2 be the number of remaining
new edges.

Let 3" := max (3,1, 3’2). If 3"2 < 3"1, add 3" 3"2 parallel edges from u to s, where u
is a node and Cout(U) is minimum. If 3" < 3"_, add 3"2 3"1 parallel edges from s to u,
where u is a node and Cin(u) is minimum.
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PART 3. Let G’ denote the final digraph. In G’, di’(s) o’(s) 3", and (3.3) holds.
Apply 3" times Mader’s Theorem 3.4 to G’. Let G (V, E to F) denote the resulting
digraph.

THEOREM 3.9. The graph G, constructed above, is a minimum cost k-edge-con-
nected augmentation ofG.

The proof of this theorem is postponed until 7, where the necessary tools from
polymatroid theory are already available. In 8 we will make comments on algorithmic
aspects of the procedure above including its extension to the capacitated case.

Perhaps it is worth mentioning that, by the above algorithm, a minimum cost aug-
mentation is automatically a minimum cardinality augmentation.

We close this section by pointing out that the following two versions of the aug-
mentation problem answered by Theorem 3.1 are NP-complete.

Problem A. Let G (V, E) be a directed graph, s a specified node of G, T c V a
specified subset of nodes, and 3’ a positive integer. Decide if it is possible to add at most
3" new edges to G so as to have a path from s to every element of T.

Problem B. Let G’ (V, E’) be a directed graph, R c Va specified subset of nodes,
and 3" a positive integer. Decide if it is possible to add at most 3" new edges so as to have
a path from every node ofR to any other node of R.

THEOREM 3.10. Both problems A and B are NP-complete.
Proof. The following set coveting problem is known to be NP-complete 17 ]: Given

k sets X, , Xk and an integer 3", decide if there is a set X with cardinality at most 3"
that intersects all Xi’s.

First we show that set coveting can be solved in polynomial time if Problem A can
be solved in polynomial time. Let S := X to to Xk. For each Xi let ti be a new element
and T := t, t ). Let s be an element not in S tO T, and V := S tO T tO ( s ). Let
G (V, E) be a directed graph, where E := ( vti if v e Xi ).

It is easily seen that if Problem A has a solution, it has a solution in which every
new edge is of the form sv where v e S. Then there is a solution to set coveting; namely,
the heads of new edges from a subset X of at most 3" elements intersecting all Xi’s.
Conversely, ifX is a solution to set coveting, then ( sv v X as the set of new edges
forms a solution to Problem A. Therefore, Problem A is NP-complete.

To see that Problem B is NP-complete, suppose that it is solvable in polynomial
time. We then show that Problem A is also solvable in polynomial time. Indeed, a set F
of new edges is a solution to Problem A with input ( G (V, E), s, T, 3" ) if and only if
F is a solution to Problem B with input { G’ (V, E’), R, 3"}, where E’ := E tO
{ vs v e T} and R T + s. I--1

4. Undirected graphs. In this section we first provide a simpler proof of a theorem
of Cai and Sun [2 ]. One advantage of this proof is that it can be extended to the degree-
constrained case. Another one is that we use Lovisz’s splitting-off theorem [23 ], [24]
rather than Mader’s, which is much more difficult. This way, the proof becomes self-
contained as we provide a (new) proof of Lovsz’s theorem.

THEOREM 4.1 ([2]). Given an undirected graph G V, E) and an integer k >= 2,
G can be made k-edge-connected by adding at most 3" new edges ifand only if
(4.1) Z(k-d(Xi)) <=23"
holdsfor every subpartition (X, X2, Xt } of V.

Proof. The proof is analogous to that of Theorem 3.1.
Necessity. Suppose G’ (V, E tO F) is a k-edge-connected supergraph of G, where

F denotes the set of new edges. Then every subset Xi of V has at least k d(Xi newly
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entering edges. Therefore, the number of new edges in G’ is at least ,(k d(Xi ))/2,
and (4.1) follows.

We prove the sufficiency in two steps. Let s be a node not in V, and V’ := V + s.
LEMMA 4.2. G can be extended to a graph G’ V + s, E’) by adding a new node

s, and 23, new edges between V and s in such a way that for every subset (g 4: X c V

(4.2) d’(X)>=k

holds where d’ denotes the degreefunction ofG’.
Proof. First, we add a sufficiently large number of edges leaving s so as to satisfy

(4.2). (It certainly will do if we add k edges from s to v for every v e V.)
Second, we discard new edges, one by one, as long as possible without violating

(4.2). Let G’ denote the final extended graph. The following claim implies the lemma.
CLAIM. d’(s) =< 23,.
Proof. Call a subset c X c V critical if d’(X) k.
PROPOSITION 4.3. IfX and Y are intersecting critical, then both X Y and Y- X

are critical, and d’ X, Y) O.
Proof. We have k + k d’(X) + d’(Y) d’(X- Y) + d’(Y- X) + 2d’(X, Y) >=

k + k from which the proposition follows. [3

Let S { u V: su E’}. An edge su cannot be left out without violating (4.2),
precisely if there is a critical set containing u. Let Mu denote a minimal critical set
containing u (u e S) and let " Mu" u e S }. Let XI, X2, Xt be the maximal
members of.

PROPOSITION 4.4. Sets Xi 1, ..., t) are pairwise disjoint.
Proof. We prove that is laminar. IfMu, My e are intersecting, then, by Prop-

osition 4.3, My Mu is critical and d’(Mu, M) 0, therefore v eM Mu contradicting
the minimal choice ofM.

By (4.2) we have d’(s) ,(d’(Xi) d(Xi)" 1, ..., t)) ,(k- d(Xi)"
1, t) _-< 23,, as required for the claim.
Add one extra edge sv if d’(s) is odd to make it even, and let 3,’ d’(s)/2 (<-3,).

Theorem 4.1 follows by 3,’ repeated applications ofthe following theorem ofLovisz. Vq

THEOREM 4.5 ([23], [24]). Suppose that in a graph G’ (V+ s, E’) d’(s) > 0 is
even, andfor every subset fg 4 X V(4.2) holds. Thenfor every edge st there is an edge
su so that the pair { st, su } can be split off without violating (4.2).

Remark. Lovfisz announced this theorem in Prague [23] and gave a proof in his
problem book [24 ]. There Lovfisz broke up the problem into two parts. Problem 6.51
is the above statement (with different notation) formulated for Eulerian graphs while
Problem 6.53 in Lovgtsz’s book sounds as follows, "Prove that, provided k >= 2, the
assertion of 6.51 holds for non-Eulerian graphs as well." However, this formulation is
not completely precise since the evenness of the degree of s cannot be dropped, as is
shown by the complete graph on four nodes. The proof (which is otherwise correct)
given by Lovfisz [24, p. 287] uses a "tripartite" submodular inequality. Here we provide
another proof that avoids this and will also be useful in 9 to improve the efficiency of
an algorithm arising from the naive implementation of Theorem 4.5.

Proof. Call a set (g X V dangerous if

(4.3) d’(X)<=k+ 1.

A pair ( st, su ) of edges is called splittable if they can be split off without violating
(4.2). This is the case precisely if there is no dangerous set X with t, u e X. Let S :-
{ve V: sveE’}.
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CLAIM A. Let A and B be intersecting dangerous sets with A f3 B. Then
(i) d’(A, B) and
(ii) S - A LJ B (in particular, A (3 B 4 V).
Proof. By (2.2) we have (k + 1) + (k + l) >- d’(A) + d’(B) d’(A B) +

d’(B A) + 2d’(A, B) >_- k + k + 2 from which (i) follows.
Suppose that, indirectly, S

_
A L9 B. Let a d’(s, A B) and/3 d’(s, B A).

By symmetry, we can assume that c >_-/3. Since d’(A, B) we have k -< d’(V- A)
d’(A + s) d’(A) a + <= d’(A) <= k from which
follows. But this is impossible since, if S

_
X LJ Y, then d’(s) a +/3 + 2c + 1, an

odd number.
CLAIM B. IfA and B are intersecting dangerous sets with A f3 B, and A is

maximal dangerous, then d’ A d’ B k + and d’ A f3 B) k.
Proof. By Claim A, A t_J B q= F, and by the maximality ofA, d’(A t_J B) >= k + 2.

From (2.1) we have (k + + (k + >= d’(A) + d’(B) >= d’(A t3 B) + d’(A f3 B) >=
(k + 2) + k, from which the statement follows.

If there is at most one maximal dangerous set X with e X, then for any edge sv
with v X the pair st, sv is splittable. Such an edge exists since otherwise d’(V- X)
d’(X + s) d’(X) d’(s) =< (k + 2 k 1, contradicting (4.2).

Suppose that X and Y are two distinct maximal dangerous sets with e X f3 Y for
which M’= X f3 Y is maximal. Then X and Y are intersecting, and Claim A implies that
there is an edge sv with v X t_J Y.

CLAIM. The pair s v, st is splittable.
Proof. Suppose that, indirectly, there is a maximal dangerous set Z with t, v e Z.

Applying Claim B to A X and B Y we have d’(M) k. Z and M must not be
intersecting for otherwise Claim B could be applied to A := X and B := M implying
d’(M) k + 1. Therefore M Z and by the maximal choice ofM we have X Z
Y f3 Z M. By Claim A d-’(X, Y) d’(Z, Y) d’(Z, X) 1, and therefore no other
edge than st can leave M, contradicting k >= 2.

Theorem 4.1 can be extended to a degree-constrained case when upper and lower
bounds are imposed on the degrees of the graph of newly added edges. Let f =< g be two
nonnegative integer-valued functions on V (infinite values are allowed for g).

THEOREM 4.6. Given an undirected graph G V, E) and an integer k >= 2, G can
be made k-edge-connected by adding a set F ofprecisely 3’ new edges so that

(4.4) f(v) <= dF(V) <= g(v)
holdsfor every node v ofG ifand only if2 <- g( V) and

(4.5) k-d(X)<=g(X),

holdsfor every subset c X V and

(4.6) ,(k- d(Xi )" 1, ..., t) +f(Xo) <= 2
holdsfor every partition { Xo, X X2, Xt of V where Xo may be empty.

Remark. This theorem, when applied to f 0, g-- m, immediately implies the
theorem of Cai and Sun and, therefore, it would not have been necessary to prove first
Theorem 4.1. We did so to exhibit the simplicity of the idea behind the proof. The next
proof uses the very same idea along with some technicalities.

Proof. The necessity of the conditions is straightforward. To see the sufficiency,
first, add a new node s to V and min (g(v), f(v) + k) new parallel edges between s and
v for every v V. For the enlarged graph G’, the number d’(v) d(v) of new edges
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incident to v is at most g(v) for every v V and, by (4.5), (4.2) holds. If d’(s) <
add 2 d’(s) appropriate edges leaving s in such a way that d’(v) d(v) is still at
most g(v) (v V). This is possible because we have assumed that 2 =< g(V).

Second, discard new edges, one by one, as long as possible without violating (4.2)
and the following inequalities: d’(s) >= 2% d’(v) d(v) >= f(v) (v V). Let G’ denote
the final extended graph. By Proposition 4.4 the set A := { v V: d’(v) d(v) > f(v)
can be covered by disjoint critical sets Xl, X2, "", X. Let Xo V- t.J(Xi" 1,.., t). Applying (4.6) we have 23’ --< d’(s) Z(d’(Xi) d(X)" 1,..., t) +
f(Xo) X(k- d(Xi) 1,..., t) + f(Xo) =< 2,. Hence d’(s)
applications of Theorem 4.5 we obtain the desired augmentation of G.

We are interested in degree-constrained augmentations where the number of new
edges does not matter; see the following theorem.

THEOREM 4.7. Given an undirected graph G V, E) and an integer k >- 2, G can
be made k-edge-connected by adding a set F ofnew edges so that (4.4) holds for every
node v ofG ifand only if (4.5) holds for every subset X V and (.) there is no
partition := {Xo, X, X2, X } of V, where only Xo may be empty, with the
following properties’f(Xo) g(Xo), g(X k d(Xg ), and g(V) is odd.

Proof. The necessity of(4.5) is clear. To see the necessity of let be a partition
with the given properties, and F a set of new edges satisfying the requirements. Then
dF( V g( v for v Xo, dr(Xi k- d(Xi g(Xi for 1, t, and, furthermore,
no Xg induces elements of F. Therefore g(V) Z(g(X)’X o) 21FI, an even
number.

To see the sufficiency, extend the graph with a new node s and add min (g(v),
f(v) + k) new parallel edges from s to v for every v V. Let V’ V + s and let G’
(V’, E’) denote the extended graph. The number of new (parallel) edges between s and
v is d’(v) d(v).

By this constructionf(v) _-< d’(v) d(v) _-< g(v), and (4.5) implies that (4.2) holds
for every subset J = X = V. Therefore, if d’(s) is even, then Lovisz’s Theorem 4.5
implies the theorem.

Suppose that d’(s) is odd. If there is a node v V with d’(v) d(v) < g(v), then
by adding one more edge sv to G’ we are at the case of d’(s) even.

Therefore, we can assume that d’(v) d(v) g(v) for every v V. If there is an
edge e su for which f(u) < g(u) and su does not enter any critical set, then e can be
deleted without destroying (4.4) andf( v _-< d’( v d( v ), and then d’(s) becomes again
even. So suppose that there is no such an edge; that is, every edge sv either enters a
critical set or hasf(v) g(v).

Then, by Proposition 4.4, there are disjoint critical sets X, X, Xt for which
k d’(Xi d(X + g(Xi so that UXi contains all nodes v with f(v) < g(v). Let
X0 { v 6 V: f(v) g(v), v t0X; }. We obtain that f(Xo) g(Xo), g(Xi k
d(Xi) for 1, t, and g(V) ,(g(X) X ) d’(s) is odd, contradicting
(,).

5. Generalization. In this section we exhibit a natural generalization ofresults from
the preceding section. Let G (V, E) be an undirected graph and r(u, v) (u, v e V) a
nonnegative integer-valued function on the pair of nodes that serves as the demand for
edge-connectivity between u and v. When can G be extended by adding 3’ new edges so
that in the extended graph G’ the edge-connectivity number )’(u, v) is at least r(u, v)
for every pair of nodes u, v? Such an augmentation is called good (with respect to the
demand r(u, v)). It will be convenient to assume (and this can be done without loss of
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generality) that

(5.0a) r( u, v) >= , u, v) for every u, v V, and

r(u, x) >_- and r(v, x) >- imply that r(u, v) >= 1.

By Menger’s Theorem 2.1, G’ is a good augmentation of G if

(5.1) d’(X)R(X)

holds for every set J c X c V where R(X) := max (r( u, v): u e X, v V X). (The
maximum on the empty set is defined to be 0.)

In order to obtain more general results on optimal augmentations, we need stronger
theorems about splitting-off.

In a graph G’= (V+ s,E’), let k’(X) := max (k’(u, v): ueX, ve V-X). Obviously
d’(X) >= X’(X). We call a pair { su, sv of edges of G’ splittable if after splitting off
{ su, sv } the edge-connectivity between every two nodes distinct from s remains the
same. Obviously, su, sv } is splittable precisely if there is no subset X

_
V with u,

v e X for which d’(X) =< k’(X) + 1. We call such a set X dangerous.
Mader [26 proved the following extremely powerful result.
THEOREM 5.1 ([ 26]). Let G’ (V + s, E’) be a connected undirected graph with

d’(s) 3 or 1.
(a) If s is not a cut-node (that is, G’ s is connected), then there is a splittable

pair ofedges { su, sv }.
(b) Ifs is a cut-node but there is no cut-edge incident to s, then any pair ofedges

{ su, sv } is splittable provided that u and v belong to distinct components ofG’- s.
Remarks. The original proof of this theorem is rather difficult. In [12] a relatively

simple proof is given. It is not necessarily true that, under the above assumptions, for a
given edge st there is an edge su so that st and su are splittable. Furthermore, the theorem
does not hold in general if d’(s) 3, as is shown by a complete graph on four nodes.
Note that Theorem 4.5 is a special case of Mader’s theorem.

COROLLARY 5.2. Suppose that in an undirectedgraph G’= (V+ s, E’) degree d’(s)
is even and there is no cut-edge incident to s. Then the edge incident to s can be paired
in such a way that splitting offeach pair results in a graph with vertex set V in which the
edge-connectivity between every two nodes u, v is equal to the original edge-connectivity
X’( u, v).

Proof. Apply Theorem 5.1 d’(s)/2 times and observe that after a splitting no edge
incident to s becomes a cut-edge. []

Let us turn back to the augmentation problem. We introduce the following notation:
q(A) := R(A) d(A). That is, q(A) is the deficiency ofA V. The following condition
is clearly necessary for the existence of a good augmentation using at most new edges:

(5.2) ,q(Xi <= 2,y

for every subpartition { X1, Xt of V. Theorem 4.1 of Cai and Sun asserted that, in
the special case when r(u, v) k >= 2, (5.2) is sufficient as well. However, it is not
sufficient, in general, as is shown by the empty graph on four nodes with r(u, v) 1.

Let C (4: V) be a component of G. We call C a marginal component (with respect
to the demand function r(u, v)) if q(X) <= 0 for every X C and q(C) _-< 1. This is
equivalent to saying that r(u, v) _-< (u, v) for u, v C and r(u, v) _-< (u, v) + for
uC,v V-C.

Our solution to the problem of finding a good augmentation consists of two steps.
First, we show that marginal components can be easily eliminated; second, we prove
that if there are no marginal components, then (5.2) is sufficient.
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Let 3"(G, r) denote the minimum number ofedges the addition ofwhich to G results
in a graph G’ satisfying (5.1). Let C be a marginal component of G, and G1 := G C.
Let rl denote the function r restricted on the pairs of nodes of V- C.

THEOREM 5.3. For a marginal component C ofG 3"( G, r) 3’( G1, rl + q( C).
Proof. Let 3" := 3"(G, r) and 3"1 := 3"(G1, rl). First, we show that 3" =< 3"1 + q(C).

Let G’l denote a minimal augmentation of GI. If q(C) 0, then clearly G’I, along with
C, yields a good augmentation of G and hence 3" -< 3"1 3"1 + q(C). If q(C) 1, then
there is a pair a, b with a e C and b e V C for which r(a, b) 1. We claim that adding
C and an edge ab to G’ yields a good augmentation G’ of G. Indeed, if this were not
true, there would be a pair s, of nodes of G for which r(s, t) > )’(s, t). Then precisely
one of s and t, say s, is in C and in V- C (because C is marginal and G’I is good with
respect to rl ). Since C is marginal, r(s, t) and then ’(s, t) 0. Hence in G’ there
is no path between and b, and therefore rl (t, b) r(t, b) 0. (5.0b) shows that a and
s must be distinct. Then, by (5.0a) r(s, a) >= 1. Applying (5.0b) twice, we obtain that
r(a, t) >- and r(b, t) >= 1, a contradiction. Therefore 3" =< 3"1 + q(C).

To see the other direction let Go (Vo, Eo) be a graph obtained from G by replacing
C with a new node vc. Define ro(U, v) := r(u, v) if u, v e V C and ro(Vc, v) := q(C).
Let 3"0 := 3"(Go, ro). Obviously, 3"0 =< 3".

Let G) (V Eo t.J F) be a minimal augmentation of Go good with respect to ro
such that the number of elements in F incident to v is as small as possible. If 0,
then q(C) 0 and the elements of F are induced by G C. Hence 3"1 -< FI "to --<
3" 3" q(C), as required. If t 1, then, by the minimality of F, q(C) 1. Let f e F
be the edge incident to v. Adding F fto
and then 3"1 FI 3"0 =< 3" q(C), as required.

Finally, suppose that >- 2 and let VcUl, "", VcUt be the edges in F incident to Vc.
Let F’ be obtained from F by replacing vui by ului (i 2, 3, t). It is not hard to
see that Go + F’ is also a good (and minimal) augmentation of Go, contradicting the
minimal choice of t.

By Theorem 5.3 we can easily reduce the augmentation problem to a case when
there is no marginal component. Namely, proceed as follows. Let C1, C2,’", Ct be
components of G such that
(i 1, t) and G (C1 U t.J Ct) has no marginal components. Leave out each
Ci and find a minimal augmentation of the remaining graph (as to be described below).
Take back the components Ci, and for each component Ci add q(Ci (which is 0 or
new edges, as described in the first part of the proof of Theorem 5.3.

Before formulating the main result of this section we prove the following.
PROPOSITION 5.4. For arbitrary X, .Y V at least one of the following inequali-

ties holds:

(5.3a) R(X) + R(Y) <= R(Xfq Y) + R(XU Y),

(5.3b) R(X)+R(Y)<-R(X Y)+R(Y-X).

Proof. Suppose that R(X) r( x, x’) and R(Y) r( y, y’), where X separates x
and x’, and Y separates y and y’. Assume first that one of the two pairs, say x, x’, is
separated by both X and Y. By taking the complement of Y, if necessary, we can assume
that x e X Y and x’ e Y X. (If Y is replaced by its complement, then (5.3a) and
(5.3b) transform into each other.) If y, y’ are separated by X, then R(Y) R(X) <-
min (R(X- Y), R(Y- X)), and (5.3b) follows.

If y, y’ are not separated by X, then either one of y and y’, say y, is in X f) Y and
y’ e X- Y; or else one of y and y’, say y, is in Y- X and y’ V- (X t,J Y). In the first
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case, R(X- Y) >= R(Y) and R(Y- X) >= R(X), and (5.3b) follows. In the second
case, R(Y- X) >- R(Y) and R(X- Y) >= R(X), and (5.3b) follows again.

Finally, assume that neither x, x’ are separated by Y nor are y, y’ separated by X.
Again, we can assume that x Y. Then x’ e V- (X U Y). Now either one of y and y’,
say y, is in X 71 Y and y’ e X Y; or else one of y and y’, say y, is in Y- X and y’ e
V (X U Y). In the first case, R(X) <- R(X U Y) and R(Y) -< R(X fq Y), from which
(5.3a) follows. In the second case, R(X) <= R(X- Y) and R(Y) <= R(Y- X), and (5.3b)
follows. VI

The main result of this section is as follows.
THEOREM 5.5. If G has no marginal components, there is a good augmentation

using at most 3" new edges ifand only if(5.2) holdsfor every subpartition X1, Xt }
of V.

Proof. The following lemma and Corollary 5.2 imply the theorem.
LEMMA 5.6. G can be extended to a graph G’ V + s, E’) by adding a new node

s, and 23" new edges between V and s so that none ofthe new edges is a cut-edge of G’
andfor every subset ;g c_ X c_ V

(5.4) d’(X)>=R(X)

holds where d’ denotes the degreefunction ofG’.
Proof. First, add a sufficiently large number of edges leaving s so as to satisfy (5.4).

Second, discard new edges, one by one, as long as possible without violating (5.4). Let
G’ denote the final extended graph.

Claim. d’( s) <= 23".
Proof. We call a set c X c_ V critical if d’(X) R(X).
PROPOSITION 5.7. IfX and Y are critical sets, then at least one of the following

statements holds:

(5.5a) both XN Y andXU Y are critical;

5.5b both X- Yand Y-X are critical and d’(X, Y) O.

Proof. If (5.3a) holds, then .R(X) + R(Y) d’(X) + d’(Y) >= d’(X CI Y) +
d’(X tO Y) >= R(X fq Y) + R(X tO Y) >= R(X) + R(Y) and (5.5a) follows.

If(5.3b) holds, then R(X) + R(Y) d’(X) + d’(Y) d’(X- Y) + d’(Y- X) +
2a?(X, Y) >-_ R(X- Y) + R(Y- X) + 2a?(X, Y) >-_ R(X) + R(Y) + 2d’(X, Y) and
(5.5b) follows.

Let S { u V: su E’}. An edge su cannot be left out without violating (5.4)
precisely if there is a critical set containing u. Let X1, X2, Xt } be a family
of critical sets that cover S so that is minimal and, given this minimal t, 2;[X;[ is
minimal. We claim that the sets Xi’s are disjoint.

Indeed, for X, Y o their union X tAY cannot be critical by the minimality of t.
Therefore (5.5b) must apply. Hence X Y and Y- X are both critical and d’(X, Y)
0, from which S CI (X CI Y) . This means that if we replace X and Y by X Y and
Y- X, then we obtain another family of critical sets coveting S. By the minimal choice
of Xi we have that X[ IX- Y[ and Y[ Y- X I; that is, Xand Yare disjoint.

By (5.2) we have d’(s) Z,(d’(Xi) d(Xi)" 1,..., t) Z,(q(Xi) 1,.., t) _-< 23", which proves the claim.
By adding one extra edge (parallel to an existing edge su), if d’(s) is odd, we can

assume that d’(s) 23"’ (<-23"). We claim that no edge incident to s is a cut edge of G’.
Indeed, if e sv were a cut-edge, then let C be the component of G’ e containing v
but not s. There is precisely one edge in G’ leaving C and therefore C must be a marginal
component of G contradicting the assumption.
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This way the proof of Lemma 5.6 is complete and so is the proof of the
theorem. E]

We mention two degree-constrained versions ofTheorem 5.5. Their proofs are anal-
ogous, respectively, to those of Theorems 4.6 and 4.7, and we do not repeat them here.
However, a proof will be provided in 7 relying on a relationship between good aug-
mentations and polymatroids.

THEOREM 5.8. Suppose thatf C) >= 2 for every marginal component C ofG. There
is a good augmentation ofG using a set F ofprecisely 3" new edges so that (4.4) holds if
and only if23" <- g( V) and

(5.6) q(X)<=g(X),

holdsfor every subset c X V and

(5.7) Z(q(Xi)’i 1,... ,t)+f(Xo)<=23"

holdsfor every partition { Xo, Xl X2, Xt } of V where Xo may be empty.
THEOREM 5.9. Suppose thatf C) >= 2 for every marginal component C ofG. There

is a good augmentation ofG using a set F ofnew edges so that (4.4) holds ifand only if
(5.6) holdsfor every subset Y V and (.) there is no partition { Xo, Xl X2,

Xt } of V, where only Xo may be empty, with the following properties" f(Xo)
g(Xo), g(Xi q(X ), and g(V) is odd.

To close this section we consider minimum cost augmentations. As we mentioned
in the Introduction, if costs are assigned to the edges, the problem is NP-complete even
if r 2. Suppose now that c" V- R+ is a nonnegative cost function on the node-set V
of G. Our object is to find a good augmentation ofG for which ZdF(V)c(v) is minimum,
where F is the set of newly added edges.

We are concerned only with the case when G has no marginal components. If G
does have marginal components, a reduction analogous to the one described in Theorem
5.3 can be applied.

Assume that the elements of V are ordered in such a way that c >= c2 >= >= cn
where ci c( vi). Let k max (q(X)" X

_
V).

ALGORITHM TO FIND A GOOD AUGMENTATION OF MINIMUM NODE-
COST

First, add a new node s to V, and k new parallel edges between s and v for every
v V. For the resulting graph G’, (5.1) holds; that is, d’(X) >= R(X) for every X

_
V.

Assume that the new edgesJ,j, are ordered according to the decreasing order
of their end-node u;. That is, first come the parallel edges from s to ul, then the parallel
edges from s to u:, and so on. (The order of parallel edges between s and u; does not
matter.)

Next, go through the new edges in the given order and discard an f if this can be
done without destroying (5.1). If at the end of the procedure there is an odd number of
edges incident to s, add one further edge between s and vn and let G’ (V + s, E’)
denote the final graph. Note that the newly added edge is not a cut-edge of G’, as we
assumed that G has no marginal components.

Therefore we can apply Corollary 5.2 to G’. Let G (V, E U F) denote the result-
ing graph.

THEOREM 5.10. The graph G1 constructed above is a minimum-cost good augmen-
tation ofG.

This theorem will be proved in 7, where the necessary tools from polymatroid
theory are already available.
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6. Generalized polymatroids. Before going into the details, let us indicate how
polymatroid theory became involved in this research. The starting point was the paper
of Cai and Sun [2]. We were trying to find a simple proof of their theorem when we
realized that the degree vectors ofgood augmentations span a (generalized) polymatroid.
This observation led to the desired proof and almost immediately to a proof of the
directed version. The nice properties of polymatroids gave rise to the solution of the
degree-constrained and the minimum node-cost augmentation problems.

Since there may be those who are interested in the augmentation problem but have
no prior knowledge in polymatroid theory, some of the original proofs are converted
here to avoid polymatroids. These proofs are included in the preceding sections. However,
we do not want to hide this relationship, so this and the next two sections have been
inserted.

First, we collect some results from polyhedral combinatorics. This environment
helps us understand the background behind the results occurring in earlier sections. It
also gives rise to possible generalizations and a proof of the two algorithms described at
the end of 3 and 5.

Generalizing the concept ofmatroid polyhedra, Edmonds 4 defined a polymatroid
to be a polyhedron P(b) := { x R v: x >= O, x(A) <= b(A) for every A

_
V }, where b

is a submodular, monotone-increasing, finite-valued set-function with b() 0. There
are other classes of polyhedra of similar type. For example, Shapley [29] introduced, as
we call it here, contrapolymatroids. Submodular polyhedra and basis polyhedra have
been defined and investigated by Fujishige. For a general account, see [15]. Generalized
polymatroids (in short, g-polymatroids) [l l] serve as a common framework for all of
these polyhedra.

Throughout this section we assume that any function in question is integer-valued
(allowing _+ ).

Let p 2 z -- Z t3 {- be a supermodular function, and b 2 -- Z t3 ( a
submodular function with p() b() 0 for which

(6.1) b(X)-p(Y)>=b(X Y)-p(r-x)

holds for every X, Y
_

V.
A pair (p, b) with the above properties is called a strong pair. A polyhedron

Q(p, b) := {x RV: p(A) <= x(A) <-_ b(A) for every A
_

V} is called a g-polyma-
troid. For technical convenience, we consider the empty set a g-polymatroid. For a detailed
account on properties of g-polymatroids, see [13]. Here we cite some without proof.

PROPOSITION 6.1. A g-polymatroid Q Q(p, b) is nonempty and is spanned
by its integral points. Q uniquely determines its defining strong pair, namely, p(A
min (x(A): x Q) and b(A) max (x(A): x e Q).

A pair (p’, b’) is called a weakpair ifp’ (respectively, b’) is supermodular (respectively,
submodular) only on intersecting sets, and (6.1) is required only for intersecting X
and Y.

PROPOSITION 6.2. For a weak pair (p’, b’) the polyhedron Q Q(p’, b’) is a g-
polymatroid. Q is nonempty ifand only if

(6.2a) ,p’(Z) <-_b’(LJZi) and

(6.2b) ,b’(Z) >=p’(LJZi)

hold for every subpartition Z, Zt of V. If Q is nonempty, it contains an inte-
ger point.
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Let Q Q(p, b) be a g-polymatroid defined by a strong pair (p, b). Let f: V --Z t_) {- and g V -- Z U be two functions with f=< g and let - _-< c _-</3 _-<
m be two integers.

PROPOSITION 6.3. The intersection Qo ofa plank x R v: c <-_ x(V) <= } and a
g-polymatroid Q(p, b) is a g-polymatroid. If Qo is nonempty, its unique strong pair
(po, bo) is given by

(6.3a) po(S)=max (p(X),c-b(V-X)),

(6.3b) bo(X)=min (b(X),-p(V-X)).

PROPOSITION 6.4. The intersection Q of a box { x R v: f <= x <= g } and a g-
polymatroid Q(po, bo) is a g-polymatroid. If Q is nonempty, its unique strong pair
(p, b is given by

(6.4a) p(X) max (po(Y)+f(X- Y)-g(Y-X): Y_ V),

(6.4b) b(X) min (bo(Y)+g(X- Y)-f(Y-X): Y_ V).

PROPOSITION 6.5. For a g-polymatroid Q Q(p, b) ifx <-_ y -< z are vectors so that
x, z Q, then y Q.

The greedy algorithm can also be extended to work on g-polymatroids Q. We need
it only in the special case when the objective function c V- R+ is nonnegative (c need
not be integer-valued) and Q is bounded from below. (By Proposition 6.1 this is equivalent
to requiting p to be finite.) The objective is to minimize cx over Q.

Suppose that the elements of V are ordered so that c >_- c2 >= >- cn.
PROPOSITION 6.6. If Q is given by a strong pair (p, b), then min (cx: x Q) is

attained by a vector z where zt p(v, vt) p(v, vt_l) (t 1, n).
This proposition has a useful corollary, which shows that the greedy algorithm may

be applied even if Q is not given by its strong pair.
COROLLARY 6.7. Let Q be a g-polymatroid boundedfrom below. Define iteratively

the components of a vector z as follows. Suppose z, z2, zt_ have already been
defined. Let zt be the smallest number for which (z, zt, xt +, xn) belongs
to Q for some appropriate xt+,"’, x,. Then z is an integer-valued solution to
min cx: x Q).

Note that the procedure in the corollary has nothing to do with the form in which
Q is given. Therefore, it becomes a usable algorithm only if there is a way to compute
the current zt.

Actually, we will use the properties listed above mainly for the special case of con-
trapolymatroids. Let p be a supermodular, monotone-increasing (integer-valued) set-
function with p() 0. A polyhedron C(p) := {x R x(A) >= p(A) for every
A V is called a contrapolymatroid. A contrapolymatroid is a g-polymatroid, since
C(p) Q(p, b) where b :-= (except b() 0), and this (p, b) is a strong pair.

In applications we will encounter contrapolymatroids that are not given by their
unique monotone supermodular function. Let q 2 v ._ Z+ be a nonnegative integer-
valued function. Suppose that Q := { x R v: x(A) >= q(A) for every A

_
V } is a con-

trapolymatroid. Let k := max (q(X): X
_

V). Then, obviously, (k, k, k) Q. For
Q the greedy algorithm can be formulated as follows.

COROLLARY 6.7’. Define iteratively the components ofa vector y as follows. Sup-
pose y, y2, yt-1 have already been defined. Let y be the smallest number for
which (y, yt, k, k) belongs to Q. Then y is an integer-valued solution to
min cx: x Q).



44 ANDR,S FRANK

Proof. We show that z y where z is the vector constructed in Corollary 6.7. If
this were not true, then there is a smallest subscript for which zt 4: Yr. Obviously, zt <
Yr. Let Vt := { v, , vt }. By the definition ofYt, there is a set A that prevented Yt from
being smaller. This means that vt A and q(A) y(Vt fq A) + k[A Vt[. Now ifA
Vt, then q(A) y(Vt fq A) > z(Vt fq A) z(A), contradicting that z Q. IfA Vt,
then q(A) <= Yt + k <= q(A) (by the definition of k). Hence 0 _-< zt < Yt 0, a contra-
diction.

Let Q be the same as before. We will have to be able to solve the following opti-
mization problem:

(,) min (cx:xeQ,x() is even).

By applying the greedy algorithm, compute an integer vector z’ e Q that minimizes
cx over Q. If z’(V) is even, let z := z’. If z’(V) is odd, revise z’ by increasing Z’(Vn) by
1. Let z denote the resulting vector.

PROPOSITION 6.8. Vector z is an optimal solution to (,).
Proof. Suppose that Q C(p), wherep is the unique supermodular function defining

Q. Ifp(V) is odd, modifyp by increasing p(V) by 1. The resulting Po is fully supermodular
and monotone increasing. The proposition follows by observing that the greedy algorithm
described in Corollary 6.7’, when applied to C(po), outputs vector z constructed
above.

Let Q := C(p) be a contrapolymatroid, let f: V -- Z and g V -- Zbe two functions with f g, and let 0 =< a =< =< be two integers. Let Q :=
{x Q: f<= x <-_ g, a <-_ x(V) <- [3}.

PROPOSITION 6.9. Q is a g-polymatroid. Q is nonempty ifand only if

(6.5) a <= g( V) and

(6.6) p(X) +f( V-X) <=min ([3,g(V)),

(6.7) p(X)<=g(X)

holdfor every subset X
_

V.
Proof. By Propositions 6.3 and 6.4, it follows that Q is a g-polymatroid.
Let b(X) := ifX =/= and b(g0) 0. By applying Proposition 6.3 to this p and

b, we obtain that Qo :-- x Q: a <- x(V) _-</3} is a g-polymatroid with strong pair
(Po, bo), where po(X) := p(X) if Y V, po(V) := max (p(V), a), and bo(X) :=/3
p(V- X)ifX =/= .

Define p’ and b’ as follows, p’(X) := max (pI(X), f( X)), b’(X) := min (b(X),
g(X)). By Proposition 6.4 (p’, b’) is a weak pair, and QI Q(p’, b’). Therefore, Proposition
6.2 applies, and (6.2) in this case is equivalent to (6.5)-(6.7 ).

Let (Pl, bl denote the strong pair defining Q. From (6.3) and (6.4) we can read
off that

(6.8a) p(V)=max [a, max (p(Y)+f(V- Y): Y_ V)] and

(6.8b) b(V) min (/3, g(V)).

PROPOSITION 6.10. Suppose that Q is nonempty. Q contains no integer vector y
with y(V) even ifand only ifp (V) b (V) is odd.

Proof. Obviously, ifm := p (V) b (V), then x(V) m for every x Q therefore,
if m is odd, x(V) is odd as well. Conversely, ifp 4: b, then, by Proposition 6.1, there
is an integer vector x e Q with x(V) p (V), and there is an integer vector z Q
with z(V) b(V). By applying Proposition 6.5, we obtain that there is an integer
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vector y 6 Q with y(V) even. If pl (V) bl (V) is even, then any integer vector of Q1
will do. D

Finally, we mention one more result from [13].
PROPOSITION 6.1 1. The intersection Q of two g-polymatroids Q(pl, hi) and

Q(p2, be) defined by strongpairs is nonempty ifand only ifpl <= b2 andp2 <= hi. Moreover,
Q is spanned by its integer points.

7. Undirected augmentations and G-polymatroids. In this section we reveal a re-
lationship between augmentations and g-polymatroids. First, let us consider the aug-
mentation problem analysed in 5 and recall the definition of a good augmentation. In
Lemma 5.6 we showed how to extend G by a new node s and some new edges incident
to s so as to satisfy 5.4 ). Given such an extension, let z(v) denote the number ofparallel
edges between v V and s. (5.4) is clearly equivalent to

(7.1) z(A) >- q(A) for every A c_ V.

Note that q(A) := R(A) d(A) denotes the deficiency ofA
_

V. Also note that q
is not intersecting supermodular, in general. Still, the following theorem asserts that q
defines a contrapolymatroid.

THEOREM 7.1. Q := z R v: z >= 0 and z satisfies (7.1) is a contrapolymatroid
C(p), where the unique supermodularfunction defining Q is

(7.2) p(A):= max (,q(Ai): {A,A2, ,At} a subpartition ofA,Ai4: ).

Proof. First, we show that C(p) Q. Indeed, C(p) c_ Q since { A } is a subpartition
ofA. On the other hand, let z Q and assume that p(A) iq(Ai) for some subpartition
{AI, A2, At} of A (Ai 4 (g). Since z satisfies (7.1) and is nonnegative, we have
z(A ,iz(Ai) + z(A toAi) >- ,iq(Ai) p(A ), and therefore z C(p).

As p is clearly monotone increasing, all we have to show is that p is supermodular.
Let A and B be two arbitrary subsets of V. Assume that p(A) ,q(Ai) for some
subpartition {Al, A2, Ak} of A, and let p(B) ,q(Bi) for some subpartition
{Bl, Bh} of B.

Let o := {Al, Ak, Bl. Bh }. Then o satisfies the following:

(7.3) every v cA f’l B is covered at most twice,
every v e (A B) to (B A is covered at most once by .

By Propositions 2.2 and 5.4, q satisfies at least one of the following inequalities for
every two subsets X, Y of V:

(7.4a) q(X) + q(Y) <= q(Xf"l Y) + q(Xto Y),

(7.4b) q(X)+q(Y)<=q(X Y)+q(Y-X).

Denote q(’) := Z(q(X): X e ). Assume that there are two intersecting sets A;
and Bj in ,’. If X := Ai and Y := Bj satisfy (7.4a) (respectively, (7.4b)), revise " by
replacing A and B by X f) Y and X tO Y (respectively, X Y and Y- X). Then the
new family o satisfies (7.3), and by (7.4), q( ’l >- q(’).

Apply this "uncrossing" operation as long as there are intersecting sets. Since in
every step 2:( X 2 2 V X[ Xe o) strictly increases, after a finite number of steps
we obtain an ’o satisfying (7.3), for which q(o) >= q() and Oo is laminar. Let
consist of the minimal members of ’o that are subsets ofA fq B, and 2 := o l.
Then l is a subpartition ofA 71 B, and 2 is a subpartition ofA U B. By definition,
p(A f’) B) -> q( l) and p(A tO B) >= q(l2) SO we have p(A) + p(B) q() <-
q(.o) q(l) + q(2) -< p(A 71 B) + p(A to B), as required.
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Theorem 7.1, with the help ofTheorem 5.2, provides the following relation between
good augmentations of G and integer vectors in C(p).

COROLLARY 7.2. Let F be a set of new edges and define a vector ZF Zv by
ZF(V) := dF(V) (for v V). If(V, E tO F) is a good augmentation, then ZF C(p) and
z(V) is even. Ifz C(p) is an integer-valued vector with z(V) even and

z( C) 4 for every component C ofG,
then there is a set F of new edges for which z(v) dr(v) (for v V) and for which
V, E tO F) is a good augmentation.

Proof. The first part is clear from the definitions. To see the second part, let z
C(p) be a vector having the required properties. Extend G by a new node s and by z(sv)
new parallel edges between s and v (v V). By the hypotheses, the extended graph G’
satisfies the hypotheses of Corollary 5.2, and therefore the required augmentation
exists.

Corollary 7.2 ensures that the results of 6 concerning g-polymatroids can be utilised
for augmentations. Let us first prove Theorems 5.8 and 5.9.

Proofof Theorem 5.8. The necessity of the conditions is clear, and we concentrate
only on their sufficiency. Let p be the set-function defined in (7.2), and let c :=/3 :=
23". We claim that the hypotheses ofTheorem 5.8 imply (6.5)-(6.7 ). Indeed, 23’ =< g(V)
implies (6.5). Since g is modular, (5.6) and (7.2) imply (6.7). Similarly, (5.7) and (7.2)
imply p(X) + f( V- X) <- , and by f_-< gwe also have p(X) +f( V- X) <= g(V); that
is, (6.6) follows.

By Propositions 6.1 and 6.9, QI contains an integer point z, the hypotheses of
Corollary 7.2 hold, and therefore the required augmentation exists.

Proofof Theorem 5.9. Again we are concerned only with the sufficiency. Let p be
the set-function defined in (7.2) and let a := 0 and/3 := . Now (6.5) holds. (5.6)
and (7.2) imply (6.7) and (6.6). Therefore Proposition 6.9 applies, and Q1 is non-
empty. We claim that Q contains an integer vector z with z(V) even. If this were not
the case, then by Proposition 6.10, hi(V) g(V) is odd, and b(V) pl(V). That is,
by (7.2) and (6.8a) we would have g(V) ,q(Xi) +f( V- tOXi) for some subpartition
X, X2, Xt ) of V, contradicting (.) in Theorem 5.9.

We finish by applying Corollary 7.2 to this vector z. Note that (7.5) is satisfied
because f(C) >= 2 for every marginal component C of G. F-]

Using the same technique, a good characterization can be derived from Propositions
6.9 and 6.10 for the existence of a set F of new edges for which (V, E tO F) is a good
augmentation, f(v) <= dF(V) <= g(v) for every v V and o =< FI -<

ProofofTheorem 5.10. The theorem follows if we put together Corollaries 7.2 and
6.7’ and Proposition 6.8.

8. Directed augmentations and G-polymatroids. Let G (V, E) be a digraph. Sup-
pose that G can be extended by 3" new edges to a k-edge-connected digraph; that is, 3.1
and (3.2) hold.

THEOREM 8.1. Qin :-- { z R v: z >= O, z(V) >= 3", z(X) >= k p(X)for every c

X c V} is a contrapolymatroid C(Pin), where

Pin(A) max (Z(k- p(Ai)): {A, ,At a subpartition ofA)

ifA V and Pin(V) :-- 3".
Proof. In the proof we will abbreviate Pin by p, and Qin by Q. First, we show that

C(p) Q. Indeed, C(p)
_
Q since { A is a subpartition of A. On the other hand, let

z Q and assume that p(A) Z,iq(Ai) for some subpartition {A1, A2, "’", At} of
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A (Ai 4: ). Since z(X) >= q(X) for X
___
V and z is nonnegative, we have z(A)

,iz(Ai) + z(A toAi) >= 2;iq(Ai) p(A), and therefore z C(p).
By the definition ofy we have "r >- max 2;(k o(Xi)): X, Xt } a subpartition

of V), and hence p is monotone increasing. We are going to show that p is fully super-
modular. Let q(X) := k o(X) if J c X c V, and q() := q(V) := 0. Then q is
supermodular on crossing sets.

Let A and B be two arbitrary subsets of V. Suppose that p(A) Y,q(Ai) for some
subpartition {AI, A2, "", Ak} of A, and let p(B) ,q(Bi) for some subpartition
{BI, Bh} of B.

Let #" := {Al, Ak, BI, Bh }. Then satisfies the following:

(8.2) every v cA f’l B is covered at most twice,
every v (A B) tO (B A is covered at most once by o.

Denote q() := 2;(q(X): X e ’). If there are two crossing sets Ai and Bj in ,
revise r by replacing Ai and Bj by Ai I") Bj and Ai tO Bj. The new family l satisfies
(8.2) and, since q is supermodular on crossing sets, q(l) >= q().

Apply this "uncrossing" operation as long as there are crossing sets. Since in every
step 2;( X I2: X e ’) strictly increases, after a finite number of steps the procedure stops
with an 3’o satisfying (8.2) for which q(3’o) >= q().

Assume first that o includes no intersecting sets; that is, o is laminar. Let
consist of the minimal members of ’o that are subsets ofA fq B, and 2 := o l.
Then is a subpartition of A B, and 2 is a subpartition of A tO B. By defini-
tion, p(A fq B) >- q(1) and p(A B) >= q(2), so we have p(A) + p(B) q() <-
q(’o) q() + q(2) -< p(A B) + p(A to B), as required.

Second, assume that ’o includes two intersecting setsXand Y. They are not crossing,
therefore X tO Y V. By (8.2), the other members ofo are pairwise disjoint subsets
ofA f3 B. Therefore p(A f’) B) >= q(o) q(Y) q(Y).

By the assumption, (3.2) holds. Hence k 6(V- X) + k 6(V- Y) _-< ; that is,
q(X) + q(Y) k- o(X) + k- o(Y) <- . We have p(A) + p(B) q() <= q(o) <=
p(A fq B) + q(X) + q(Y) <= p(A B) + ,g p(A fq B) + p(A tO B), as required, if]

By interchanging i and 0 in Theorem 8.1 we obtain the following result.
THEOREM 8.1’. Qout := {z e RV: z >-_ O, z(V) >= "y, z(X) >= k 6(Y) for every
X V} is a contrapolymatroid C(pout), where

Pout(A) max (,(k-6(Ai)): {A, ,At} a subpartition ofA)

ifA c V and pout(V) := -y.
COROLLARY 8.2. IfF is a set of new edges and V, E tO F) is k-edge-connected,

then z C(Pin) (Z e C(Pout)) where z Z is defined by z(v) := OF(V) (Z(V) := IF(V)) for
every v V. Conversely, ifzin C(Pi,) and Zout e C(Pout) are integer-valued vectors with
y := Zin(V) Zout(V), then there is a set F of3’ new edges for which (V, E tO F) is a k-
edge-connected and Zin(V) OF(V) and Zout(V) IF(V) holdfor every v V.

Proof. The first part is clear from the definitions. To see the second part, let Zin and
Zout be two vectors having the required properties. Extend G by a new node s, by Zin (V)
new parallel edges from s to v, and by Zout(V) new parallel edges from v to s (v V). By
the hypotheses the extended graph G’ satisfies the hypotheses ofTheorem 3.4, and therefore
the required augmentation exists. []

By now we are in a position to prove Theorems 3.7 and 3.9.
Proofof Theorem 3.7. By Corollary 8.2 and Theorem 3.4 all we have to prove is

that there is an integer vector Zin in C(Pin) for whichfn _-< Zin gin, Zin(V) "Y, and that
there is an integer vector Zout in C(Pout)for which four =< Zout - gout, Zout(V) "Y. Apply
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Proposition 6.9 to C(Pin) and to C(Pout) (separately) with the choice a :=/3 := 3". The
assumption 3" =< min (gin(V), gout(V)) implies (6.5). Equation (6.6) follows from (3.6)
and (8.1). Equation (6.7) follows from (3.5). F1

Proofof Theorem 3.9. The proof is immediate if we observe that the algorithm in
question is nothing but two (separate) applications of the greedy algorithm described in
Corollary 6.7’ to Qin and aout. I

9. Max-flow version and algorithmic aspects. This section is offered to make some
comments on the complexity of algorithms implied by the proofs. It is certainly not our
purpose to describe a detailed algorithm with data structure and precise time-bound.
Instead, we briefly indicate the idea of a strongly polynomial algorithm.

Basically, we encountered two types of problems. Problem A consists of finding an
appropriate enlargement of a starting graph or digraph using a new node s. Problem B
consists of performing algorithmically the splitting operation.

We will consider these algorithms concerning the max-flow version. Let G (V, E)
be a graph or a digraph, and g: E -- Z+ an integer-valued capacity function. Let
r(u, v) be an integer-valued demand function so that there is no marginal component
in the undirected case and r k in the directed one. Recall that the max-flow version of
the augmentation problem is as follows. Extend G by adding new edges with suitable
capacities so that in the enlarged digraph the maximum flow value from every node u
to any other node v is at least r(u, v), and so that the sum of capacities of the newly
added edges is minimum. (The algorithms below work with the same time complexity
if g and r are not necessarily integer-valued.)

By replacing every edge e by g(e) parallel edges, we can see that this max-flow
version is theoretically equivalent to its noncapacitated case analyzed in 3 and 5. We
do not formulate the corresponding theorems but only mention a corollary ofTheorems
5.5 and 3.1.

COROLLARY 9.1. (a) Let G (V, E) be an undirected graph, r( u, v) an integer-
valued demand-function such that G has no marginal components, and g an integer-
valued capacity function on E. There is an optimal solution to the undirected max-flow
augmentation problem that is halfintegral. Furthermore, an optimal integer-valued so-
lution is either optimal among the real-valued augmentations or its total increment is one

halfbigger than that ofa (real-valued) optimal solution.
b IfG is a directed graph and r( u, v) k, then there is an optimal solution to the

directed max-flow augmentation problem that is integer-valued.
Proof. Let 3’ and 3"* denote the minimum total increment ofan integer-valued and

a real-valued augmentation, respectively. By Theorem 5.5, 3" [ 1/2 max ,q(Xi)q. Let us
consider the augmentation problem concerning capacity function g’ := 2g and demand
function r’ := 2r. Let q’ (=2q) denote the deficiency function and 3" the minimum total
increment of an integral augmentation x’. Clearly, x’/2 is a fractional solution to the
original augmentation problem. Therefore 3" * =< 3"/2. On the other hand, by Theorem
5.5 again, we have 3" [ 1/2 max ,q’(Xi)q 1/2 max ,q’(Xi) max ,q(Xi) <= 23"* <- 3".

Hence x’/2 is an optimal solution to the original augmentation problem and 3"
[ 3"* from which part (a) follows.

Part (b) follows directly from Theorem 3.1.
Gomory and Hu 19 described a very simple solution method to the undirected

max-flow augmentation problem when the starting graph G is the empty graph. Their
algorithm provides only a half-integer solution. For the same problem, Sridhar and Chan-
drasekaran [30] described a polynomial time algorithm that finds an integer-valued op-
timal augmentation. Bland, Goldfarb, and Todd [1 showed how to apply the ellipsoid



AUGMENTING EDGE-CONNECTIVITY 49

method to find in polynomial time an optimal fractional solution to the minimum cost
augmentation problem when the starting graph is arbitrary. (Recall that the min-cost
integer-valued augmentation problem is NP-complete.

From an algorithmic point of view, the capacitated augmentation problem is more
difficult than the noncapacitated one. Intuitively, the situation is analogous to that of
computing a maximum flow from a source node s to a sink node in the sense that Ford
and Fulkerson’s augmenting path algorithm 8 runs in polynomial time when every
capacity is 1, while the general case needs more sophisticated methods to obtain a
(strongly) polynomial time algorithm.

We mention the max flow-min cut (in short, MFMC) problem not only for sake
of analogy, but because it will be needed as a subroutine as well. The first strongly poly-
nomial algorithm to compute a flow of maximum value is due to Dinits [3 and to
Edmonds and Karp [6]. This algorithm constructs not only a maximum flow, but also
a subset S of nodes, s e S and S, for which 6g(S) is minimum.

During the past twenty years a great number of more efficient MFMC algorithms
have been developed. For a recent survey, see [18].

Before considering the two algorithmic problems, we make some preparations con-
cerning the general augmentation problem for undirected graphs. A demand function
r( u, v) u, v e V) can be given by n n )/2 numbers. Gomory and Hu 19 ], however,
showed that r can be encoded by O(n) data, namely, with the help of a tree T (V, F),
called a dominant requirement tree.

THEOREM 9.2 ([19]). Let T V, F) be a maximum cost tree with respect to the
costfunction r. For any graph G .a( U, V) >= r( u, v)for every pair { u, v } ofnodes ifand
only ifa( u, v) >= r( u, v) holdsfor the edges uv of T.

For a proof, see 8 ]. Such a tree can be easily computed by the greedy algorithm,
and henceforth we assume that T is available.

Let us turn to Problem A. Suppose that G’ (V + s, E’) is a graph or a digraph,
and g: E’ -- Z+ is an integer-valued function on the edges satisfying

(9.1a) p’g(X) >- k for everyXV,

if G’ is directed, and

(9.1b) d’g(X)>-R(X) for every ,I,X V,

if G’ is undirected, where R(X) was introduced in 5. We will refer to the special case
R(X) k as the case of uniform demands.

Since we are considering the capacitated case, we may also assume that there are
no parallel edges in G’.

Problem A. Letf,f2, be the set of edges leaving s. Proceeding edge by edge in
the given order, decrease the capacity of the current edge as much as possible without
violating (9.1).

Problem A can be solved by n (:= IV[ subsequent applications of the following
subproblem. For a specified edge st, compute the largest value z such that z <= g(st) and
such that reducing g(st) by z does not destroy (9.1).

For directed graphs (where the demands are uniform), we have z min (z’,
g(s, t)), where z’ min (m(u, t) k: u V- t), where m(u, t)"= min (O’g(T)" T
V- u,t T).

Value re(u, t) can be computed as follows. Introduce a new edge su with c capacity.
From the MFMC theorem, it follows that re(u, t) is the maximum value of a flow from
s to in this revised network. Hence z can be computed by n MFMC computations,
and Problem A, for directed graphs, can be solved by at most n z MFMC computations.
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For undirected graphs, one has z min (z’, g(s, t)), where z’ := min (m(u, v)
r(u, v): u, v e V), where m(u, v):= min (d(X): Y separates {s, t} and {u, v}). By
Theorem 9.2, z’= min (m(u, v) r( u, v) uv F).

Value m(u, v) can be computed as follows. First, introduce new edges sv and ut
with infinite capacity, and compute the max flow value ml from s to t. Second, introduce
new edges su and vt with infinite capacity, and compute the max flow value m2 from s
to t. Then m u, v) min m, m2). Therefore m u, v) can be computed by two MFMC
computations, and hence z can be computed by 2n2 MFMC computations.

Let us turn to our second algorithmic problem.
Let G’ (V + s, E’) be a directed or undirected graph endowed with a nonnegative

integer capacity function g. Let { us, sv } be a pair of edges and z an integer with 0 _-<
z =< min (g(us), g(sv)). We call the following operation a weighted splitting of value z.
Reduce g(us) and g(sv) by z and increase g(uv) by z.

Problem B. Assume that for directed graphs g satisfies O’g(S) 6’g(S) > 0 and

(9.2a) o(X) >_- k for every cXc V,

(9.2b) /(X) >= k for every cXc V.

For undirected graphs dg(s) is even, and

(9.3) d’g(X) >= R(X) for every cXc V.

We call a weighted splitting feasible if it does not destroy (9.2) or (9.3). We call a
sequence of feasible splittings complete if, in the final digraph, no edge leaving s has
positive (revised) capacity.

The problem consists ofcomputing in strongly polynomial time a complete sequence
of feasible splittings. Theorems 3.4 and 5.2 ensure that such a sequence always exists.

Consider first the directed case. For a given pair { us, sv } of edges, the biggest value
z(u, v) of a feasible splitting is the minimum ofg(us), g(sv), m, and m2, where

(9.4a) ml:=min(o’g(Y)-k)’{u,v}c_YcV) and

(9.4b) m2 min (6(X)- k)" u, v }
_
Xc V).

ml can be computed by n 2 MFMC computations as follows. First, shrink u and v
into one node t, then introduce an edge from s to a node w V with infinite capacity,
and, finally, compute the maximum flow value from s to t. m is the smallest among
these values over the possible choices of node w V. Value m2 can be computed anal-
ogously. We will also need a set A, computed by the MFMC algorithm, where the min-
imum in (9.4) is attained.

Depending on which one is the smallest value among g(us), g(sv), m, and m2, a
weighted splitting-off { us, sv } with value z(u, v) either reduces g(us) to 0, reduces g(sv)
to 0, creates an in-critical setA containing u and v, or creates an out-critical setA containing
u and v. We refer to the first two possibilities as Case and to the second two possibilities
as Case 2.

The algorithm to solve Problem B consists of a sequence of splitting steps. One
splitting step consists of choosing a pair us, sv} with u 4 v, g(us) > O, g(sv) > O,
computing z( u, v) as indicated above, and performing a weighted splitting-off operation
of value z(u, v).

The algorithm stops when there is no more edge sv with positive revised capacity.
Since there may be at most n possible pairs to be split off, the algorithm halts after at
most n - splitting steps when the subsequent pairs are chosen in an arbitrary order.
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This bound can be reduced to 4n if an appropriate ordering of the pairs is chosen.
To this end, we maintain a family " of disjoint critical sets. At the beginning, "is empty.

In an intermediate step of the algorithm let the next pair { us, sv } be chosen in
such a way that g(us) > O, g(sv) > 0 and u, v do not belong to the same member of
’. Such a pair always exists since otherwise there would be a critical set Y (in ) such
that g(ws) g(sw) 0 for every w e V Y and then X := V Y would violate (9.2).
Perform the splitting step on { us, sv }.

If Case occurs, leave " unchanged and iterate. Clearly, Case may occur at most
2n times.

If Case 2 occurs (and Case does not), let A be a new critical set (found by the
MFMC algorithm) containing u and v. Define 1 := {X : X- A critical }, A’ :=
A 1,3 U(X: X ,_ ,1), and #"’ := {X- A: X6 ’-1} [j {A’}.

PROPOSITION 9.3. ’ consists ofdisjoint critical sets. Furthermore,

(9.5) Iu’l-I’1 > lull-I1,

where U,_ standsfor U X: X ).
Proof. For the first part, we must show that A’ is critical. Let XI, X2,"-,

Xh be the elements of #" 1. Let Yo := A and Yj A U X1 U X2 U U Xj
(j 1, h). Clearly, A’ Yh. By induction on j, we prove that Yj is critical. This is
true, by definition, for j 0. Suppose we have already proved for a certain j (<h) that

Y. is critical. Since Xj+I Yj Xj+I A is not critical, by Proposition 3.6, Xj+l U
Yj Yj /l is critical, as required.

To see (9.5) we distinguish some cases. If u, v e A U, then u’l >--
lull / 2 and I’1 --< I’1 / 1, and (9.5) follows.

If u A U, v eXi , then u’l >- lull / 1. Furthermore, since the
revised g(sv) is still positive (as we are not at Case ), in Proposition 3.6 alternative (ii)
cannot hold for A and Xi, and therefore Xi 1. Hence ’1 =< I, and (9.5) follows.
The case when v e A U, u e Xi e is analogous.

Finally, assume that u X - ’, 1) . Xj . q: j). Then u’l >-- u I. By an
argument similar to the one used before, we have Xi g 1 and Xj 1. Hence I’1 --<
I1 1, and (9.5) follows.

PROPOSITION 9.4. The algorithmfor solving Problem B halts after at most 4n split-
ting steps.

Proof. In Case the capacity of an edge incident to s becomes 0. This can happen
at most 2n times. By (9.5) Case 2 may occur at most 2n times.

Since one splitting step can be carried out by 2n MFMC computations, Problem B
can be solved by 8n 2 MFMC computations. The time complexity of other calculations
is inferior to that of n 2 MFMC computations.

Problem A was solved by n - MFMC computations. Since there are MFMC algorithms
of order O(n 3) (see the survey paper of Goldberg, Tardos, and Tarjan [18 ]), we can
conclude that the overall complexity ofthe max-flow version ofthe directed augmentation
problem is O(n 5).

Consider now Problem B for undirected graphs. By Theorem 9.2 for a given pair
{ su, sv } of edges the biggest value z(u, v) of a feasible splitting is the minimum of
g(su), g(sv), and Lm/2J, where

(9.6) m:= min m(ww’) r( ww’) ww’ an edge of T),

where T is the dominant requirement tree, and m(ww’) := min (d’g(X)" X separates w
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and w’, u, v e X, s g X). Value m(ww’) can be computed as follows. Shrink u and v into
a node t. Introduce edges sw and tw’ of infinite capacity and compute the maximum
flow value ml between s and t. Likewise, compute the maximum flow value m2 when
the role of w and w’ is interchanged. We have m min (ml, m2).

Therefore m(ww’) can be computed by 2 MFMC computations and hence
z(u, v) is computed by O(n) MFMC computations. Since there may be n - pairs to be
split off and there is an MFMC algorithm of complexity O(/’/3), the flow version of the
undirected augmentation problem can be solved in 0(/76 time. (Note that the number
of steps is independent on the demand function r.)

In case of uniform demands, the proof of Theorem 4.5 can be used to reduce the
number of splitting steps from n2 to O(n), similarly to the directed case where Proposition
3.6 was used. Therefore, the overall complexity in this special case reduces to O(nS).
We omit the details.
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COMPUTING EDGE-CONNECTIVITY IN MULTIGRAPHS AND
CAPACITATED GRAPHS*

HIROSHI NAGAMOCHFf AND TOSHIHIDE IBARAKFf

Abstract. Given an undirected graph G (V, E), it is known that its edge-connectivity )(G) can be
computed by solving O(I VI max-flow problems. The best time bounds known for the problem are O( )(G)] V] 2),
due to Matula (28th IEEE Symposium on the Foundations ofComputer Science, 1987, pp. 249-251) if G is
simple, and O( E] 3/2[ V] ), due to Even and Tarjan (SIAMJ. Comput., 4 1975 ), pp. 507-518) ifG is multiple.

An O( EI + min ,(G) V] 2, p[ V[ + V] log V[ time algorithm for computing the edge-connectivity
k(G) of a multigraph G (V, E), where p(=<l E[) is the number of pairs of nodes between which G has an
edge, is proposed. This algorithm does not use any max-flow algorithm but consists only of V[ times of graph
searches and edge contractions. This method is then extended to a capacitated network to compute its minimum
cut capacity in O(1 V} IEI / VI log VI) time.

Key words, undirected multigraphs, edge-connectivity, capacitated networks, maximum flows, minimum
cuts, polynomial time algorithms
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1. Introduction. In this paper, a graph G (V, E) stands for an undirected multi-
graph that satisfies VI >-- 2. Note that it may have multiple edges but has no self-loop,
unless otherwise specified. Let )(G) denote the edge-connectivity of G. We consider
the problem of computing )(G) for a given G. Most of the known algorithms [2 ],
[4], [7], [11] are based on the fact that )(G) can be computed by solving
max-flow problems. The best-known bounds are O()(G)[ V[ 2) [7] if G is simple and
O([EI 3/2 VI) [2] if G is multiple, respectively. It is also known that, for a positive
integer k, whether k(G) >_- k can be tested in O(kl VI 2) time [7] if G is simple and in
O(min { k, [El I/2}[VIiE[) time [2] if G is multiple.

Recently, an O(I El) time algorithm was developed [8] to find a k-edge-con-
nected spanning subgraph G’ (V, E’) satisfying E’I --< k V for a k-edge-connected
multigraph G (V, E). Only by preprocessing G by this algorithm, the above bound
O(min {k, EII/Z}[V[IE[) for testing k-edge-connectivity can be reduced to
O(IEI / min {k,(klVl)l/2}klV] 2) [8]. This is an improvement since O(klVI)<=
O(I El) can be assumed because k] VI/2 > EI trivially implies that G is not k-edge-
connected.

We present even faster algorithms with time bounds O([E[ + min {klV[ 2,
P V + VI2 log VI }) for testing whether a multigraph G (V, E) is k-edge-con-
nected, and O(I El + min k(G)l VI 2, Pl VI + VI 2 log vI }) for computing ,(G),
where p(_-<l El) is the number of pairs of nodes between which G has an edge. Further-
more, this method is extended to a capacitated undirected network N (G, c), where
G (V, E) is an undirected multigraph and c is an ]El-dimensional vector of posi-
tive real capacities c(e), e E. The minimum cut capacity can be computed in
O(1 El + Pl VI + VI 2 log vI) time.

The organization of this paper is as follows. Necessary definitions are prepared in
2. In 3, a partition of edge set E of G based on a decomposition of G into spanning

forests is introduced and some useful properties are shown. Based on these properties, a
new algorithm for computing the edge-connectivity of an undirected multigraph is pro-
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posed and analyzed in 4. Its extension to capacitated undirected networks is then de-
scribed in 5. Finally, 6 discusses some implications of the new algorithms.

2. Some definitions. Let G (V, E) be an undirected multigraph. The set of edges
whose end nodes are u and v is denoted by Euv. Throughout this paper, unless confusion
arises, an edge e Euv is denoted by e u, v). A graph G’ V’, E’) is called a subgraph
of G (V, E) if V’

_
V and E’

_
E. It is a spanning subgraph if V’ V. A graph G

without cycle is called a forest, and a connected forest is called a tree. For a given graph
G (possibly not connected), a spanning forest G’ is maximal ifthe subgraph ofG’ induced
by each connected component of G is connected. The graph obtained by removing a
subset F

_
E from a connected graph G (V, E) is denoted G F. Such F is called a

cut if G F is disconnected. A cut F is a minimum cut if FI is minimum among all
cuts of G.

The graph obtained from G by contracting nodes x and y in G is denoted G
{ x, y }, in which all self-loops (if edges e (x, y) exist) resulting from contraction are
deleted. For a subset X

_
V, define E(X) {e Elone end node of e is in X, while the

other end node is in V- X} (=E(V- X)). Any E(X) 4: ck is a cut. In particular,
E( {x} for x 6 Vis denoted by E(x). The minimum degree of G, i.e., minx v E(x)],
is denoted by 6(G). G is called k-edge-connected if G F is connected for any F

___
E

with FI --< k- 1. In other words,

(2.1) G is k-edge-connected if and only if E(X)I >=k for all X__ V with X4:, V.

The edge-connectivity k(G) of a graph G is defined to be k if G is k-edge-connected but
not (k + )-edge-connected. In other words, a cut F is minimum if and only if FI
k(G) holds. The local edge-connectivity k(x, y; G) for x, y V with x 4: y is defined
to be the least number ]FI such that x and y are disconnected in G F, where F
E. Clearly,

(2.2) (G) min {,(x,y;G)lx,yV, x4:y}

and

(2.3) k(G)<=6(G)<=21 gl/I VI
hold. For example, a graph G shown in Fig. has 6(G) 7 and k(G) 6. See [1] for
other basic terminologies such as cycles, simple graphs, and multigraphs.

FIG. 1. A multiple graph G with 6( G) 7 and ,( G) 6.
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3. Finding a k-edge-connected spanning subgraph. The following lemma, which
was independently found by Nishizeki and Poljak [10], and by Nagamochi and Ibaraki
8, Lemma 2.1 ], is the starting point of our algorithm. Let El, E2, , EIEI be a partition
of the edge set E of G defined by the property that Hi (V, Ei is a maximal spanning
forest in G El t_J E2 to to Ei- for 1, 2, EI. Here Ei fq Ej dp for 4: j,
toi Ei E and Ei to Ei + to to EIEI 4 holds possibly for some i.

LEMMA 3.1. For the above partition El, E2, EIFI ofE ofa graph G (V, E),
each spanning subgraph Gi V, El to E2 to tO Ei satisfies that

(3.1) X(x,y;Gi)>=min {,(x,y;G),i} forall x,yV with x=/=y.

A partition as stated in the above lemma can be obtained by the next algorithm
FOREST [81.

Procedure FOREST; {input: G=(V,E), output: El,E2," ",Elel}
begin

Label all nodes v V and all edges e E "unscanned";
2 r(v):=0 for all v V;
3 El := E2: := Elel :=4)
4 while there exist "unscanned" nodes do

begin
5 Choose an "unscanned" node x V with the largest r;
6 for each node y adjacent to x by an "unscanned" edge do

{ y is "unscanned" and every edge in Exy is "unscanned" }
7 for each "unscanned" edge e Exy do

begin
8 Er(y)+l:=Er(y)+lto {e};
9 r(y):=r(y)+l;
10 Mark e "scanned"

end;
11 Mark x "scanned"

end;
end.

To be precise, lines 6 and 7 are slightly different from the original description of
FOREST in [8], which has no rule as to how to select an edge among all "unscanned"
edges incident to x. Clearly, adding such restrictions as those stated in lines 6 and 7
influences neither the properties obtained from FOREST in [8 nor its running time
(since sets E for all u, v V can be prepared in linear time at the beginning of the
algorithm).

LEMMA 3.2 ([8, Thm. 2.1]). Given a graph G (V,E), a partition Ei
(i 1, 2, ..., EI) of E stated before Lemma 3.1 can be found by FOREST in
o(I vI / El)time, where each Ei satisfies lEil <- VI 1.

As an example, the partition Ei, 1, 2, obtained by applying FOREST to a
graph G of Fig. is illustrated in Fig. 2. In this figure, node xi (edge ej.) represents that
it is the ith node (jth edge) scanned by FOREST.

It is shown in [8] (or can be easily proved) that the partition E (i 1, 2,
E[ obtained by FOREST has the following properties.

LEMMA 3.3. Let Ei (i 1, 2, El) be the partition obtained by FORESTfrom
G (V, E), and let Gi (V, E1 to E2 to to Ei), 1, 2, ..., EI.

(1) X(Gi) >_- man {X(G),i},i 1,2, .-., IEI.
(2) E<) .
(3) IfEi 4 4, then any edge e (u, v) Ei satisfies ( u, v; G) >= X(u, v; Gi >= i.
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7: edge to be contracted

FIG. 2. Partition Ei 1, 2, 7) ofG ofFig. obtained by FOREST.

Proof. The proof is immediate from Lemmas 3.1 and 3.2. (2) Let e Vbe the
last node scanned by FOREST. Then, it is known [8, Lemma 2.6] that Ei N E(t)l
1, 1, 2,..., IE(t)l holds. IE(t)l --< 6(G) by definition. (3) See [8, Lemma
2.4(a)]. [3

4. Determining edge-connectivity. For a graph G (V, E) with V { x, y),
,(G) 6(G) El E(x) E(y) clearly holds. To find edge-connectivity ,(G)
of G with VI >= 3, the following properties are useful.

LEMMA 4.1. For a graph G V, E) with VI >= 3, let x, y be two nodes in V.
(1) IfG { x, y } F is disconnected, where F is a subset of edges in G { x, y ),

then G F is disconnected.
(2) X(G) _-< X(G/{x, y}).
(3) IfX(x, y; G) >= k, then X(G) >= k ifand only ifX(G/{x, y}) >= k.
Proof. Let G/{x, y} (V’, E’) where V’= VU {z} {x, y} and z is the node

in G/{ x, y } replacing x and y.
The proof is immediate from that F

_
E’
_

E.
(2) The proof is immediate from ).
(3) By (2), it suffices only to show the if-part. If (G) < k, then there exists X

___
Vwith E(X)I A(G) < kin G. Here, IXf) {x, Y}I 4: 1, i.e., Xdoes not separate x
and y in G, since otherwise E(X)I < k contradicts X(x, y; G) >- k. Then, without loss
of generality (as X and V X are symmetric), assume X f3 { x, y } . This X satisfies
X_ V’and IE(X)I X(G)<kinG/{x,y},acontradictiontoX(G/{x,y})>=k. [3

To compute (G) of G (V, E), G is reduced in the following to a graph con-
tainiaag only two nodes by applying VI 2 edge contractions. Let G (V E 1)
denote G, E] (i 1, 2, ..., IEll) be the partition ofE obtained by FOREST. By
Lemma 3.3(2), there is an edge e (u 1, v 1) e EG,). Based on this u v }, G2

V2 E2 is defined to be the graph G / { u v }. In analogy with G 1, we define partition
E,? (i 1, 2, E21) ofE2 and edge e2 (u 2, v 2) e EztG2). Repeating this, Gj, u j,
v (j 1, 2, VI 1) are obtained.
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LEMMA 4.2. Let Gj, j 1, 2, [VI 1, be defined as above. Then X(G) k
holds, where

(4.1) k=min {6(G),6(G2),
Proof. By Lemma 4.1(2), we have

(4.2) (G)_-< (G2)_-<...

Clearly,

(4.3) X(GJ)<=6(Gj) forj=l,2,...,[V[-1.

From (4.1)-(4.3) and G G

(4.4) (G)-< k

follows. Since G Ivl - contains only two nodes

(4.5) X(GlVl -1)= 6(GlVl )>- k.

By Lemma 3.3 (2) and 3 ),

(uJ, v;G)>=b(G) (since (u,vJ)E(rj))
(4.6)

>_-k forj =I,2,...,IV[-1.
From (4.5), (4.6), and Lemma 4.1 3 ),

(4.7) X(G)>=k forj=lV[-1,1v[-2,...,1.

Therefore (G k is concluded from (4.4) and (4.7).
For the index j attaining 6 (GJ) k in (4.1), the set F of edges incident to a node

with the minimum degree in G satisfies that IF[ k and G F is disconnected. By
repeated applications ofLemma 4.1 ), G Fis then disconnected, i.e., F is a minimum
cut of G. The resulting procedure to compute ,(G) and a minimum cut F is described
as follows.

Procedure TESTEC; {input: G=(V,E), output: ),(G) and a minimum cut F c_ E
of G}
begin

G’:=G; k.=+oo
while V’I >- 3 in G’ (V’, E’) do

begin
Compute partition E,E2,...,EIF, of E’ by applying FOREST to G’;
Choose a node w e V’ with E’(w)l-6 (G’);
If 6 (G’)<k then let F’= E’(w);
k’=min { k,i (G’)
Let G’:=G’/{ u, v } with an edge (u,v) Ee(6,)

end;
{IV’1-2 now holds, and hence X (G’)=6 (G’) E’I
If 6 (G’)<k then let F:= E’;
k’=min { k, i (G’) }
Conclude that X (G)=k and F is a minimum cut of G

end.

The edge (u, v) used for contraction can be arbitrarily chosen from set E(a,). It
may be convenient, however, to fix one of the nodes to be the last node in V’ scanned
by FOREST, since E(t) f) E(a,) 4:0 as stated in the proof of Lemma 3.3(2).
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The application of TESTEC to G of Fig. is illustrated in Figs. 2 and 3(a)-(f). As
a result, X(G) 6 and the minimum cut F { e6, eT, ell, els, el6, el7 } are obtained.

THEOREM 4.1. Let G (V, E) be a multigraph. X(G) and a minimum cut F c_ E
ofG can befound by TESTEC in O([ El VI) time.

Proof. Since the validity of TESTEC has already been discussed, we derive the
stated time bound. Clearly, the while-loop can iterate VI 2 times since the number
of nodes in G’ decreases by one in each iteration. The time to compute the partition
Ei(i 1, 2, IE’I)ofE’ from G’ requires O(I E’I) --< O(I El)time by Lemma 3.2.
Therefore, the total time is O(IEIIVI).

This time bound can be improved as follows.
COROLLARY 4.1. Let G V, E) be a multigraph.

Given k > O, checking X(G) >= k can be computed in O(I El + kl VI 2) time; if
G) <= k, then a minimum cut can be constructed in the same time.

(2) X(G) and a minimum cut F c_ E ofG can be computed in O(I El + X(G)I VI 2)
time.

Proof. Let Ei(i 1, 2, EI) be the partition of E computed from G by
FOREST.

(1) By Lemma 3.3(1), ,(G)>=k if and only if X(Gk)>=k, where Gk=
(V, E’ El U E2 U U E). Then, by Lemma 3.2 and Theorem 4.1, Gk is constructed
in O(I El) time, and X(G) and a minimum cut F ofG can be found in O(I E’II VI)
O(klVI 2) time. Therefore the total time is O(IEI / klVIZ). We show that, if
X(G) < k (i.e., X(G) < k), a minimum cut F of Gk is a minimum cut of G. Since

k

5_ji / i:theord

i/4
by

3
/ o---i---O edges in

k2 I<// [5 // oi,.mO edge tracted

(a) 2: (2)=,_f

//I .: ,’;.’

(b) G3:6(G3)=7 (c) Gb’: 6(Gh)=6

(d) G5:6(G5)=7 (e) G6:6(G6)=7
(f) aT: 6(07)=7

FIG. 3. Application of TESTEC to G ofFig. 1.
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,(G) >= ,(Gk) FI, it suffices to prove that G Fis disconnected. From the minimality
of F, Gk F consists of two connected components X and V X. Then,

(4.8) X(x,y;G,) IF[ forany x6X and y6V-X.

If G F is connected, X(u, v; G) > F[ for some u e X and v V- X. However, from
(3.1) and k > X(G) F[, this means X(u, v; G) >= min {X(u, v; G), k} > [FI,
contradicting (4.8). Therefore G F is disconnected and X(G) F[.

(2) Using the algorithm of ), we check whether X(G) >_- k for each k 2, 2 2,
2 3, to find the integer satisfying 2; _-< X(G) < 2 ;+ . Note that, from ), a minimum
cut F and ,(G)( F[ are obtained after checking such k 2 + . The total time is

O([EI)+O(21vIZ)+o(2ZIVI2)+... +o(2+,lvi 2)

-O(IEI)+O(2i+21VI2)-O(IEI + ,(G)I VIe).
These time bounds will be further improved in the next section (Corollary 5.1 ).

5. Capacitated networks. In this section, we consider the problem of finding the
minimum capacity cut in a capacitated undirected network N (G, c) with G
(V, E), where G is an undirected multigraph (without self-loops), and c is an EI-
dimensional vector of positive real numbers c(e), e E. By letting f(x, y; N) and
c(x, y; N) denote the maximum flow value between x and y and the value ofa minimum
capacity cut separating x and y, respectively,

f(x,y;N)=c(x,y;N) forx,yV with x4:y

follow from the max-flow min-cut theorem.
Clearly, the value of a minimum capacity cut

c(U)--min { c(e)lG-Fisdisconnected}=min {c(x,y;U)[x,y V, xq:y}
eF

is equal to

f(N)-=min {f(x,y;N)lx,y V,xy}.

Gomory and Hu [6 showed that all values f( x, y; N) (x, y V) can be computed by
solving VI max-flow problems. Based on this, c(N) f(N) can be obtained in
O(I VI T(I V[, EI)) time, where T(I VI, EI) is the time required to find the max-flow
in a network with V nodes and EI edges. The best time bound for T( V I, El)
known to date is

Therefore

o(IvI IEI log(lVIZ/IEI))[5].

O(I VI T(I VI, EI))-- O(I VIZl EI log (I Vl/I EI)).

In the following, we develop a faster O(I VIIEI / VI log VI) time algorithm for
computing c(N).

First, consider a network with an integer capacity vector c (c(e), e E). Clearly,
such a network N (G (V, E), c) can be equivalently represented by a multigraph
G(N) (V, E’) obtained by replacing each edge e 6 E with c(e) parallel multiple edges.
Therefore c(N) can be determined by applying TESTEC to G(N). However, this straight-
forward implementation requires O(1E’[ V I) O(( Y c(e))l V I) time by Theorem 4.1,
which is not polynomial in log c(e).
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To remove c(e) from the running time, FOREST is modified so that a capacitated
network N can be directly handled. Instead of explicitly retaining sets Ei (i 1, 2,

E’I) in G(N), a positive number q(e) is assigned to each "scanned" edge e e E.
This number q(e) is used to represent that the c(e) multiple edges in G(N) corresponding
to e, respectively, belong to the following c(e) sets of edges in the obtained partition:

Eq(e)-c(e)+ l,Eq(e)-c(e)+ 2, ,Eq(e).

The labels r given to all nodes play a similar role as in the previous FOREST. The way
of updating r is also modified to make the computation of the above q possible. Now we
describe the modified FOREST.

Procedure CAPFOREST; { input: N=(G=(V,E),c), output: f(e),e e E}
begin

Label all nodes v e V and all edges e e E "unscanned";
2 r(v):=0 for all v V;
3 q(e):=0 for all e E;
4 while there exist "unscanned" nodes do

begin
5 Choose an "unscanned" node x V with the largest r;
6 for each node y adjacent to x by an "unscanned" edge do

{ y is "unscanned" and every edge in Exy is "unscanned"
7 for each "unscanned" edge e E)y do

begin
8 q(e):=r(y)+c(e);
9 r(y):=r(y)+c(e);
10 Mark e "scanned"

end;
11 Mark x "scanned"

end;
end.

We now show that CAPFOREST can be executed in O(I El + VI log VI) time.
For this, maintain the set of unscanned nodes X as a Fibonacci heap [3], where each
item x X has value r(x). It is easy to see that the time to carry out CAPFOREST is
dominated by the time to maintain the heap, which requires the following operations:

INSERT(x): Insert a new item x with r(x) 0 into the heap (line 2).
(2) FINDMAX: Return an item of maximum value in the heap (line 5).
(3) DELETEMAX: Delete an item of maximum value in the heap (line 10).
(4) INCREASE(x, A): Increase the value of item x in the heap by

A( c(e)) (line 9).

Since at most IV] operations of INSERT, FINDMAX, and DELETEMAX, and
operations of INCREASE are performed in FOREST, the total time required for these
isO(lEI + IVI log IVl)[3, Thm. 1].

The correctness of CAPFOREST can be seen as follows. For an integer-capacitated
network N (G, c), let q(e), e E be obtained by CAPFOREST by scanning the nodes
in V in the order of x, x2, xl vl. Then define the multigraph G(N) (V, E’) by
creating set E’uv of edges joining u and v, for each e (u, v) E, such that

E’ e2 e)uv={e, ,...,e( }.
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Based on the above q(e), define a partition E (i 1, 2, [E’[) of E’ by

e e2CEq(e)-c(e)+ 1, Eq(e)-c(e)+ 2, ,ec(e)cEq(e),
for each E,o corresponding to e (u, v) E. Then it is not difficult to see that this E
(i 1, 2, ..., E’I) is the partition obtained by FOREST when it is directly applied to
G(N) (instead of G) under the same node order x, x, x 1. In this sense, CAP-
FOREST correctly computes a required partition of E’.

Now we remove the integrality condition on (e), and consider that c is a positive
real vector. It is important to see that CAPFOREST still works under this condition,
although the above interpretation of E’ is no longer valid. The previous Lemma 3.3(2)
and (3) can, however, be generalized under this new setting. For a network N
(G (V, E), c), let

6(N)-=min { ] c(e)lvV}.
eE(v)

LEMMA 5.1. For a network N G, c) with a multigraph G V, E) and positive
real-valued capacities c(e), e E, let q(e), e E be obtained by CAPFOREST.

(5.1) There exists an edge eE with q(e)>= 6(N).

(5.2) (2) f(u,v;N)_q(e) foranye=(u,v)E.

Proof. It suffices to show that

max {q(e)[eeE(t)} , c(e),
eeE(t)

where e V is the last node scanned by CAPFOREST. Since all edges in E(t) have
been scanned when CAPFOREST scans the last node t, all c(e), e E(t) have been
added to r(t). That is, the last edge e’ in E(t) scanned by CAPFOREST satisfies q(e’)
ZeE(t) c(e).

(2) Without loss ofgenerality, G is assumed to be connected (otherwise the argument
is applied to each component). In the case of an integer vector c, (5.2) follows from
Lemma 3.3(3) and the observation after the description of CAPFOREST. Let CAP-
FOREST scan the nodes in V in the order ofx, x2,

Before considering the case of a real vector c, assume that c is a rational vector.
Starting with x, apply CAPFOREST to the network N (G, () with integer capacities
((e) M. c(e), e e E, where M is a common denominator of c(e), e e E. Clearly,
CAPFOREST can scan the nodes of/ in the previous order x, x2, "", xl vl because
labels 4 and fare now updated by 4(e) := Y(y) + ((e) (i.e., M. q(e) M. r(y) + M. c(e))
and by Y(y) (y) + ((e) (i.e., M. r(y) M. r(y) + M. c(e)) in lines 8 and 9, re-
spectively. Therefore upon completion of CAPFOREST, 4(e) M.q(e) holds for all
e e E. By the integrality of (, f(u, v;/) >_- (e) holds for every e (u, v) e E. From
this andf( u, v; N) M. f( u, v; N) (u, v e V), relation (5.2) is proved for N.

Finally, consider the case in which c is real valued. Assume that (5.2) does not
hold, i.e.,

some edge e* =(u*,v*) satisfies f(u*,v*;N)<q(e*).

That is, by max-flow min-cut theorem, there exists a cut F
_
E separating u* and v*

such that

(5.3) A q(e* , c(e) > O.
eeF
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To prove the lemma, we show that, for a A/IE[ (>0), there exists a rational vector
c’ such that

(5.4) c(e) < c’(e) < c(e) + a, eE,

and the nodes in the resulting network N’ (G, c’) can be scanned by

(5.5) CAPFOREST in the same node order xl,x2, ,Xlvl as N=(G,c).

The existence ofsuch c’ will be proved by Lemma A in the Appendix. Once such a vector
c’ is found, we can easily derive a contradiction as follows. By (5.4) and (5.5),

(5.6) q(e)<q’(e),e6E

holds, where q’ is computed by CAPFOREST applied to N’. Moreover, by (5.4),

c’(e)< c(e)+[F[A/lE[<=q(e*)<q’(e*) (by (5.3) and (5.6)).
eF eF

This impliesf’(u*, v*; N’) < q’(e*) byf’(u*, v*; N’) <= EeF c’(e), contradicting that
q’ satisfies (5.2) by rationality of c’.

Using Lemma 5.1 in place ofLemma 3.3(2) and 3.3(3), Lemma 4.1 (2) and 4.1 (3)
and Lemma 4.2 can also be directly extended to a network with positive real-valued
capacities, as stated in the following.

LEMMA 5.2. Let N (G (V, E), c) be a network such that vI >-- 3 and c is a
real-valued capacity vector. For two nodes x, y V, denote N’ (G/ { x, y }, c). Then
thefollowing properties hoM.

(1) c(N) <= c(N’).
(2) Ifc(x, y; N) >= k, then c(N) >-_ k ifand only ifc(N’) >= k.
LWMMA 5.3. For a network N (G (V, E), c) such that IV[ >-- 3 and c is a real

valued capacity vector, let N NandNj (j 2, V[ be the network obtained
by contracting an edge e- u
in N-1. Then

c(N)=min {6(NI),6(N2), ,6(NIvl-l)}.
The following algorithm MINCUT obtained by modifying TESTEC now computes

c(N) for a real-valued capacity vector c.

Procedure MINCUT; { input: N=(G=(V,E),c), output: c(N)and a minimum cut
F}
begin

N’:= N; k:=+
while V’I >= 3 in N’= G’= V’, E’), c’) do

begin
Compute q(e),e E’ by applying CAPFOREST to N’;
Choose a node w 6 V’ with Eee’w) c(e)=6 (N’);
If (N’)<k then let F:=E’(w);
k:=min k, 6 (N’)
Find an e=(u,v) E’ such that q(e) >= (N’) and let G’:=G’/{ u,v } and
N’:=(G’,c’)

end;
{IV’l =2 holds, and hence c(N’)=6 (N’) }
If i (N’) <k then F:= E’;
k:=min { k,6 (N’) }
Conclude that c(N)=k and F is a minimum cut ofN

end.
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The validity of MINCUT follows from Lemmas 5.1-5.3 in an analogous manner
to the case of TESTEC in 4. Before resorting to MINCUT, we modify graph G
(V, E) into the simple graph G’ (V, E’) by replacing each set Euv of multiple edges
with a simple edge e’ (u, v) with

c(e’)= c(e).
e Euv

Then [E’[ p, where p is the number of pairs of nodes between which G has an edge.
This computation requires O(IEI time. Then apply MINCUT to G’. Its running time
is dominated by

V (time to execute CAPFOREST) V l(p / V[ log V I)

-pl VI / VI z log VI.
From these, we obtain the next theorem.

THZORZM 5.1. Let N (G, c) be a network such that c is a real-valued capacity
vector. A minimum cut F ofN and its value c(N) can be computed by MINCUT in
O(]EI + Pl VI + [VlZlog ]V[) time, where p is the number of pairs of nodes be-
tween which G has an edge. If G is a simple graph, the time bound becomes
o(I EI IVI / VI 2 log vl).

The previous time bound in Corollary 4.1 to determine )(G) of a multigraph G
(V, E) can be slightly improved by making use of Theorem 5.1.

COROLIARY 5.1. The ,(G) of a multigraph G (V, E) can be determined in
O(IE[ + min {X(G)I V[Z, pl V[ + IV[ 2 log VI})time, wherep is the number ofpairs
ofnodes between which G has an edge.

Proof. Let N(G) (G’, c) denote the network such that G’ (V, E’) is the simple
graph obtained from G by replacing each set Euv with a single capacitated edge e
(u, v) with c(e) Euv I. Then E’I p. Let j be the integer such that

(5.7) 29<--p/I Vl +log Vl <2
In a manner similar to the proof of Corollary 4.1, we test ,(G) _-< k by using TESTEC
for k 2, 22, 23, 2 + If 2 < ,(G) < 2 + is found out for some < j, then
terminate. The time in this case is

O(] El + 2] VI 2 + 22 VI 2 +... + 2; +l V] 2)

-O(IEI /X(G)IVIZ)(<=O(IEI /plVI / vl2 log IVI))

by (5.7). Otherwise (i.e., X(G) >_- 2+ ), we apply MINCUT to network N(G). The time
in this case is

O(IEI +21 VI2+221VI2+ +2#+IVI2)+O(IEI +plVI + VI2 log IVI)

-O(IEI +plVI + VI2 log IVI)(<-O(IEI +X(G)I VI2))

by (5.7).

6. Conclusion. In this paper, we proposed an O(IEI + min { (G)IVI 2, p lVI +
vI 2 log VI }) time algorithm for determining connectivity )(G) of a multigraph G

(V, E), where p is the number of pairs of nodes having an edge between them. This
algorithm differs from the previous one [2], and requires no max-flow algorithm. Based
on this method, we then showed that the minimum cut in a capacitated network can be
found in O(1 El + p[ V[ + Vl 2 log Vl) time.

Finally, we emphasize that, as our algorithm is quite fundamental, it can be
modified to solve other related problems. For example, we cite here an algorithm to
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count the number of minimum cuts a in a given multigraph G [9 ], which runs in
O(I El + ,(G)I VI 2 + a,(G)l VI) time.

Appendix. LEMMA A. For any positive real number > O, there exists a rational
capacity vector c’ satisfying (5.4) and (5.5).

Proof. Define
i-l

E-(xi )= [,.,J Exj,xi fori=2,3, ..., IVl.
j=l

Note that E-(x2) U E-(x3) I,.J ID E-(xlvl) E and E-(x)l >-- 1, for all by
connectedness of G. After xi- is scanned in N, CAPFOREST chooses a next node x;
such that

(A.1) r(xi)>=r(xj), j=i, i+ 1, ..., IVI.
Since

(A.2) edges in E-(xi are all scanned,

the labels r( xi generated by CAPFOREST satisfy

r( xi

_
c(e).

eeE-(x)

Choose a rational capacity vector c’ such that

c(e)+O(I VI -i)/IE-(x)l <=c’(e)<c(e)+O(I VI -i+ 1)/IE-(xi)l
(A.3)

for each eeE-(xi ), 2, 3, V[

where 0 is a sufficiently small positive real number so that (5.4) holds. Starting with x,
we show by induction on xi that CAPFOREST applied to N’ (G, c’) can scan V in
the same order x, x2, "’", xl vl as CAPFOREST applied to N (G, c). Let r’ denote
the labels for N’. For x, this is obvious. After xi- is scanned,

(A.4) r’(xi)>= r( xi )+ 0(I VI i)(by (A.2) and (A.3))

and

(A.5) r’(xj)<r(x)+O(lVl-j+l), j=i+l, i+2,...,IvI (by(A.3))

hold, where r( Xh), h i, + 1, V are the labels ofN obtained by CAPFOREST
after xi-. Then, for any x (j + 1, + 2, IV I),

r’(x)<r(xj)+O(I VI -j+ 1)<=r(xj)+O(I VI -i)<-r(xi)+O(I VI -i) (by (A.1))

_-< r’(x;) (by (A.4)).

This implies that CAPFOREST applied to N’ can choose xi after xi-1. Therefore all
nodes in N’ can be scanned in the order ofx, x2, X VI. I-’]
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A FORWARD LOWER RESTRICTED ORDERING ALGORITHM
FOR DIGRAPHS*

D. D. OLESKYf AND T. A. SLATER

Abstract. The concept of forward lower restricted (FLR) orderings of digraphs arises naturally from the
study of inherited entries in LU factorizations of matrices. Polynomial time algorithms are presented for deciding
if a given ordered digraph is FLR ordered and for finding an FLR ordering of an arbitrary digraph. The latter
algorithm also detects that a digraph is not FLR orderable. In addition, characterizations of FLR-ordered trees
and maximal FLR-ordered digraphs are given. All of the results of this paper extend to inheritance of entries
in the matrix L of the LU factorization and to inheritance in UL factorizations.

Key words inheritance, directed graphs, LU factorization, trees

AMS(MOS) subject classification. 05C50

1. Introduction. In 5 the term inheritance of matrix entries was introduced, gen-
eralizing the well-known concept of the preservation of zero entries found in sparse
matrix analysis (see, e.g., 2 ], 3 ], or 7 ). Specifically, inheritance refers to the situation
in which one or more entries of the matrices of the LU factorization of a given matrix
A are, for purely combinatorial reasons, identical to the corresponding entries ofA (see

2.2). Conditions on the digraph of the matrix A have been determined, which char-
acterize the circumstances under which individual entries (local inheritance or the entire
strict upper triangular part (global inheritance) are preserved. Global inheritance for the
strict upper triangular part is characterized by the digraph of the matrix being forward
lower restricted (FLR) ordered. This paper is primarily concerned with developing al-
gorithms to solve two problems concerning FLR-ordered digraphs. The first problem is
to recognize when an ordered digraph is FLR ordered. The second problem is to find a
numbering, if it exists, for the nodes of a digraph such that the resulting ordered digraph
is FLR ordered.

2. Definitions and terminology.
2.1. Digraphs, graphs, and orderings. A digraph (directed graph) is an ordered

pair G (V, E), where V is a finite set (the nodes), and E (the edges) is a set of ordered
pairs ofelements of V. The cardinalities of Vand E are denoted by n and e, respectively,
and we assume that G is weakly connected so that e >_- n 1. If u, v e V, v is reachable
from u if there is a path of length >= from u to v in G. Given IV c V and u, v e V
IV, we say that v is reachablefrom u through IV if there is a path P: u -- ql -- q2 -- qt- -- qt - v from u to v in G such that >_- and { q, q2, qt IV. A
graph (or undirected graph) is a digraph, G (V, E), such that u -- v e E if and only
if v -- ueE.An ordered digraph is a triple, G (V, E, a), where G (V, E) is a digraph and
a 1, 2, n } -- V is a bijection. The bijection a is called an ordering on G. A
forward [backward] edge in G is an edge u -- v such that a-l(u) < a-l(v) [a-l(u) >
a-l(v)]. A path in an ordered digraph is said to be a forward path [backward path] if
all edges in the path are forward [backward].
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An ordering a is said to be a topological sort on G if a-(u) < a-(v) for every
edge u -- v e E. A topological sort exists for a digraph if and only if it is acyclic, and
can be computed in time O(e). An ordering a is said to be a minimum degree ordering
(and G, is said to be minimum degree ordered) if a node of minimum degree in G is
numbered 1, and then (for k 1, 2,... n 1) a node of minimum degree in G
{ a( ), a(2), a(k) } is numbered k + 1. If a graph G is a tree, then a is said to be
an invariant ordering (and G is said to be invariantly ordered) if for each v e V there is
at most one u e Vwith a-(u) > a-l(v) such that u is adjacent to v. Usually only one
ordering at a time is considered for a digraph, and when there is no ambiguity we abbreviate
GtoG.

For other graph-theoretic terms used, see [1] or [4].

2.2. Inheritance in LU factorizations. Let A be a matrix of order n. The digraph
ofA is defined by G(A) (V, E) where V { 1, 2, n } and -- j 6 E if and only if

a0 4: 0.
A matrix A (aij) has a left unit LU factorization if A LU, where U is upper

triangular and L is lower triangular with all diagonal entries equal to 1. IfA has a unique
left unit LU factorization, then an entry uij of U is said to be inherited from A if, for
purely combinatorial reasons, ui ai (see [5]). If G denotes an arbitrary digraph on n
nodes, let AG denote the set of all matrices A of order n such that G(A) is a (partial)
subdigraph of G and A has a unique left unit LU factorization. The following character-
ization of global inheritance is given in 5 ].

THEOREM 1. Let G be a digraph on the node set V { 1, 2, n }. Then for all
A AG andfor allpairs i, j such that <= <j <- n, uij aij in the left unit LUfactorization
ofA ifand only iffor all <- < j <= n, nodej is not reachablefrom node in G through
{1,2,-..,i- 1}.

A digraph G that satisfies the condition of Theorem is said to be forward lower
restricted (FLR) ordered; i.e., for all =< < j _-< n, there does not exist a path in G of
length >_- 2 from to j through { 1, 2, }. We extend this definition to arbitrary
orderings and arbitrary node sets by defining an ordering a on a digraph G (V, E) to
be an FLR ordering if for every pair u, v of nodes in V such that o/--l(U) < o/-l(l)), l) is
not reachable from u in G through { a( ), a(2 ), a(a-1 (u) }. An FLR-ordered
digraph G (V, E, a) is said to be maximalforward lower restricted (MFLR) ordered
if the digraph obtained by including in E any one additional edge -- j (i 4: j) is not
FLR ordered (with respect to a).

Example 1. Consider the ordered digraph G, (V, E, a) in Fig. 1, where V
a, b, c, d} and a 1, 2, 3, 4 } -- V. G, is not FLR ordered because of the paths

2 -- 3 and 3 -- -- 2 4. However, with/3- 3, 4, 1, 2 } -- V, the ordered
digraph G (V, E,/3) is FLR ordered.

Example 2. Consider the digraph G (V, E) in Fig. 2, where V { a, b, c, d, e }.
It can be shown that there exists no ordering a such that G, (V, E, a) is FLR ordered.
This can be seen, for example, by considering the two cycles of length 5, a -- b -- c --d -- e -- a and a - b -- e -- c -- d -- a, and the corresponding implied relationships
between the nodes a, c, and e.

We note that the presence or absence ofloops (i.e., cycles oflength one is irrelevant
to whether a digraph is FLR orderable. Therefore, it will henceforth be assumed that all
digraphs are loop-free.

In this paper we consider the following two problems:
(i) Find an efficient algorithm to decide whether a given ordering on an arbitrary

digraph is an FLR ordering; and
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FIG.

FIG. 2

(ii) Find an efficient algorithm to compute an FLR ordering on an arbitrary digraph
when one exists, or determine that such an ordering does not exist.

The recognition problem (i) is solved in 3. The ordering problem (ii) is solved
for strongly connected digraphs in 4, and its extension to arbitrary digraphs is given
in5.

3. Preliminary results and a recognition algorithm. The following three lemmas
are used to prove our main result. The proofs, being straightforward, are omitted.

LEMMA 1. Let G V, E) be a strongly connected digraph, let C be a simple cycle
in G, and let m V be such that m is not on C. Then there is some node c on C such
that there is a pathfrom c to m that does not contain any node on C other than c.

LEMMA 2. Let G, V, E, a) be an FLR-ordered digraph and let C V, E be
a simple cycle in G. Suppose v V is such that a- (v) > a- u)for all u V and suppose
that there is a path Pfrom some c V to v such that c is the only node in V that lies on
P. Then a-(c) max { a-(u) u e V}.

The final lemma in this section defines a test for the FLR property in ordered
digraphs that, in practice, is more convenient than the test provided by the definition.

LEMMA 3. Let G V, E, a) be an ordered digraph. Then G is not FLR ordered
ifand only ifthere are three distinct nodes i,j, and k V such that a-l(j) < a-l(/) <
a-(k), -’ j is in E, and there is aforward path not containing from j to k.

This lemma also provides a simple polynomial time solution to the recogni-
tion problem. A forward path j - j - js - k is said to jump if a- (j) <
a-(i) < a-(k) and g { j, j2, js }. By Lemma 3, ifan ordered digraph is not FLR
ordered, then there must be a backward edge -- j and a forward path, from j, that
jumps i. This suggests the following algorithm for the recognition problem. First, compute
H, the set of all pairs (i, j) such that precedes j in the ordering and there is a forward
path from that jumps j. Then intersect H with { (i, j) j -- is a backward edge }. The
ordering is an FLR ordering if and only if this intersection is empty. It is easily shown
that the running time for this algorithm is O(ne), where n is the number of nodes and
e the number of edges in the input digraph.

4. FLR orderings on strongly connected digraphs. The ordering problem for strongly
connected digraphs is solved by Algorithm 2 in this section, and the extension to arbitrary
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digraphs is made in 5. One ofthe key concepts behind Algorithm 2 is the "feasible set"
corresponding to an edge, which we now define. Let G (V, E) be a digraph. For each
edge -- j in E, the feasible set FEAS i, j] is the set of all nodes in V { i, j } that are
not reachable from j in the induced subdigraph G i.

If j e E, then FEAS [i, j] can be interpreted as the set of all nodes k e V,
for which it is feasible that a-(k) > a-(i) when a is an FLR ordering on G, and
a-(i) > a- (j). Feasible sets are used in Algorithm 2 to construct acyclic subdigraphs
from which FLR orderings can be derived.

The following algorithm, which runs in time O(e2), computes the feasible sets of
an arbitrary digraph G. It uses a method adapted from a digraph exploration algorithm
in [6, pp. 18-19].

ALGORITHM 1: An algorithm to compute the feasible sets of a digraph
Input: A digraph G (V, E) with adjacency list structure ADJ, where V=

{1,2, ,n}.
Output: A set FEASIBLE of triples (i, j, FEAS [i, j]), where FEAS [i, j] is the

feasible set associated with edge -+ j.
Data Structures: ACTIVE is a stack used to store a set ofnodes from which outgoing

edges are to be explored. For each edge - j in E, REACH denotes the union of i, j }
and the set of nodes in V that are reachable from j without passing through i.

Algorithm:
Initialize FEASIBLE to be empty;

(2) for each edge -- j in E do begin
(3) Initialize ACTIVE --- { j }, REACH --- i, j }
(4) while ACTIVE do begin
(5) pop node v from ACTIVE;
(6) for each w ADJ [v] do begin
(7) if w REACH then
(8) add w to REACH;
(9) push w onto ACTIVE;

endif
endfor
endwhile

(10) FEAS i, j] -- V-REACH;
11 add (i, j, FEAS [i, j]) to FEASIBLE;

endfor
(12) return FEASIBLE.

As another preliminary to Algorithm 2, a connection between FLR orderings on a
digraph and topological sorts on a certain acyclic subdigraph is established. It is shown
how the feasible sets of a digraph G (for which an FLR ordering exists) can be used to
extract an acyclic subdigraph of G, any topological sort of which is an FLR ordering on
G; this is the basis for the ordering algorithm.

If G (V, E) is a digraph and u V, then denote by FLRO(u) the set of FLR
orderings a on G such that a(n) u. If P (V, D) is an acyclic digraph (on the same
node set) and u V, then denote by TSe(u) the set of topological sorts/ on P such that
(n) u.

THEOREM 2. Let G (V, E) be a strongly connected digraph and let u V. Let
P V, D) be the spanning subdigraph of G such that -+ j D if and only if -+

j E, 4: u and u FEAS[ i, j]. Then FLRO(u) 4: if and only ifP is acyclic.
Furthermore, ifPu is acyclic, then FLRO(u) TSe,,(u).
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Proof. Suppose FLROG(u) j, but Pu is not acyclic. Let a FLROG(u) and let
C: Co - cl -+ - ck -+ Co be a simple cycle in Pu. Then C is also a simple cycle in
G,. The node u cannot be on C since Pu is constructed so that u has no outgoing edges.
Consequently, by Lemma 1, there exists a node ci on C such that there is a simple path
in G from ci to u that does not contain any other node on C and, by Lemma 2, the
node Ci is uniquely determined. From the definition of Pu, u t FEAS[ ci, Ci +1] (where
ci / Co if k) so that there is a path in G, from ci / to u that does not contain ci.
If cj. is the last node from C on this path, then cj 4: ci, which contradicts the uniqueness
of ci. Therefore, Pu is acyclic.

Conversely, assuming Pu is acyclic, there exists a topological sort/3 on Pu, and any
path in Pu is a forward path with respect to/3. For any node w 4: u, the strong connectivity
of G implies the existence of a simple path Q from w to u in G. Since each edge in Q is
also an edge in Pu, Q is a forward path in Pu, and hence in Ga. Consequently/3(n) u
for any topological sort/3. Suppose FLROa(u) . Then, in particular, /3 is not an
FLR ordering on G so, by Lemma 3, there exist distinct nodes i, j, and k in V such that
/3 -1 (j) </3-1(i) </3-1(k), -+ j e E, and there is a forward path R in G, not containing
i, fromj to k. Since --j is not an edge in Pu (otherwise/3-1(i) </3-1(j)) and 4: u,
u e FEAS[ i, j]. Therefore, every path in G from j to u must contain i. The strong
connectivity of G implies either k u or, as noted above, the existence ofa forward path
S in G from k to u. In the former case, the path R provides a contradiction. In the latter
case, cannot lie on the forward path S so the concatenation of the paths R and S is a
path from j to u not containing i, a contradiction. Since assuming otherwise leads to a
contradiction, we can conclude that FLRO(u) 4: .

The above argument proves that TSeu(U)
_
FLROa(u). Suppose a e FLRO(u)

and assume that a is not a topological sort of Pu. Then there exists an edge -+ j in Pu
(hence in G, also) such that 4: u and a-l(i) > a-l(j). However, since the defining
properties of Pu require that u FEAS[i, j], and since a-l(u) > a-l(i), Lemma 3
implies that a is not an FLR ordering on G, a contradiction. Therefore, FLROG(u)
TSeu(u). D

Theorem 2 leads immediately to an ordering algorithm for strongly connected di-
graphs. If we first compute the feasible sets of the input digraph, then it is only necessary
to execute a loop in which we compute Pu for each node u until either Pu is found to be
acyclic (in which case a topological sort of P is output as an FLR ordering on G), or
all nodes have been tried.

ALGORITHM 2: An FLR-ordering algorithm for strongly connected digraphs
Input" A strongly connected digraph G (V, E).
Output" An FLR ordering of G, if one exists; otherwise, a message of failure.
Data Structures: FEASIBLE is the array of triples returned by Algorithm 1. Pu

(V, D) denotes the subdigraph computed from G by the method of Theorem 2 for a
particular u V.

Subalgorithms" Algorithm is used to compute the set FEASIBLE. The algorithm
TOPSORT is used to return a topological sort (see 2.1 of an acyclic digraph.

Algorithm:
Compute the set FEASIBLE using Algorithm 1;

(2) D -- ;(3) for each u V do begin
(4) for each -+ j E do begin
5 if 4: u and u FEAS[ i, j] then



72 D. D. OLESKY AND T. A. SLATER

(6) add -- j to D;
endif

end for
(7) if Pu is acyclic then
8 return TOPSORT Pu);

endif
end for

(9) return "No FLR ordering exists."

The worst-case running time of this algorithm is O(e2) if the feasible sets are rep-
resented by Boolean arrays, and O(n-e) if they are represented by lists.

Algorithm 2 considers each of the nodes, in turn, as a possible high node for an
FLR ordering; however, it is sometimes possible to exclude certain nodes from consid-
eration in the for loop of line (3). The simplest situation occurs when both --* j and
j -- are edges and FEAS[ i, j] FEAS [j, i] . Then any FLR ordering of G must
have either or j as the highest numbered node in the ordering, and we need to loop
over only i,j } in line (3). Furthermore, ifthere are two disjoint pairs with this property,
then no FLR ordering can exist.

Algorithm 2 may not be the most efficient FLR-ordering algorithm for digraphs
with certain additional properties. For instance, if G is a tree, then both the ordering and
recognition problems can be solved in O(n) time. This follows from the equivalence of
FLR-ordered trees and minimum-degree-ordered trees (see 2.1 ). We omit the proof,
which is partially in 5 and 8 ].

THEOREM 3. Let T V, E, a) be an ordered tree. Then thefollowing conditions
on a are equivalent:

a is an FLR ordering on T,
(2) a is an invariant ordering on T,
(3) a is a minimum degree ordering on T.
We conclude this section by noting a strong connection between invariantly ordered

trees and MFLR-ordered digraphs (see 2.2). The next two results of [8], stated here
without proof, characterize digraphs that are MFLR ordered.

THEOREM 4. Let G V, E, ) be a strongly connected, MFLR-ordered digraph.
Then G contains an (invariantly ordered) spanning tree.

THEOREM 5. Let T be an invariantly ordered tree with ordering a. Then there is a
unique MFLR-ordered digraph, with ordering a, having T as a spanning tree.

5. Extensions of the results. There are obvious analogues of the global inheritance
problem for inheritance of matrix entries in the matrix L ofthe right unit LU factorization
and in the matrices L and U of the (normalized) UL factorizations; there are analogues
of an FLR ordering for these problems (see 5 ). With simple modifications, the results
of 4 can be extended to these other types of orderings on digraphs (see [8]).

As stated, Algorithm 2 only applies to strongly connected digraphs. There is a natural
way to extend the algorithm to arbitrary digraphs, however.

If G (V, E) is an arbitrary digraph, then the set S { s, s2, st ) of strongly
connected components of G can be computed in time O(e) (see 9 ]). Define a digraph
H (S, D), where sp Sq D if and only if Sp 4: Sq and there is an edge -- j E such
that s, and j Sq. H is acyclic, since a cycle Sp, -- sp: -- -- Spr Spl in H would
connect s,,, s,:, ..., Spr into a single strongly connected component.

If any element of S is not an FLR-orderable digraph, then G itself is not FLR
orderable. Assume, therefore, that each strongly connected component ofG has an FLR
ordering. Since H is acyclic, there exists a topological sort 3 { 1, 2, , } -- S. Denote



AN FLR ORDERING ALGORITHM 73

by S the component/3(i) in S, let ki be the number of nodes in si and let Ol be an FLR
ordering on si. The following algorithm produces an FLR ordering a on G, given the
orderings ai.

(1) N-- n;
(2) for from to t do begin
(3) for j from ki down to do begin
(4) a(N) ai(j);
(5) N’*-- N- 1;

end for
end for

(6) return a.

This algorithm numbers the nodes in component si in the same relative order as
ai, and ensures that all such nodes are numbered higher than any node in any sj. for
j > i. In other words, all edges joining nodes in different components in S are back-
ward edges.

It is easily shown that a is an FLR ordering on G, thus proving the following
theorem.

THEOREM 6. Let G be an arbitrary digraph. Then G is FLR orderable ifand only
ifall ofthe strongly connected components ofG are FLR orderable.

Acknowledgments. The authors thank Professors C. R. Johnson and P. van den
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GENERALIZED CHROMATIC NUMBERS OF RANDOM GRAPHS*

EDWARD R. SCHEINERMANf

Abstract. Given a hereditary (closed under taking induced subgraphs) class ofgraphs , the -chromatic
number of a graph G, denoted x..(G), is defined to be the least integer k such that V(G) admits a partition
into k subsets each of which induce a member of . The -chromatic number of random graphs G on n
vertices with fixed edge probability 0 < p < is studied and it is shown that x.(G) cn in case I1 <
and .,(G) O(n/log n) in case I1 . Also considered are generalized edge chromatic numbers.

Key words, random graphs, chromatic numbers
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1. Introduction. Of the many graph parameters, perhaps the best known and most
important is the chromatic number, X(G). This is defined as the minimum integer k
such that V(G) can be partitioned V V U V2 U V such that each ofthe induced
subgraphs G[ V,.] is edgeless. Many other parameters are defined in a similar way. For
example, the vertex arboricity of a graph G is the minimum k such that the vertex set of
G can be partitioned into sets which induce acyclic graphs. Other examples include
cochromatic number (each G[ Vi] must be either a complete graph or an edgeless graph)
and vertex thickness (each G[ Vi] must be a planar graph, as in 5]).

Indeed, for any family of graphs one can define a -chromatic number of a
graph G, denoted X,(G), to be the minimum integer k for which there exists a partition
V V tA V2 (A t.) Vk such that each of the induced subgraphs G[ V,.] is in . (We
call such a partition of V(G) a -partition of G. If no such partition exists, we say that
x(G) is undefined.) Notice that ,(G) if and only if G 6 . This notion of
generalized chromatic number has been previously introduced and studied by others
(see, for example, 2 ], 11 ], and 12 for a general discussion, as well as 18 for a
discussion ofthe H-flee chromatic number ofsparse random graphs). Ifwe were to allow

to be completely arbitrary, there is little of interest we can say about x,. We therefore
impose the following restrictions on the classes of graphs that we consider:

The class is called hereditary (or, by some authors, monotone) if G and
H is an induced subgraph of G, then H 6 .
The class is called nontrivial if it is nonempty and not all graphs are in .

These restrictions on imply, and are implied by, the following properties for X,(G):
For all graphs G, x,(G) is defined,
For some graph G, x,(G) :/: 1, and
x., is monotone; that is, for all graphs G and H, if G is an induced subgraph of
H, then X,(G) <= X(H).

(The actual chromatic number x satisfies a ’strong monotonicity’ property; namely, if
G is any subgraph of H, then x(G) _-< X(H). Strong monotonicity does not necessarily
hold for the x.,’s we consider.)

LEMMA 1. If is a class ofgraphs, then is nontrivial and hereditary ifand only
if x, is definedfor all graphs, nonconstant and monotone.

We are particularly interested in studying x for random graphs. The random graph
Gn,p is a graph on n labeled vertices. An edge is placed between two vertices with probability
p (or the edge is absent with probability p). The adjacency of each pair of vertices
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is independent of any other pair (see [3] and [16 ]). Bollobfis [4] has shown that for
fixed p, the chromatic number of almost all G,p is

n
X(Gn,l) 2 logan’

where d 1/( p). More precisely, this means that there is a function f(n) with
f(n) 0 as n - such that

lrn Pr _f(n)
n __< X(G,p) _-< +f(n) log n-

The fact that X(G,,) 0(n/log n) is not surprising. Indeed, for many graph theoretic
parameters f we see f(G,,p) O(n/log n) (see, for example, [17] in which the interval
number ofa random graph is shown to be (n/log n)). One ofthe purposes ofthis paper
is to provide a more general setting for this type of result.

Shamir [18 has considered the problem of computing H-free chromatic numbers
of random graphs. These generalized chromatic numbers are the same as our x when

is the class of graphs that do not contain a fixed graph H as an induced subgraph.
Shamir explores the behavior of the H-free chromatic number for random graphs in
which the edge probability p tends to 0 as n -- . Regrettably, his methods do not carry
over to the case when p is constant, which we consider.

Our goal is to analyze the behavior of x, for any hereditary property in the case
p constant. We have two cases: When is finite, we prove that xe(Gn,,) cn and
determine the constant c. Otherwise (I l oe ), we prove that X,(Gn,p) O(n/log n).

Here we collect various results required to prove our assertions. We begin with a
result from Kingman [13] (see also [10] and [14 ]). A family of random variables Xs,
(where 0 -< s < are integers) is called a subadditive process if it satisfies the following
conditions:

For all 0 -< s < < u we have Xs,u <= Xs,t + Xt,u,
The joint distributions of the processes (Xs,t) and (Xs / ,t / are the same, and
E[So,t[ exists and is finite, and E(X0,t) >= At for some constant A and all > 0.

THEOREM 2 (Subadditive ergodic). IfXs, is a subadditive process then

1. 3’ limn L- E(Xo,n)= infn -1 E(Xo),,
n n

2. X lim
1
Xo, exists almost surely and in L, and

n
3. E(X)= 3".
Given a graph H, a second graph G is called H-free if no subset of V(G) induces a

graph isomorphic to H. In 6 Erdrs and Gimbel investigate the size of the largest H-
free subgraph of a random graph.

THEOREM 3 (H-free subgraphs). LetHbe afixedgraph and0 < p < be a constant.
There exist positive constants Cl < c2 (depending only on p and H) such that in almost
every G,, the largest H-free induced subgraph of G has between Cl log n and c2 log n
vertices.

We also use Ramsey’s theorem (see [9]).
THEOREM 4 (Ramsey). For every integer n > 0 there exists an integer r( n such

that if G is a graph on at least r( n) vertices, then G contains Kn or nK as an induced
subgraph.

2. Finite . In this section we consider nontrivial, hereditary classes of graphs
that are finite. Our main result is that a,(Gn,p) cn for some constant n. Moreover,
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we can put the random variables a,(Gn,p) in a common sample space and achieve the
almost sure convergence ofX,(Gn,p)/n to a constant random variable. Finally, we show
that the constant c is the reciprocal of the number of vertices in a largest graph in g.

Denote by k, the maximum order of a graph in , i.e.,

k,= max { V(G)I :Ge }.
Note that k, < o if and only if is finite.

LEMMA 5. Ifg is a finite, nontrivial, hereditary class ofgraphs, then

V(G)I

Proof Let V(G) V U U Vt be a partition of V(G) with each G Vi] 6 g
where X,(G). Thus, IV(G)] ]VI +-" + ]Vt] _-< tk and therefore xa,(G)_->
V(G)[/k,. v3

Next we consider the infinite random graph G(N, p) whose vertex set consists
of the nonnegative integers in which two vertices are independently joined by an edge
with probability p. Let Gp[s, t) denote the induced subgraph of G(N, p) on vertex set
{s, s + 1, 1}. Finally, define the random variable Xs, x,(Gp[s, t)).

LEMMA 6. The random variables Xs,t defined aboveform a subadditive process.
Proof First observe that for all 0 =< s < < u

Xs,u <= X,t + Xt + ,u

since if V t.) LI Va is a g-partition of Gp[s, t) and W t_J tA Wb is a -partition
of Gp[ + 1, u), then VI t.J tA Va t.J W t_J U Wb is a g-partition of Gp[s, u).

It is clear from the definition that the processes (Xs,t) and (Xs / ,t / 1) have the same
distribution.

Finally, the previous lemma shows that Xo,t >= At where A /k,. D
Thus by applying the subadditive ergodic theorem we know that Xo,n/n converges

almost surely to a random variable X. Furthermore, the following theorem holds.
THEOREM 7. Ifg is afinite, nontrivial, hereditary class ofgraphs, and 0 < p <

is a constant, then

n
x(,)’ k-

Moreover, considering Xn x (Gn,p) X, Gp[ O, n)) as random variables defined on
the common sample space G(N, p) we have

x,(Gn,p)
n k

almost surely.
Proof For any graph on n vertices we have X,(G) >_- n/k,. Let H e g with

IV( H)[ k,. Now consider the following algorithm on a graph G with n vertices.
1. Let S:= V(G) and := 1.
2. While S[ > log2 n, do

(a) Let V c S such that G[ Vi] is isomorphic to H.
(b) LetS:= S- Vi.
(c) Leti:=i+ 1.

3. Note that S { Vl, v2, Vs where s log 2 n J, and let Wj- := { vj for j
1,--’,s.
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Note that this algorithm produces a -partition of G with + o( ))n/k parts
provided step (2a) is always successful. However, in almost all Gn,p’s, step (2a) must be
successful since SI > log2 n and by the H-free subgraphs theorem, G[S] must contain
a copy ofH.

The subadditive ergodic theorem implies the existence ofa random variableXdefined
on G(N, p) such that Xo,n/n - Xalmost surely and therefore in probability. The above
theorem says that Xo,n/n -- /ka, in probability. Taken together, these imply that X
1/ka, almost surely. O

(The "lSI > log2 n" test condition in step (2) can be replaced by "While H is an
induced subgraph of G[S]." Also, step (3) may be replaced by a more sophisticated
coloring scheme for the remainder of the graph. These improvements may produce a
superior -coloring ofthe graph in question, but for random graphs, these improvements
are o(n).

3. Infinite . In the previous section we considered the case l < . Although
this case produces interesting results, the parameters x, that are of greater interest are
those in which I1 is infinite. We show that for constant p, almost all graphs have
X,(Gn,p) O(n/log n).

We begin with the following consequence of Ramsey’s theorem.
LEMMA 8. Let be a hereditary class ofgraphs. Then I’1 oo ifand only iffor

all n, Kn orfor all n, nK1 e .
Proof First suppose that 1[ oe but that there exist positive integers n and n2

such that Kn and n2Kl . Since is hereditary, it follows if n max { nl, n2 }
then neither Kn nor nKl is in . Thus, by Ramsey’s theorem, if G has r(n) (or more)
vertices, G contains either Kn or nK as an induced subgraph. Thus G g . Thus all
graphs in have fewer than r(n) vertices, a contradiction.

Second, if contains all Kn’s or all nK’s then clearly I’1 oo. rn
This result has the following interesting corollary. Let G denote the complement

of G.
LEMMA 9. If is an infinite, hereditary class ofgraphs and G is a graph, then

x,(G) -< max { x(G), x(G) }.

Proof Note that V(G) can be partitioned into X(G) sets, each of which induces
an edgeless graph (independent sets). Also, V(G)can be partitioned into (G) sets,
each of which induces a complete graph (cliques). Thus if contains all nKl’S, then
X,(G) _-< X(G) and if # contains all Kn’s, then X,(G) _-< x((). [3

We now combine Bollobs’s result with that of Gimbel and Erd6s to prove the
following result.

THEOREM 10. Let be an infinite nontrivial hereditary class of graphs and let
0 < p < be a constant. There exist constants 0 < c < c2 such thatfor almost all Gn,p,

n n
oc

log n
<- x,( Gn,p) < c2 log n

Proof By BolloNis’s result [4] and the previous lemma, almost every Gn,p satisfies

X.(Gn,p) -< + o(1) max
log n ’10gb n

where d 1/( p) and b 1/p.
Since is nontrivial, then there is some graph H . Let t x(G) and let

V U U V be a -partition of V(G). Since G[ V,.] e , we have G[ V,.] is H-free.
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Therefore, by the H-flee subgraph theorem, IVi[ -< c log n for some constant c. Thus

n= IVl / / IVl =<(c log n)t

and therefore .(G) >= n/ (c log n). V]

Note. The lower bound in the above argument was also observed by Gimbel [8].

4. Open problems.
4.1. Matching upper and lower bounds: n/a? When is finite, we have

shown that (G,) [c + o( )In, where c is a constant depending only on . When
is infinite, we have shown the existence of positive constants c and c (which depend

on and on p, but not n) such that almost all graphs G, satisfy

e 10g n
<= x(G"’P) <=Clog n

However, we conjecture the following.
CONJECTURE. Let be an infinite nontrivial hereditary class ofgraphs and let p

be a constant with 0 < p < 1. There exists a constant c (depending on and p, but not
n) such thatfor almost all Gn,p we have

x,(G.,p)=[c+o(1)].
log n

(Let a0 denote the expected maximum order of an induced subgraph H -_< G.,p for
which H e . It seems likely that the more dating conjecture almost all Gn,p are such
that ,(G,,p) na, should hold. This was proved by Bollobis [4] in the case
{ nK } and by Shamir [18] in the case p -- 0 and is the class of H-free graphs for
some fixed H.)

The work of Shamir and Spencer [19 suggests that this conjecture is true. Using
martingale methods, they prove that the chromatic number of almost all graphs cannot
be too far from the expected chromatic number. By martingale methods (see [1] and
7 ]) they show that

Pr { I-E()I >= o.fn 0
as n -- , where wn denotes any function of n that goes to infinity as n does.

Their proof 19 applies equally well to the x, parameters we have discussed in
this paper.

A special case of the above conjecture should be tractable. Let H be a fixed graph
and be the class ofall H-free graphs. A refined version ofthe H-free subgraphs theorem
[6] (which is based, in part, on [20]) coupled with the techniques in [4] and 18] may
resolve the above conjecture in this special case. From there, it will be easy to resolve
the case when there are only finitely many forbidden graphs for (H is called forbidden
for ifH but all induced subgraphs ofH are in ). The case when both and
the set of forbidden subgraphs for are infinite seems to be the most challenging.

One special case, however, is easy to handle. Let k denote the set of all k-colorable
graphs, i.e., k { G" (G) =< k }. Now note that

If c 2k then for all G, k (G) >- (G) and
If D k then for all G, (G) =< [x(G)/k].

Thus, if k, then (Gn,p) n/(2k 1Ogd n), where d 1/( p).

4.2. Edge analogues. We can also generalize the edge chromatic number.
For a given define the -edge chromatic number of a graph G (V, E), de-
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noted x’(G), to be the minimum k such that the edges can be partitioned E
El to to Ek, SO that each of the graphs (V, Ei) has property . For example, if
( G A(G) =< ) then X’(G) x’(G). If is the property ’is acyclic’ then X’(G)
I’(G), the edge arboricity of G (see 15 ).

We wish to determine the general asymptotic behavior of x’ for a random graph.
For X we saw essentially two kinds of behavior depending on whether or not I1 is
finite. The point ofthe next result is to show that there are at least three possible behaviors
for X’: O( n 2), O( n ), and O(log n). Of additional interest, we show that T(Gn,p) np/ 2.

THEOREM 11. Let p be a constant. For almost all graphs G,p we have
(A) If is the property ’has maximum degree at most 1’ (i.e., x’ x’) then

x(Gn,p) np.
(B) If is the property ’is acyclic’ (i.e., x’ , the edge arboricity) then

x%(Gn,p) np/2.
(C) If is theproperty ’is k-colorable’ then x’(G) 1Ogk n.
(D) If is the property ’has at most one edge’ then x’(G) pn2/2.
Proofof(A). Note that Vizing’s theorem gives us X’ =< A + and since random

graphs have unique vertices ofmaximum degree we have ’ A np. (See 16, p. 156].
Bollobfis also [3] gives the maximum degree much more precisely.) ff]

Proofof(B). We use the following result of Nash-Williams 15 ]:

[mM]’(G) max
H<=G nil--

where nl-i and mi-i denote the number of vertices and edges of the induced subgraph H
of G.

Since G,,,p has m p() edges we have 1’(Gn,p) >= [1 o( )]pn/2. For the upper
bound we first note that if H <= Gn,p has nn < np vertices then mi4/(ni-I <=
(2H)/(nl_l ni-i/2 < np/2. Thus it is enough to consider induced subgraphs H with
at least np vertices.

Note that for a given induced subgraph H that mi-i is the sum of (n2’) 0-1 random
variables with mean p. We can therefore apply a large deviation result (such as Theorem
1.7 (i) on p. 13 of 3 ). Let e n -/4 and observe

Pr{ mi >pn(l+e)/2}<=pr[ mI4

nl ni-I
>= pni4( + e) / 2

=<Pr { m/c>_-p(2")(1 +e))

< [e2p(n2n)]-/2 exp {--e2p(n2n)/3 }

-< exp { -n-’/2p(n2P / 3 }

=exp {-n3/Zp3/6+o(n)}=o(2-").
Since these are fewer than 2 induced subgraphs H <-_ Gn,p with nn >= np it follows that
the probability that some subgraphs G has mI-I/ nI >= + e)np/2 vanishes and
therefore 1’(Gn,p) >= [1 + o( )]np/2 for almost all Gn,p. [--]

Proof of (C). We have 2 { G" x(G) _-< k }. We first show that for any
graph G we have X’(G) -< if and only if X(G) _-< kt.

If x’,(G) < partition E(G) El tO to Et, where each (V, E;) is k-colorable.
Let ci" V -- k] 1, k } be a proper k-coloring of (V, El). Put e (v) equal to the
vector [c(v), ct(v)] e[k] and observe that if vw E(G), then e(v) 4 e(w) and
therefore G is U-colorable.
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Conversely, if X(G) _-< kt, let c V(G) - [k] be a proper coloring. We form a t-
partition ofE(G) by placing vw in any Ej. for which cj.(v) 4: cj(w). Note that cj is a proper
k-coloring of(V, E) and therefore E1 U U Et is a suitable partition of E(G).

Finally, the equivalence x’(G) <-_ ,= x(G) <= k implies x’(G) Flogk ( G)].
Thus by Bollobfis’s result [4] that X(Gn,p) [1 + o(1)]n/(2 1ogdn) (where d 1/

p)) we have

X’( G) {logk n logk loga n logk 2 + o(1)q logk n.

Proof of(D). Let be the property ’has at most one edge.’ Thus x(Gn,p)
E(a,p)l pnZ/2.
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A TECHNIQUE FOR LOWER BOUNDING THE COVER TIME*

DAVID ZUCKERMAN"

Abstract. A general technique for proving lower bounds on expected covering times of random walks on
graphs in terms of expected hitting times between vertices is given. This technique is used to prove

(i) A tight bound of r( V[ log V[ for the two-dimensional torus;
(ii) A tight bound of fl(I VI log VI/log dmax) for trees with maximum degree dmax;
(iii) Tight bounds of f(# log V for rapidly mixing walks on vertex transitive graphs, where t denotes

the maximum expected hitting time between vertices.
In addition to these new results, the technique allows several known lower bounds on cover times to be

systematically proved, often in a much simpler way.
Finally, a different technique is used to prove an ft( /( k )) lower bound on the cover time, where k

is the second largest eigenvalue of the transition matrix. This was previously known only in the case where the
walk starts in the stationary distribution [J. Theoret. Probab., 2 (1989), pp. 101-120 ].

Key words, random walks, cover time, torus, trees, vertex transitive

AMS(MOS) subject classification. 60J15

1. Introduction. A random walk on an undirected graph is the sequence of vertices
visited by a particle that starts at a specified vertex and visits other vertices according to
the following transition rule: if the particle is at vertex at time t, then at time + it
moves to a neighbor of picked uniformly at random. In this paper, we analyze the
expected cover time, i.e., the expected time of the random walk to visit all the vertices.

Simulating a random walk on a graph requires very local information about the
graph, while random walks have very nice global properties. This makes random walks
useful in computation, where limited resources are available to determine global infor-
mation. For example, random walks have proved useful in designing approximation
algorithms for counting problems (see, e.g., DFK and JS ]), simulating complexity
classes with few random bits [AKS], and assigning processes to nodes in networks [BC].
Bounds on cover times, in particular, were important in showing that UNDIRECTED
st-CONNECTIVITY can be computed in RSPACE(log n) [AKLLR] and in analyzing
the simulation of token tings on arbitrary networks [BK].

To understand what is known about cover times, consider for the moment the
maximum expected cover time cov, where the maximum is taken over all start vertices.
For interesting graphs, changing the start vertex changes the expected cover time by at
most a constant factor, so analyzing cov is not really a restriction. Define Ei T to be the
expected time to get from vertex to vertex j, and #

+
max;,j { Ei Tj }. It is not hard to

show that #+ characterizes cov to within a log n factor, where n IV I, i.e., that #
/ =<

cov =< O(u/ log n) (see, e.g., [Z]). Good techniques have been developed to estimate
#4, and involve calculating resistances ofgraphs [CRRST] and eigenvalues [A2 ]. Indeed,
the Ei Tj’s are computable in polynomial time, while it is not known if cov is. Therefore,
the difficult part in establishing tight bounds for cov tends to be deciding the extra log n
factor.

The basic technique for showing upper bounds of O(u/ is based on spanning trees,
first used in [AKLLR] to show an upper bound for all graphs of O([ vI IEI), even
though u/ can be 0( V EI ). In KLNS this technique is extended to show the general
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upper bound O([VllEl/dmin), and in [CRRST] another application of this technique
is mentioned.

By contrast, a variety of techniques have been used to show the lower bound
ft(+ log n), even though most of the work on lower bounds has been concentrated
toward proving the conjectured lower bound of ft(n log n) for all graphs, regardless of
the start vertex. Aldous A3 has proved this bound ifthe walk starts from the stationary
distribution. Examples of the different techniques are an inductive argument to show
the f(n log n) conjecture for trees [KLNS ], a coupon-collector type argument to show
the ft(n log n) conjecture for rapidly mixing walks [BK], and use of the O(fn) stan-
dard deviation law to show an f(n log 2 n/log2 dmax) lower bound for trees with small
degree Z ].

In this paper, we present a general technique for showing the lower bound 2(/+ log n)
that yields all of the lower bounds described above except that given in [A3], as well as
new lower bounds. All of our lower bounds are valid for any start vertex.

Our first bound is for the two-dimensional toms. The results in A imply that the
cover time for the k-dimensional torus is O(n log n), for k >= 3. As the tight bound of
O(n2) is easy to show for the one-dimensional case, this only left open the time for the
two-dimensional toms. It was known that t

/ O(n log n), which implied the best bounds
on the cover time of 2(n log n) and O(n log 2 n) (see, e.g., CRRST ). We show that
the cover time is O(n log2 n).

Second, we improve the lower bound for trees in [Z] and [KLNS] to
f(n log2 n/log dmax); the case ofthe balanced k-ary tree shows that this is tight in terms
of dmax. This was obtained independently using a less general version of our method in
DS]. Aldous has since found the constant for balanced k-ary trees [A5].

Third, we give a lower bound for rapidly mixing walks. By rapidly mixing, we mean
’2 n 1- 6, t3 > 0, where zz /( X2) is a measure of how quickly the random walk
approaches stationarity (2 is the second largest eigenvalue). This lower bound implies
the f(n log n) bound attained in [BK] for all rapidly mixing walks, as well as tight
bounds of0(#/ log n) for rapidly mixing walks on vertex transitive graphs. This generalizes
the result in A showing this for Cayley graphs.

Finally, we use a different technique to show that the expected time to visit a vertex
chosen at random according to the stationary distribution does not depend on the start
vertex. This lemma implies the conjectured ft(n log n) lower bound for slowly mixing
walks. Our 2(z2) lower bound was known previously only in the case where the walk
starts from the stationary distribution [BK]. This leaves the 2(n log n) conjecture open
only for the cases n -o(1)

T2 n log n.
Our main technique is of interest in its own fight, based on ideas in [Ma]. The

difficult part in analyzing the cover time is correlations between hitting times of vertices;
i.e., if the particle has visited i, what is the probability that it has visitedj? We get around
this by specifying random vertices to be visited; it is then easy to calculate the correlations
between random vertices.

2. Notation. Let G(V, E) be the graph on which the random walk is performed.
For all of the following definitions, assume i, j V:

di degree of i,
dm max/{di },
dmin mini { di },
d(i, j) distance between and j.
Let { Xt } be the sequence of vertices visited by the random walk, and let A be the

associated transition matrix; i.e., A,.; /di ifj is a neighbor of i, and 0 otherwise. Let
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)1 > )k2 )k3 -- )kn be the eigenvalues ofA. Define

T time to first reach j,
C time to cover G,
Pi (") denotes the probability of (.) in a walk starting at i,
Ei (") denotes the expectation of (.) in a walk starting at i,
r is the stationary distribution, i.e., 7rA r, so r(i) =di/2[E[,
E,(" denotes the expectation of (.) in a walk starting from distribution r,
#+ maxi,j { Ei Tj },
#- mini,j Ei T},
Hk + 1/2 +... + 1/k is the kth harmonic number.

3. The key lemma. Our lemma is based on the following theorem of Mat-
thews Ma ].

THEOREM 1. For any v V, #-Hn- <= EvC <= +Hn- 1.

We generalize the lower bound so that we still get an extra log n factor even if we
allow, for each i, a polynomial fraction of the j to be close to i. We also allow and j to
be chosen from only a polynomial fraction of the vertices.

LEMMA 2. Let V’ V such that V’I >= n, a > 0, and let be such thatfor all
V’, at most /n fraction ofthej V’ satisfy Ei T < t, where > O. Then for any v V,
EvC > t(’r In n 2), where 3’ rain (a, 3).

Proof. We elaborate Matthews’ idea by adding an extra element of randomness.
Assume without loss of generality that the start vertex v e V’. Let y, ..., Yl w I- be a
uniformly random permutation of V’ v }. Let Y y, ..., y }. Let S be the first
time that all the vertices in Yk are visited, and let Rk Sk Sk 1. Note that C >= S w i- 1.

First, we claim that P[Rk 4 0] 1/k. The event Rk 4 0 corresponds to Yk being
visited after all of Yk- 1. We condition on a given walk occurring and on the set Yk; the
randomness left is in the order y, ..., Yk of Yk. Then Yk has probability 1/k of being
the last element of Yk visited in the walk. Since this is independent ofwhat we condition
on, the claim follows.

Now condition on the walk up to time Sk- and on Yk- 1, and let Xs_ . Then,
considering only the randomness involved in picking Yk, P[EiTyk < t] <= n-/
(n" k), by definition of t. Note that E [Rkl Rk :/: 0] Ei Tyk. Therefore, for k _-<

n/2,

E[R]>-_(P[RO]-P[ETy<t])t >- 1/k t>(1/k-2/n)t
n_k,

Thus,
V’l n’r/2

EoC >- ESI v’I
, ERk >- ERk
k=l k=l

>-t Hn,/2-- >=t(7 In n-In 2- V1

4. Application to two-dimensional torus. The two-dimensional torus is the graph
G (V, E), where V { 0, 1, 2, r } 2 and a vertex (a, b) is connected to the four
vertices (a + (mod r), b) and (a, b + (mod r)).

It is known that #+ 0(n log n) (see, e.g., [CRRST]), which implies the only
known bounds on the expected cover time of ](n log n) and O(n log2 n). We apply our
key lemma to show a lower bound of 9(n log2 n).

LEMMA 3. EiT O( n log d( i, j) ). In particular, EiT > n In 2d(i, j).
Proof. This follows easily from the ideas in [CRRST]. El
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Remark. Aldous [A6] has pointed out that using the results in [C] and some extra
work, it is possible to replace the - above by /r + o( ), hence improving the constant
in Theorem 4 to 1/8r + o( ).

THEOREM 4. For any v V, EvC >- / 32n In n(ln n 3).
Proof. We apply the key lemma with V’ V and / 16n In n. Note that there

are at most 2d2 vertices j with d(i, j) < d. Taking d 1/2 n 1/4, we see that there are
=<n 1/2 / 2 vertices j with d( i, j) < d, and if d(i, j) _>- d, then Ei Tj > n In n 1/4 t. Thus,
applying the key lemma with 3’ =/3 logn (n 1/2/2) gives the theorem. V1

5. Application to trees with small degree. Previous lower bounds for general trees
have been ft(n log n) [KLNS] and fl(n 1Ogma n) [Z]. We improve both ofthese bounds
to ft(n log n 1ogamax n). This is the best possible, given only n and dmax, as we show it is
tight for balanced trees. To apply the key lemma, we must analyze Ei T for trees, we
need the following lemma from [Mo].

LEMMA 5. For neighbors i, j, EiT 21A01 1, where Aij is the subtree containing
obtained by deleting edge ( i, j }.

COROLLARY 6. In a tree, Ei Tj >-- d( i, j) )2.
Proof. The above lemma implies that this time will be least in case our graph is a

simple path from to j, for which

EiT= +3+ +2d(i,j)- l=(d(i,j))2.

LEMMA 7. For any i, there are at most O(r/3/4/log n vertices j with EiT <
n logamax n.

Proof. We root our tree at i, and put parent-child relations on the vertices as usual.
We construct a chain of vertices 1, i2, , im as follows: we choose ij + to be the
child of i with a subtree having at least n/2 vertices, if such exists, otherwise m j.

Let/j. be the subtree with root i, so/j. Aij,;j_, for j > 0, and set Im +1 . Note
that ifv, w /j. -/+1 forj < m, with wa child ofv, then [Avw[ >- n/2 + 1, so ETw >=
n. Similarly, for any child w, of ira, [Aw,,im < (n )/2, since otherwise we could
have extended our chain. Thus, for v, w Im, w a child of v, Aw[ >= [Aim,win n
]Awm,im] >=(n+ 1)/2, soEoT,,>n.

Therefore, for w I Ij.+ with d(ij, w) >_- j_ 1Ogamax n, Ei Tw >-- EijTw >= t. Fur-
thermore, if k >_- , then for any w Ik, d(i, w) >- Vt, so by Corollary 6 Ei Tw >-_ t. Thus,
the only possible vertices wwith EvTw <tare those in _/j. -/j’+ 1, j < min (/t(V-’ m + ,/1)such that d(ij, w) < ] logaax n. There can be at most V + )da4xg-= + )n
such w, from which the lemma follows.

THEOREM 8. For trees, for any v V, EC >= / 16 o( ))n 1Ogdmax n In n.
Proof. The key lemma applies with a and/3 O(log log n/log n).
COROLLARY 9. For balanced k-ary trees, for any v V, EvC O( n logk n In n).
Proof. The lower bound follows from the above theorem. The upper bound follows

from Theorem by noting that Ei Tj. <- 2n for i, j neighbors, so ET <- 2nd(i, j), and
the diameter of these trees are at most 2 log n.

Remark. Aldous [A5] has since shown that, for balanced k-ary trees, EvC
2n IOgk n In n.

6. Application to rapidly mixing walks. We now generalize both the f(#+ log n)
lower bound for Cayley graphs and the f(n log n) lower bound for rapidly mixing walks
[BK], that is graphs where r2 <-- n 1- for i > 0, where r2 1/( 2). We will need
the following well-known lemma, which shows that in O(r2 log n) time the random walk
approaches stationarity.
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LEMMA 10. Ifall eigenvalues are >= --k2, then for >= (k + 2)72 In n,

Pi[Xt =j] 7r(j) =< n -k.

This can be suitably modified if there are eigenvalues < -2.
Proof. This follows from the spectral representation given in K and the facts that

(i) >_ n -2 and IX,:[ =< X -< e-t/’2. Vl

LEMMA 1. Suppose 7"2 <= n-afor 6 > O. Then for any e > 0 and any v V,

EvC >=( -o( ))/ min { ET; } In n.
r(i) + e)/n

Proof. We show that the key lemma applies with a o( )),/3 6 o( ),
and (1 o(1)) min(i)<tl+)/n {ETi }. We set V’= (i: 7r(i) < (1 + e)/n}. Note
that IV- V’] _-< n/(1 + e), so V’l >-- ( 1/( / e))n.

Now fix i. Let J { j: Pi[ T <= 57"2 In n] >_- 1/In n }. Then JI -< 57"2 In 2 n, because
the sum Zj Pi[ T <- 57"2 In n] is at most the expected number of vertices visited in time
57"2 In n, namely 57"2 In n.

But for any j V’ J, Ei Tj. >= 1/ln n)EoT, where 0 is the distribution after
the first 57"2 In n steps starting at i. By Lemma 10 and using that r(j) >= n -2, o(j)/
7r(j) >= 1/n. Thus, EpT >- 1/n)ET, so EiT >= t.

To see that this indeed implies an ft(n log n) lower bound, we show the following.
COROLLARY 12. Suppose 7"_ <= n -, 6 > O. Then for any 6’ < 6 and any v V,

EvC -> (i’ + o( ))n In n.
Proof. It suffices to show that for any
o( ))n/( + e). But this follows from the result in [A4] that

ETi >=( r( i) )2 / r( i).

To see where the improvement comes in, we have the following result giving an
ft(u+ log n) lower bound for rapidly mixing walks on vertex transitive graphs, generalizing
a similar result given for Cayley graphs in [A 1].

THEOREM 13. Define the average hitting time a Zi,j 71"(i)Tr(j)Ei Tj. Suppose G
is vertex transitive graph and 7"2 n - . Thenfor any v V,

EC>- -o( ))6a In n.

Moreover, EoC <= + o( ))a In n, so EC O(a log n).
Proof. For vertex transitive graphs, ETi a for all (see A2 ). Applying Lemma

11 with any e > 0 then gives the first part. In general vertex transitive graphs, a _-</+ _-<
2a (see [A2]). We can reduce the constant 2 in our situation by observing that if we
walk for 57"2 In n steps, the probability distribution on the vertices is within + o( ))
of stationarity. Thus

EiTj<=57"2 In n+( +o( ))ET +o( ))a.

The second part then follows from Theorem 1.

7. Lower bound for slowly mixing walks. It is conjectured that f(n log n) is a lower
bound on the expected cover time of any graph. This has been proved in walks starting
from the stationary distribution [A3 ], but it is still open for walks starting at an arbitrary
vertex. We complement the above lower bound for rapidly mixing walks with one for
slowly mixing walks. This improves the result in [BK], which gives the same lower
bound but starting from stationarity. This leaves the general ft(n log n) lower bound
open only for graphs with 7"2 between n- and n log n.
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Broder and Karlin prove their lower bound starting from stationarity by showing
the following result.

LEMMA 14 ([BK]). Let a be the average hitting time defined in Theorem 13. Then

a ,
rk, where r /( )).

k=2

We improve their result by showing that the expected time to get to a random vertex
is independent of the start vertex.

LEMM 15. For any i, a , zr(j)Ei T.
Our proof makes use of the following lemma.
LEMMA 16 ([KS]). Exceptfor a slight modification in the bipartite case, the limits

Zo= (Pi[X=j]-Tr(j))
n=0

exist, and arefinite. Moreover,

Zjj
-x(j)’

r(j)

ProofofLemma 15. Using Lemma 16,

7r(j)Ei Tj (Zjj- Zij).

Rearranging summations, however, yields

E Zo= E _, (Pi[X,,=Jl-r(J)) E 1)=0.
n=0 n=0

Thus

E 7r(j)Ei Tj E Zjj E 7r(j)ETj a,
J J J

as required. D
We can now prove the following theorem.
THEOREM 17. For any v e V, EvC , f,-_ 2 rk.

Proof. Lemma 15 implies that for any v, we can pick a w with EvTw >- a. Thus
EC >-_ ETw >-_ a. [3

COROLLARY 18. If’r2 (n log n), then for any v V, EC 2(n log n).
Proof. The proof follows immediately from Theorem 17. [3

Acknowledgments. The author thanks Umesh Vazirani for helpful discussions and
much assistance in the writing of this paper, and David Aldous for helpful comments
and advice.
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BOUNDED ROUND INTERACTIVE PROOFS IN FINITE GROUPS*
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Abstract. This paper considers "black box groups," i.e., finite groups whose elements are

uniquely encoded by strings of uniform length, with group operations being performed by a group
oracle B. Let G, H be such groups, each given by a list of generators. It is known that the problem
of membership in G belongs to NPs [L. Babai and E. Szemerdi, Proceedings of the 25th IEEE
Symposium on the Foundation of Computer Science, 1984, pp. 229-240]. The following problems
are shown to belong to the complexity class AMB; i.e., they possess bounded-round randomized
interactive proofs (Arthur-Merlin protocols): nonmembership in G, the verification of the order of
G, isomorphism of G and H, and checking the list of composition factors of G. A group oracle B is

constructed, under which none of these problems belongs to NPB, even for abelian groups.
All the results extend to "black box factor groups," i.e., groups defined as factor groups G/N,

where G is a black box group, N < G is a normal subgroup, and both G and N are given by lists of
generators.

A list of consequences puts verification of a large number of basic group theoretic constructions
in (AM coAM)s. These include homomorphisms, kernels, intersection of subgroups and cosets,
membership in double cosets, centralizers, the center, cores, minimal normal subgroups, and the
maximal solvable normal subgroup. A notable extension of the applicability of the results is obtained
by observing that subgroups of the automorphism group of a black box group G (given by a list of
generators in their action on the generators of G) can be viewed (in a nondeterministic setting) as
black box groups themselves.

The results are applicable to matrix groups over finite fields and to factor groups thereof. (Matrix
operations replace the group oracle.) In this case, most problems listed are conjectured to belong
to NP, but a proposed approach to the proof of this statement requires detailed knowledge of the
classification of finite simple groups. In contrast, the material presented here relies on the elements of
group theory only (with the exception of the composition factors result). These applications provided
the original motivation for introducing the Arthur-Merlin protocols in [L. Babai, Proceedings of the
17th Annual ACM Symposium on the Theory of Computing, 1985, pp. 421-429], where some of the
results of this paper were announced.

The key to the basic results is a "local expansion lemma" for groups, which has since found
applications in designing polynomial time algorithms.

Key words, interactive proofs, randomization, nondeterminism, complexity, group, expansion

AMS(MOS) subject classifications. 68Q15, 68R05, 20D60, 05C25

1. Introduction.

1.1. Black box groups. A natural general framework for the complexity theory
of algorithmic problems for finite groups is the theory of black box groups, introduced
in [BSz]. In this model, the multiplication and inversion tables of an infinite family
of finite groups B(q) (q is an arbitrary string over a finite alphabet) are stored by
a group oracle B. The elements of each group B(q) are uniquely encoded as strings
of uniform length Iql. "Black box groups" are subgroups of the B(q), given by lists
of generators. Procedures over such groups rely on oracle queries to perform group
operations. Because of their particular importance in concrete cases, we also consider
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1990.
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"black box factor groups," i.e., factor groups of black box groups by their normal
subgroups, also given by lists of generators.

This approach is analogous to the common practice of considering algorithmic
problems for combinatorial structures such as matroids given by various oracles (inde-
pendence, rank, etc.) (See [GLS] for a comprehensive treatment; cf. also [KUW]). The
positive results imply oracle-free consequences for explicitly given structures (such as
linear matroids, or matrix groups over finite fields in our case). The separation re-
sults, however, do not have unrelativized analogues (for good reason: they would settle
problems like NP coNP).

The foremost concrete examples of groups we can treat in our context are matrix
groups over finite fields and their factor groups. All finite simple groups of Lie type
have natural representations in this form (cf. [Car]). In algebraic geometry, linear
algebraic groups provide important examples [Hu]. Different kinds of groups, not
easily represented as matrix groups, occur in algebraic number theory. The members
of the ideal class group of the quadratic number field with negative discriminant A
are represented by triples of integers of absolute value less than IAI; composition is
performed using arithmetic operations and greatest common divisor (g.c.d.) [B],
[LL], [Schl]. For the groups of elliptic curves over finite fields (cf. [Sil], [Sch2], ILL]),
group operations are defined by rational functions of the coordinates. The situation
is much more complicated for the Jacobian varieties of hyperelliptic curves [Can] and
more general algebraic curves [Pi]. These groups are abelian, but nonabelian group
varieties (e.g., semi-abelian varieties [Fa]) have also been studied.

In these examples, group operations can be performed in polynomial time, or at
least in time (polynomial in some of the parameters [Pi], although this fact or even
the nature of the representation amenable for computation is often highly nontrivial).

Using polynomial time subroutines to replace oracle queries, we infer unrela-
tivized consequences from our results on black box groups. We note that despite the
impressive array of number-theory-related implementations of the black box group
concept, the commutative and even the solvable cases are quite easily handled within
the classical complexity classes NP and NP N coNe, respectively (see [nSz]), and do
not require the Arthur-Merlin framework, discussed below. So the domain where we
have interesting unrelativized consequences are, still, matrix groups over finite fields
and factor groups of subgroups of direct products of matrix groups.

1.2. Algorithmic problems and complexity results. The three basic algo-
rithmic problems we discuss in this paper are membership in, and order of, a black
box factor group, and isomorphism of two black box factor groups. We consider some
more advanced questions as well, such as the Sylow subgroups and the composition
factors of a black box factor group. In addition, we give a long list of consequences,
including the verification of homomorphisms, kernels, intersections of subgroups and
subcosets, centralizers, cores, and the maximal solvable normal subgroup (12).

Since even in the case of one-by-one matrices over a finite field, the problems of
membership and order seem no more tractable than discrete logarithm or factoring
the integer q- 1, in a sense the best we may expect is putting the problems listed
above in NPNcoNP. We "almost" succeed in doing so even for black box factor groups
in general.

We consider the complexity class AM, a natural randomized extension of NP (or a
nondeterministic version of BPP; see the definition below). We show that, relative to
a group oracle B, membership in a black box factor group belongs to (NP N coAM)S;
verification of the order of a black box factor group belongs to (AM N coAM)B; and,
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as a consequence, isomorphism of two black box factor groups belongs to AMB. Both
Sylow subgroups and composition series can be verified in (AM N coAM)B. It follows
that for subgroups of direct products of matrix groups over finite fields (given by a list
of generators) and their factor groups, these languages belong to the corresponding
unrelativized classes NP N coAM, AM coAM, and AM, respectively. We conjecture
that these problems actually belong to NP N coNP (or to NP in the case of isomor-
phism). While a proof of this seems to be forthcoming, the proposed approach depends
on detailed information on the classification of finite simple groups (cf. [BKLP]; some
cases are still missing). To trade such tools and a currently unproven hypothesis for
randomization was this author’s main motivation behind the introduction of the class
AM [Bali (cf. IBM]). Some of the results of this paper were announced in [Bali.

1.3. Arthur-Merlin protocols and complexity classes. The complexity
class NP can be thought of as the class of languages L, where membership in L has a
short (polynomial length) proof or certificate that can be verified by a deterministic
polynomial time bounded verifier. AM is a natural randomized extension of NP in
which the prover is allowed to use overwhelming statistical evidence to convince the
verifier. It is defined via Arthur-Merlin protocols. An Arthur-Merlin protocol is a
randomized interactive proof scheme employing public coin flips. When executing the
protocol, two players (Arthur, the verifier, and Merlin, the prover) receive an input
string w and take turns to print strings of polynomial length. After a certain num-
ber of moves (determined by the protocol), the game terminates and a deterministic
polynomial time judge evaluates the game (declares Arthur or Merlin the winner).
Arthur’s moves are random, Merlin’s moves are optimal. It is required that Merlin’s
winning chances be bounded away from 1/2; they cannot fall between 1/2 and , say.
(This gap can be amplified to [2-1wl, 1 2-1wl] and beyond, by playing the same game
several times and declaring the winner of the majority of games to be the winner.)
The language defined by such a protocol consists of those input strings w for which
Merlin is the favored player.

The complexity class AM(t(n)) consists of those languages recognizable by Arthur-
Merlin protocols consisting of t(Iwl) moves on input w, with Arthur moving first. Of
particular interest is the class AM :-- AM(2) (a single move of Arthur followed by a
single move of Merlin). All finite levels of the AM(k) hierarchy are known to collapse
to this class: AM AM(3) AM(4) [Sal]. This result relativizes to any oracle.
(More generally, if t(n) >_ 2, then AM(2t(n)) AM(t(n)). This result, as well as more
detailed formalism and a discussion of other related results and underlying philosophy,
can be found in IBM], a companion paper to this one.)

Our aim is to put the black box group problems in as low complexity classes as we
can. Since we succeed within AM, the higher levels of the hierarchy (such as the class
AM(poly) (-Jk> AM(nk)) will not be our concern. Recently, extremely powerful
Arthur-Merlin potocols have been constructed by Lund et al. [LFKN] and Shamir
[Sh], showing that all languages in PSPACE belong to AM(poly).

There are some interesting languages known to belong to AM but not to NP.
Examples include "graph nonisomorphism" [GMW], and its generalization to permu-
tation groups, "coset disjointness" IBM]. (We generalize this result to black box groups
in this paper; see 12.)

In contrast to the fact that AM(poly) PSPACE, a strong indication of "small-
ness" of the class AM is that AM is unlikely to contain coNP. If it does, then the
polynomial time hierarchy [MS], [Stl] collapses to AM 2P H2P [BHZ]. (This fact
actually follows from the collapse AM MAM; cf. [BM, p. 260].) Since we consider a
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relativized model, it is worth pointing out that, relative to some oracle, even AM(poly)
does not include coNP [FS].

The perception that the class AM is a very natural randomized version of NP is
further enhanced by the fact that AM consists of precisely those languages that belong
to NPA for almost every oracle A (Nisan [N]). Here the term "almost every oracle"
refers to the probability space of oracles that, on each query, respond 0 or 1 with
probability 1/2 independently. The set of such oracles is the product of countably many
uniform 2-element spaces, endowed with the product measure. The result follows from
Nisan’s exciting discovery of how to drastically reduce the number of independent ran-
dom bits consumed by polynomial size, constant depth randomized Boolean circuits.
(This result puts AM in direct analogy with BPP, which has been known to consist
of precisely those languages that belong to pA for almost every oracle A [BG], [Ku].)

Seemingly more powerful randomized interactive proof systems have been intro-
duced by Goldwasser, Micali, and Rackoff [GMR], the difference being that the GMR
system employs private coin flips (hidden from the prover), and reveals to the prover
a polynomial time computable function of the random bits and of the game history
in each move. The equivalence of the two systems was established by Goldwasser
and Sipser [GS]. Some interesting protocols are easier to describe in the GMR sys-
tem [GMR], [GMW], where many protocols have been devised with the additional
property of being zero knowledge, a property that is not expected to be transferable
to Arthur-Merlin protocols [GMR, Conjecture 7.3]. The more transparent nature of
Arthur-Merlin protocols has been exploited in the study of complexity classes (see
[Bali, [AGH], IBM], [BHZ], [FS], [Sa], etc.) Curiously, the recent extremely power-
ful interactive protocols [LFKN], [Sh] also use the public coin version (Arthur-Merlin
protocols), as do the protocols in this paper (in the spirit of [Bali, where our basic
results were announced without proof).

1.4. Organization of the paper. In 2 we introduce the precise formalism of
black box groups. In 3 we review one of our key tools, the Reachability Lemma [BSz],
which establishes the existence of short straight line programs in finite groups. In 4
we state the main results of the paper and derive them from the one that asserts that
verification of the order of black box groups belongs to AMB (Theorem 4.2A). With
the exception of 8 and 12, we spend the rest of the paper on proving this latter
result.

Verification of the order is broken into two parts: lower and upper bound ver-
ification. In 5 we define the concept of Arthur-Merlin protocols for approximate
upper and lower estimation. In 6 we review a general lower-bound protocol, based
on universal hashing in the spirit of [Sip], for the number of accepting computations
for NP-languages. This technique is shown in 7 to yield the following intermediate
result: given a black box group G and an integer m, verification of the divisibility of
the order of G by m is in AMs. (B is the group oracle.) A separation result is the
subject of 8: we show that there exists an abelian group oracle B under which the
nonmembership problem does not belong to NPs (while it belongs to (AM N coNP)s
under any group oracle). We mention that the BPP counterpart of this separation
result (namely, that abelian black box group membership does not belong to BPPB)
is proven in [Ba2].

These separation results show the extent to which we have evidence that matrix
groups might be easier to handle than black box groups in general (cf. [BSz, 10]): for
abelian or, more generally, for solvable matrix groups (and conceivably for all matrix
groups) over finite fields, the nonmembership problem, as well as verification of the
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order, belong to NP.
The second half of the paper is mostly devoted to deriving an approximate upper-

bound AMB-protocol for the order of black box groups. Section 9 introduces a general
principle to estimate, from above, the number of equivalence classes, assuming the
number of classes is close to the number of elements. The elementary group theory
lemmas, throughout which this technique will be used, are stated in 10. Lemma 10.2
establishes a local expansion property of groups, which is of independent interest in its
own right. This lemma has already found other applications. In [Ba2] it is used to
analyze random walks on vertex-transitive graphs and derive a polynomial time Monte
Carlo algorithm to construct nearly uniformly distributed random elements in a black
box group. In [BCFS] the local expansion lemma serves as a basic tool to guarantee
early termination of an algorithm designed to manipulate permutation groups with
small bases in nearly linear time.

The approximate upper-bound protocol is given in 11. We conclude that section
with the proof of our central result, Theorem 4.2A, stating the verifiability of the order
of black box groups.

A list of applications is given in 12. These include verification of numerous im-
portant constructions, including homomorphisms, kernels, intersections of subcosets,
centralizers, cores, and the maximal solvable normal subgroup. We indicate in 13
how a subgroup of the automorphism group of a black box group can be treated as
a (nondeterministic) black box group, thus expanding the range of applications of all
the results stated.

Open problems are listed in 14.
2. Group oracles and black box groups. We use the following model of

oracle Turing machines. The Turing machine is endowed with a query tape and a
response tape. The machine has a query state; when it enters this state, the oracle
prints (magically, at no cost) a response string on the response tape. The response is
a (deterministic) function of the query; we identify the oracle with this function.

A group oracle B accepts queries of the form (q, x, y, prod), (q, x,inv), and (q,id),
where q, x, y are strings of equal length over a finite alphabet. The response to each
of these queries is either a string of length Iql, which we denote prodq(x, y), invq(x),
and idq, respectively, or a symbol indicating "invalid query." We omit the subscript q
when its value is clear from the context.

We denote by B(q) the set of those strings x of length Iq] for which the query
(q, x,inv) is valid. An oracle B is a group oracle if it has the following properties:

1. For each q, the set B(q) is either empty or it is a group under the operation prodq.
2. The inverse of x e B(q) is invq(X).
3. The identity element of B(q) is idq.

In particular, the query (q,id) is valid precisely if B(q) .
The oracle defines the groups B(q). Subgroups of these groups, defined by lists of

generators, will be called black box groups. Factor groups of black box groups, given
as G/N, by lists of generators for the black box group G and its normal subgroup N,
will be called black box factor groups.

Remark 2.1. The role of the "invalid query" symbol is to test membership in
B(q). This is only necessary to check if the input is correct, i.e., the generators listed
to define a black box group G <_ B(q) do indeed belong to B(q). None of the procedures
to be described will ever make an invalid query on valid input.

Remark 2.2. The definition presented here is more restrictive than the one given
in [BSz]. The difference is that we now require code words to uniquely represent group
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elements. In [BSz] the possibility that different strings encode the same element of a
group was also allowed. (The purpose was to enable handling factor groups of black
box groups as black box groups.) In the context of the present paper, we neither need,
nor are able to maintain, this greater generality. (String counting methods break down
in the case of ambiguous encoding.) On the other hand, as we see in 4, we are still
able to handle factor groups with no difficulty.

An extension in the direction of the generality of the [BSz] definition becomes
necessary when we want to apply the results of this paper to black box group actions
on black box groups. The simple modification of the definitions is given in 13.

Remark 2.3. Suppose that we are given a family of group oracles Bi. By querying
these oracles, a "direct product oracle" B can be simulated, which, for each tuple
(ql,’",qk), produces the group operations in BI(ql) x x Bk(qk). In this sense,
direct products of black box groups are black box groups themselves. We rely on this
fact in 4 and 12.

3. Membership testing. The membership problem for black box groups is the
recognition problem of the language {(q, x, G) x E G} (where G is a subgroup of
B(q), given by a list of generators).

The problem of verifying the order of black box groups is to recognize the language
{(q, G, m)’lG m} (where m is an integer and G, as before, is a subgroup of B(q)).

The isomorphism problem for black box groups is the recognition problem of the
language {(q, G1, q2, G2)’G and G2 are isomorphic}. (Again, Gi <_ B(q).)

Our concern is the complexity of these problems and their analogues for black
box factor groups. The following result plays a central role here.

THEOREM 3.1 (see [BSz]). The membership problem for black box groups relative
to the group oracle B belongs to NPsz.

This is an immediate consequence of Lemma 3.2 below.
A straight line program in a group G with respect to a set S of generators is a

sequence of group elements g,..., g such that each member of this sequence is either
a member of S, or the inverse of a preceding member, or the product of two preceding
members. A straight line program is said to construct its members from S. The length
of the program is t.

LEMMA 3.2 (Reachability Lemma, [BSz]). Given a group G of order n, a set S of
generators of G, and an element g G, there exists a straight line program of length
less than (1 + log2 n)2 constructing g from S.

To derive Theorem 3.1 from this lemma, we observe that for a black box group
G <_ B(q), the order of G is at most c[q[ (where c is the size of the alphabet). The length
of the input being greater than or equal to [ql, the Reachability Lemma guarantees
the existence of a polynomial (quadratic) length straight line program constructing
x G from the given generators of G. This program can be guessed and verified by a
nondeterministic oracle Turing machine.

It follows that for G,H <_ B(q) black box groups, the relation H _< G can be
certified (belongs to NpB). (It suffices to certify that every generator of H belongs to
G.) If, in addition, we wish to certify that H <G, it suffices to certify that g-hg G
for each generator h of H and each generator g of G (cf. [BSz, 4]).

COROLLARY 3.3. The membership problem for black box factor groups relative to
the group oracle B belongs to NPs.

Indeed, having certified N G, the membership Nx GIN is equivalent to the
membership x G.

4. The main results. Here are the answers to the fundamental problems.
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THEOREM 4.1. The membership problem .for black box factor groups relative to
the group oracle B belongs to (NP coAM)s.

THEOREM 4.2. The problem of verifying the order of black box factor groups
relative to the group oracle B belongs to (AM coAM).

The difficult part of this result, restricted to black box groups, will play a central
role in the paper and will be stated separately as Theorem 4.2A after Theorem 4.8
below.

THEOREM 4.3. The isomorphism problem .for black box factor groups relative to
the group oracle B belongs to AM.

We have results on some more advanced questions as well.
THEOREM 4.4. The verification of generators .for the Sylow subgroups of black

box factor groups belongs to (AM coAM)s.
Our last result concerns the verification of composition factors. In contrast to the

elementary nature of the rest of the paper, the proof of this one requires the list of
finite simple groups.

A group is simple if it has order greater than one and it has no nontrivial normal
subgroups. The finite simple groups have been classified; each of them is associated
with a standard name in the literature (see, e.g., [Car]). These names are character
strings often involving two numerical parameters n and q, where n is a more or less
arbitrary positive integer and q is a prime power. We adopt the convention to write
n in unary and q in binary. This rule will also be applied to cyclic and alternating
groups: the length of the name of the simple group Zp (p prime) is logp/O(1), and the
length of the name of the simple group Alt(n) (n _> 5) is n/ O(1). The standard name
of the linear group PSL(n, q) is An-l(q); the length of this name is n + log q / O(1).

The following fact is of importance. (Its validity depends on the convention just
described.)

FACT 4.5. Given the standard name X of a finite simple group L, a matrix rep-
resentation of L over the corresponding finite field can be constructed in polynomial
time.

(Here we assume that the field itself is given explicitly; i.e., if the field in question
is Fp., then an irreducible polynomial of degree m over Fp is available (p a prime).
Such a polynomial is known to be constructible in Las Vegas polynomial time.)

Remark 4.6. By a matrix representation, we mean a list of matrices that generate
a group isomorphic to L.

We note that a somewhat smaller projective matrix representation can also be
constructed in polynomial time.

A projective matrix representation is a representation in the form L - G/(Z G),
where G <_ GL(n, q) is a group of n x n matrices over the q-element field Fq, and
Z (AI" A e F } is the group of scalar matrices. (F Fq \ {0}.) While it may not
always be straightforward to find generators for ZCG, the fact that G/(ZDG) - GZ/Z
reduces the problem of representing these groups as factor groups of matrix groups to
exhibiting generators for the cyclic group F The verification of such generators is
clearly in NP coNP.

Fact 4.5 asserts, in particular, that neither the field nor the dimension of the
matrices are large, nor is the number of generators. A more detailed statement is
this: Let the standard name X of the group L consist of k characters. Then L can be
represented as a group of matrices of dimension O(k2), as well as a projective group of
matrices of dimension O(k) over a field of order less than or equal to 2k. The number
of generators required is two.
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In particular, L cannot be very large compared to its standard name:

ILl < exp(O(k3)).

The next fact shows it cannot be very small, either.
FACT 4.7. If L is a finite simple group with standard name X, then

log ILl olXl

.for some absolute constant c > O.
There is no explicit reference for the above facts; they follow by inspection from

the description and properties of the simple groups of Lie type (cf. [Car]).
A chain of subgroups G Gt _> G2 _> _> G8 1 is subnormal if each Gi

is normal in Gi-t. A composition series is a subnormal chain such that each factor
group Gi-1/Gi is simple. These factor groups are the composition factors of G. Up to
isomorphism and order, they are uniquely associated with G.

There are now several tasks to perform. First, we may wish to verify simplicity,
or, more generally, verify a composition series (each member of which is, as always,
given by a list of generators). In addition, given another list of black box factor groups,
we may wish to verify that those groups (in an appropriate order) are isomorphic to
the composition factors of G. Third, we may want to verify the standard names of
the composition factors of G. These tasks may be viewed as to include guessing the
appropriate lists of groups and group names. We prove that the lists obtained are not
too long (polynomially bounded in the length of the input), and all the tasks listed
can be performed within (AM f coAM)B.

THEOREM 4.8. Each of the following belongs to (AM coAM)B, where B is a
group oracle. The input is a black box factor group G Go/N (relative to B):

(a) The verification of a composition series of G (possibly including guessing a
composition chain),

(b) The verification of the standard names of the composition factors (possibly
including guessing these names),

(c) Given G and a list of other black box factor groups, the verification that the
other groups are (isomorphic to) the composition factors of G.

(When guessing the result is part of Merlin’s job, the content of the statements
includes that the lengths of the guesses must be polynomially bounded.)

We show that Theorems 4.1-4.8 are close relatives. Indeed, half of Theorem 4.2,
restricted to black box groups, together with Theorem 3.1, imply all the rest.

The strong part of Theorem 4.2 follows.
THEOREM 4.2A. The problem of verifying the order of black box groups relative

to the group oracle B belongs to AMs.
PROPOSITION 4.9. Theorems 4.1-4.8 follow from Theorems 4.2A and 3.1.
Proof. To verify the order of the black box factor group G Go/N, we verify the

orders of Go and N and compute IGI IGol/INI. The remaining part of Theorem 4.2
is the following: to verify that the order of G is not a given number, just guess and
verify the correct order.

Nonmembership verification (Theorem 4.1) follows instantly: g G if and only
if IGI < I(G,

The verification of isomorphism of two black box groups G and H (Theorem 4.3)
can be reduced to order verification as follows. Let g,..., g8 be the given list of
generators of G. Merlin guesses a corresponding list h,..., hs of elements of H and
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proves (by Theorem 3.1) that the hi generate H. Let K _< G H denote the subgroup
of the direct product generated by (gl,hl),..., (gs, hs). Finally, an AMB-protocol
verifies that IGI IUl IKI.

The correctness of this protocol is immediate by the following simple observation.
PROPOSITION 4.10. The correspondence gi - hi of generators of the finite groups

G and S can be extended to an isomorphism G - U if and only if IGI IUl--IKI.
Proof. The necessity is clear. For the sufficiency, let rl and r2 be the projections

of K to G and H, respectively. Each projection is onto. If IGI- IUl IKI, we infer
that each projection is an isomorphism, and therefore r- r2 is a G -. H isomorphism.

The following result, with a different proof, was pointed out to us by Luks.
COROLLARY 4.11 (Luks). Isomorphism of permutation groups belongs to NP.
Proof. Suppose that we are given a correspondence between generators of two

permutation groups. The verification that this correspondence extends to an isomor-
phism is reduced by Proposition 4.10 to determining the order of permutation groups,
a task known to belong to P [Sill, [FHL], [Kn]. [:l

We state the extension of Proposition 4.10 to black box factor groups as a separate
lemma.

LEMMA 4.12. Let Ni be a normal subgroup of the black box group Gi (i 1, 2).
The verification of the isomorphism of the factor groups G/N and G2/N2 belongs to
AMs

Proof. We proceed along the lines of the previous proof. Merlin guesses corre-
sponding sets {g} and {hi} of generators of Gi/N (i 1,2, respectively) (these
are elements of Gi that, together with Ni, generate Gi). Now N1 N2 is normal in
G G2. Let K denote the subgroup of G G2 generated by the pairs (gy,h),
together with N1 N2. Again, all that must be verified is that the groups G/N,
G2/N2, and K/(N1 N2) have equal order.

Assume now that a prime number p and a subgroup H of G are given. To verify
that H is a Sylow p-subgroup of G (Theorem 4.4), Merlin guesses and verifies the
orders of G and H and leaves it to the judge to check that IHI is the largest power of
p dividing IGI.

The proof of Theorem 4.8 (verification of a composition chain and the composition
factors) is a bit less immediate.

To verify a composition series and the composition factors of a black box group
G, we first guess a composition chain G G G2 ,... Gd 1 (unless such a chain
is part of the input), and verify that each subgroup is normal in its predecessor. Next,
we guess the name of each factor group Gi/Gi+ from among the standard names of
finite simple groups.

If {Li} are the composition factors of G, then the length of the code words for
the generators of G is greater than or equal to log IGI -i log ILi I. Consequently, we
can guess the standard name Xi of each Li and add it to the input; by Fact 4.7, this
augmentation will increase the length of the input by at most a constant factor. In
addition, using Fact 4.5, we may add matrix representations Mi of each Li at a cost
of polynomially increasing the length of the input.

Finally, by Lemma 4.12, we can verify (in AMB) that Mi is isomorphic to
Gi/Gi+. This, in particular, will prove that these factors are simple, thus proving
the AMs claims of parts (a) and (b) of Theorem 4.8. The AMs claim for part (c) of
that theorem now follows directly from Theorem 4.3.

To extend this result to a black box factor group G Go/N, we guess a compo-
sition series of Go, which passes through N, i.e., N G for some j _< d. We then
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perform the above protocols for i _< j 1.
The coAMB claims in Theorem 4.8 are now immediate. To verify that a cer-

tain strictly descending subnormal chain is not a composition series, Merlin inserts an
additional normal subgroup and checks that all inclusions are still proper (member-
ship and nonmembership verification). To see that the purported composition factors
(listed either by their standard names or as black box factor groups) are wrong, guess
and verify the right ones and compare.

Most of the remainder of the paper will be devoted to proving Theorem 4.2A. (The
exceptions are 8, where a lower bound, yielding relativized separation, is derived, and
12 and 13, where corollaries are listed.) Henceforth (with the exception of 12 and
13), we only work with black box groups as opposed to black box factor groups.

Remark 4.13. For matrix groups over finite fields, and for factor groups of sub-
groups of direct products thereof, the results stated follow without relativization.
(Queries to the group oracle are replaced by matrix operations.) For such groups,
however, stronger results may follow, using very deep tools of group theory. Indeed,
by the results of [BSz], a fairly plausible conjecture on short presentations of all finite
simple groups (cf. [BKLP]) implies that for matrix groups over finite fields, AM can
be replaced by NP in the theorems stated in this section.

Remark 4.14. For groups of integral matrices, the membership problem is already
undecidable for 4 4 matrices [Mi].

However, finiteness of groups of integral matrices can be tested in Las Vegas
polynomial time [Ba3], and all results of this paper apply to finite groups of integral
matrices.

Remark 4.15. Permutation groups form a class of finite groups for which the algo-
rithmic problems have been thoroughly investigated, and polynomial time algorithms
have been found for most of the problems listed above (membership and order: [Sill,
[Si2] (cf. [FHL], [Kn], [Je], [BCFLS]), composition series [Lu], Sylow subgroups [Ka]).
Permutation group isomorphism belongs to NP (Luks, see Corollary 4.11 above). We
list some open problems at the end of the paper.

5. Approximation protocols. As in statistical analyses, we usually must de-
cide between two hypotheses A and B, which together exhaust all possibilities but
are not necessarily mutually exclusive; i.e., they may overlap. A typical example is
the estimation of a quantity f: given two real numbers >_ , we must conclude that
either f _< c or f >_/. Our conclusion should be very likely correct. (If _< f _< a,
then either conclusion is correct.)

A typical result of this kind will have the following format: "There exists an
Arthur-Merlin protocol that Merlin is likely to win if B is false, and Merlin is likely
to lose if A is false." ("Likely" should mean with probability > ; but the certainty
can then be amplified to 1 -5 by repeated tests and majority vote on the outcomes,
where 5 decreases exponentially as a function of the number of tests.)

An Arthur-Merlin protocol is an e-approximate lower-bound protocol for the quan-
tity f(x) _> 1, if there exists c _> 1 such that Merlin is the likely winner if f(x) >_
(1 + e), and the likely loser if f(x) <_ .

If Merlin is able to win the majority of a large number of games defined by such
a protocol, this can be viewed as an overwhelming statistical evidence in favor of the
hypothesis f(x) > . On the other hand, if f(x) >_ (1 /e), then Merlin will indeed be
very likely to win the majority of the games, thereby convincing Arthur of the more
modest claim f(x) > (.

We define e-approximate upper-bound protocols analogously.



98 LSZL( BABAI

We say that approximate lower-(upper)-bound AM(t(n))-protocols exist for a class
of functions f(x) if some Arthur-Merlin protocol takes an additional input #, where #
is a tiny positive integer (tiny- written in unary), and turns into a (1/#)-approximate
lower-(upper)-bound protocol. (As before, t(n) denotes the number of moves. We
speak of AM-protocols if the number of moves is two and Arthur moves first.) The
relativized versions of these protocols allow the judge to make oracle queries.

6. Approximate lower-bound protocols. Let L be a language over the three-
letter alphabet (0, 1, #}, and let c be a fixed positive integer. We assume that every
word in L contains precisely one #. For a string x E (0, 1 }*, let fL,c(x) be the number
of those y e {0, 1}* such that Ixl <_ lYl <- Ixl c and x#y e L.

THEOREM 6.1 (Sipser). For any oracle B, any c > O, and any L NPB, approx-
imate lower-bound AMS-protocols .for the function fL,c(x) exist.

The proof of this employs Sipser’s technique [Sip] based on universal classes of
hash functions described by Carter and Wegman [CW]. The same method is the main
tool in the work of Goldwasser and Sipser [GS]. For completeness, we include a proof.

We note that, as long as c is fixed, by possibly padding the argument x, we may,
and do, assume that Ixl lYl for all (x, y) such that x#y
L} and f(x)= fL,l(X), the purported lower bound for

First, we consider the case when Merlin claims L(x) to be dense in {0, 1}n (n
Ixl); i.e., his asserted lower bound is f(x) > (2n for some fixed positive . In this case
Arthur selects m random (0, 1)-strings yi of length n, and Merlin supplies a witness
whenever one exists to prove that x#yi L. Merlin’s expected number of successes
will be mlL(x)12-n. If Merlin succeeds in at least (1 +e/2)mf(x)2-n cases, we declare
him the winner; otherwise, Arthur wins.

Let/ -IL(x)12- and /- f(x)2-n > . Merlin is doing Bernoulli trials with
probability/ of success. If f(x) >_ (1 + e)lL(x)l then/ _> (1 + e), so the probability
that the success rate is < (1 + e/2)y decreases exponentially as a function, of m and,

(Here, c(a) is a positive constant,indeed, for m > c(a)/e, the probability will be < 5"
depending on a.) This means that Merlin is likely to win in this case.

Similarly, if f(x) < IL(x)l, then < 7, so the probability that the success rate
is greater than or equal to (1 + e/2)’), decreases exponentially, and for m > c(a)/e,
Merlin is likely to lose.

This settles the dense case. The following lemma allows the general case to be
reduced to the dense case. We identify the set {0, 1}n with the n-dimensional space
over the two-element field F2. Linear maps from {0, 1}n to {0, 1}k are represented by
k x n (0, 1)-matrices.

LEMMA 6.2. Let S c_ {0, 1}. Let a > 0 and 2k >_ ISI/a. Then there exists a
k x n (0, 1)-matrix C such that IC(S)I >_ (1-()ISI, where C(S) c_ {0, 1}k is the image
of S under the linear map C.

Proof. Let us choose C randomly with uniform distribution over the 2kn matrices.
For z e (0, 1}n, if z 0 then Prob(Cz 0) 2-k. Therefore, for any two distinct
u, v e {0, 1}n, we have Prob(Cu Cv) Prob(C(u- v) 0) 2-k. Let us call
u, v S mates, if u v and Cu Cv. We conclude that for any v S, the probability
that v has a mate (in S) is _< ISI2-k <_ . Therefore the expected number of mateless
members of S is _> (1 -a)lSI, and this, clearly, is a lower bound on the expected size
of C(S). Consequently, for some C we have IC(S)I >_ (1

Now we return to the proof of Theorem 6.1. Given 0 < e < 1/2, let a e/3, and
select k such that 2k-1 < (1 + e)f(x)/ <_ 2k. Let S n(x).

The protocol runs as follows. Merlin exhibits a k x n (0, 1)-matrix C that max-
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AmAzes IC(S)I. Let i (1 + e)(1- a)- 1. Next, a (5/2)-approximate lower-bound
AM-protocol, as above, tests the claim that IC(S)I >_ f(x)" if IC(S)I >_ (1 q-5/2)f(x),
then Merlin is likely to win; if IC(S)I < f(x), then Merlin is likely to lose. (Merlin
demonstrates v E C(S) by exhibiting u E S such that v Cu.)

If ISI _> (1 + e)f(x), then S has a subset S1 with ISll [(1 + e)f(x)J. Now
2k >_ ISll/C > 2k-2, hence C(S1) is dense in {0, 1}k, and we can apply Lemma 6.2
to $1. The conclusion is that IC(S)I >_ IC(S1)I >_ (1- )1Sll > (1 + 5/2)f(x), and
Merlin is likely to win.

If ISI < f(x), then IC(S)I

_
ISI < f(x), so Merlin is likely to lose.

Remark 6.3. This proof is identical to the one described in IBM, 4], except for
a small bug there, corrected by the introduction of the set S above. The author is
indebted to the referee for pointing out the inaccuracy.

Remark 6.4. The MAM-protocol described in the proof of Theorem 6.1 can be
transformed into an AM-protocol because the collapse AM MAM [Bali applies to
approximation protocols as well.

7. Verification of divisors of the order of a group.
THEOREM 7.1. Let B be a group oracle and

D(B) {(q, G,m) G <_ B(q) and m divides

Then D(B) belongs to AMB.
Proof. Here is the protocol.
Merlin guesses and proves the prime factorization m pl...psi8. For each i,

Merlin guesses a subgroup Pi <_ G and proves that Pi is a pi-group (i.e., its order is a
power of pi). (By an elementary result [BSz, Prop. 5.20], this property is in NpB.)

Finally, Arthur and Merlin perform an AMS-protocol which Merlin is likely to
win if IPil > p; and he is likely to lose if IPil < _pa (This requires an e-approximate2-p and e 1 with the notation of 5.)lower-bound protocol, with a 2

The correctness of the protocol is clear: ifm divides IGI, Merlin can find subgroups
Pi of order p and is likely to win in the last step. If m does not divide IGI, then, for
some i, the order of any p-subgroup P of G will be _< p’- _< 1/2p, and Merlin is
likely to lose.

8. Separation of NP and AM under a group oracle. Using the simplest
case of approximate lower-bound protocols (just for dense sets, by direct sampling)
it is easy to construct an oracle to separate AM from NP. (NP-machines cannot tell
sets of size 2n- from sets of size 2n-2 among subsets of (0, 1}n, while AM-machines
can.) We extend this idea by showing that group oracles are capable of achieving this
separation. In fact, we show that NP-machines cannot even tell cyclic groups of order
p from noncyclic groups of order p2. An abelian group oracle is a group oracle B such
that all groups B(q) are abelian.

THEOREM 8.1. There exists an abelian group oracle B such that the nonmember-
ship problem for black box groups defined by B does not belong to NPB, while, under
any group oracle, it belongs to AMs N coNPs. Consequently, NPs does not contain
AMB N coNPs. In particular, NPs AMs.

Proof. An elementary abelian p-group is a product of cyclic groups of order p. The
groups to be defined by the oracle will all be of a very simple kind, for each prime p,
the group B(p) will be an elementary abelian group of order p2, i.e., B(p) Zp Zp.
Group elements will be encoded by strings of length k 2 logp]. Each B(p) will have
a subgroup G(p) given by two generators encoded Ok and 1k, neither of which is the
identity.
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Let L(B) {p G(p)is not cyclic}. In other words, p e L(B) if and only if
IG(p)l p2, if and only if 1k is not a member of the subgroup generated by Ok.

Since IG(p)l <_ p2 in any case, all we must verify is that p2 divides IG(p)l. This
puts L(B) in AMB by the result of the preceding section.

We also observe that L(B) E coNPs since the nondeterministic verification of
cyclicity is straightforward.

We construct B such that L(B) NPs. The following observation will help us
outwit NP-machines.

PROPOSITION 8.2. Let E(p) be an elementary abelian group of order p2 and let
S be a subset of E(p). I.f
E(p) -- Zp which is one-to-one on S.

Proof. The number of subgroups of order p in E(p) is p / 1, and these subgroups
are pairwise disjoint (apart from the identity). Since this number is greater than

(12si), one of these subgroups must miss all quotients ab-1, where a, b e S, a b. Let
P be such a subgroup. The natural homomorphism E(p) --, E(p)/P does the
trick.

COROLLARY 8.3. Under the assumptions of Proposition 8.2, there exists a bijec-
tive map f E(p) -- E(p) such that the subgroup generated by f(S) is cyclic and .for
any u, v, w e S, if uv w, then f(u)f(v) f(w).

Proof. Let
E(p). Let us extend the one-to-one map " S D to a bijection f" E(p) -- E(p).
Evidently, the subgroup generated by f(S) is D (cyclic of order p). Since the map f
and the homomorphism agree on S, the second claim also follows. [:]

In constructing B, we proceed by the usual diagonal technique. Let M1, M2,...
be an enumeration of the polynomial time bounded nondeterministic oracle Turing
machines, and suppose that we have already constructed a finite segment of B such
as to guarantee L(B) L(M) for j < j0. We proceed to extending the definition of
B such as to rule out j j0 in the same sense.

Set M Mjo. Let p be a prime large enough that the corresponding segment of
B is yet totally undefined. Moreover, let

>

where nc is the polynomial bound limiting the number of oracle queries that M is
allowed to make on inputs of length n.

Let E(p) be an elementary abelian group of order p2, encoded by strings of length
k 3 log p, generated by two elements encoded Ok and lk. Let us pretend for a moment
that B(p) E(p) and, consequently, B(p) G(p). If in this situation M rejects p, let
us stick to it (set B(p) E(p)), thus causing M to make the wrong decision. (If M
queries other as yet undefined segments of the oracle, we fix arbitrary answers.)

Assume now that under the assumption B(p) E(p), M accepts. Let Q1,’", Q8
be all the oracle queries made along an accepting computation path. Again, we can
ignore all queries other than those regarding B(p). The information gained from the
queries can be summarized as follows:

For certain family of less than or equal to 3s strings e, x, uj, vi, wj,

(i) e encodes the identity element of B(p);
(ii) The strings xi encode no element of B(p);
(iii) The strings uy, vi, wj encode elements of B(p);
(iv) prod(uj, vj) wj.
We may also assume that Ok and ik are among the elements u, vj.
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CLAIM 8.4. We can replace the group B(p) (E(p),prod) by another (new) group
B(p) (E(p), newprod) such as to make G(p) cyclic and still retain the validity of
all statements (i) through (iv).

Proof. Let S denote the set of elements S (e, uj, vj, wj IJ 1,... }. By inequality
(1) and Corollary 8.3, there exists a bijection f: E(p) - E(p) such that the subgroup
generated by f(S) is cyclic and prod(f(u), f(v)) f(w) for any u, v, w E S such that
prod(u, v) w. Let us now define B(p) on the same underlying set E(p) by setting

newprod(a, b) c iff prod(f(a), f(b)) f(c).

The effect is that, on one hand, the group generated by Ok and 1k is now cyclic; on
the other hand, all the product relations (iv) (and (i)) are inherited to "newprod."
Since (ii) and (iii) remain valid by definition, the claim follows.

Redefining B(p) this way will now cause M to erroneously accept p since the previ-
ous accepting path remains intact. This completes the proof of Theorem
8.1. D

9. Approximate upper bound on the number of equivalence classes. We
must make some general observations before proceeding to the upper-bound protocol
for the order of black box groups.

Assume that the language L consists of triples (x, y, z) such that y, z E (0, 1}*
have length lYl Izl r(x) for some polynomially bounded function r(x) <_ Ixl C,
and for each x, the set RL(X) ((y,z)’(x, y,z) e L} is an equivalence relation on
(0, 1}r(x). We call such an L an equivalence language. Our aim is to give an approxi-
mate upper-bound AMS-protocol to estimate the number/2L (X) of equivalence classes
of RL(X), assuming that L NPs. We only succeed if the number of equivalence
classes is very large: L(X)2-r(x) _> r(x)-c for every x and some constant c.

The fact that we do not succeed in general is not surprising since, even in the
subcase when L P and lYL(X

_
2, deciding that lYL(X < 2 can be coNP-complete

and thus a general upper bound within a factor of 2 would imply that coNP C_ AM.
This is an unlikely conclusion since it would imply the collapse of the polynomial
time hierarchy to HP2 P2 AM [BHZ] (cf. IBM, 1.9]). Approximate upper-
bound protocols within an O(211c) factor for some absolute constant c would yield
the same unlikely consequence. (This follows by a direct product argument" Given an
equivalence language L, consider the equivalence language Lm defined by R’(x)
{(yl,...,y,,zl,...,z,) (x, yi, zi) e L}. Now (x) (ilL(X))m. Hence I]L(X) < 2
if and only if n(x) < 2m. Set m--Ixlc.)

PROPOSITION 9.1. (a) For every equivalence language L P, the set {x i(x)
1} belongs to coNP.

(b) There exists an equivalence language L P such that the set {x i(x) 1}
is coNP-complete.

Proof. (a) L(X) - 1 is witnessed by a pair (y, z) such that (x, y, z) i.
(b) Define L by letting (x, y, z) L if and only if x is a CNF formula with at

least one nonempty clause and x(y) x(z), where x(y) denotes the Boolean value
obtained by substituting y (i.e., an initial segment of y) for the variables in x. Now,
I/L(X 2 if x is satisfiable; otherwise, I/L(X) 1.

THEOREM 9.2. Let B be any oracle, L NPs an equivalence language, and
c, e positive constants. Then there exists an AMS-protocol for estimating L(X) (the
number of equivalence classes) from above in the following sense: on input (x, k) such

2that k2-r(x) > r(x) -c, the protocol allows Merlin to win with probability greater than
if k >_ (1+e)L(x) but forces Merlin to lose with probability greater than if k < L(x).
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For the proof, we need the following observation.
LEMMA 9.3. Let R be an equivalence relation on the finite set A. For u E A, let

s(u) denote the size of the R-class of u. For random u (uniformly distributed over A),
the random variable a a(u) IAI/s(u) is an unbiased estimator of the number of
R-classes.

Proof. Clearly, each equivalence class contributes 1 to the sum

E(a) E 1/s(u).
uA

: Let us fix L and let =/]L (x).Proof of Theorem 9.2. We may assume that e < .
Let n r(x) and A {0, 1}n. The protocol goes as follows. For m [48e-2n2c,
Arthur picks m random members ai of A. For each < m, Merlin exhibits as many (say
si) elements of A, R(x)-equivalent to hi, as he can, but not more than d
Let a 1/m(1/s: +... + 1/Sm). Merlin wins if a < (1 e/4)k2-n.

To prove the correctness of this protocol, let us first assume that k > (1 / e).
Merlin’s optimal strategy is to make the si as large as possible. Let s(u) denote the
size of the R(x)-class of u and let # 1/m(1/s(al) +... + 1Is(am)). Then, clearly,

I {ii} i i
=max < +.si s(ai) d s(ai)

Consequently, a < (lid) + #.
By Lemma 9.3, we have E(#) t2-n. By assumption, k2-n > n-c.
Now the variance of 1/s(u) (for uniformly distributed random u E A) is less than

1 (since 0 < 1/s(u) <_ 1) and, therefore, the variance of # is < 1/m. Consequently, by
the Chebyshev inequality,

Prob(# _> ,2-" / (e/3)k2-n) Prob(#- E(#) >_ (e/3)k2-n)

Var(#) 9 1 m-- 1<
((e/3)k2 )2 < < n2c <

-n me_.2 (k2-n)2 "Now, the probability that Merlin loses is

(3) Prob( _> (1- e/4)k2-’) _< Prob(# > (1- e/4)k2-’ l/d).

In view of the inequality lid <_ (e/4)k2-n, a consequence of our choice of d and of the
condition k2-’ > n-c, the right-hand side of (3) is

< Prob(# > (1 -e/2)k2-n) Prob(# > (1 5e/6)k2 + (/3)k2-n)

< Prob(# > (1 5e/6)(1 + e)v,2-n + (e/3)k2-’) < Prob(# > v2-n + (e/3)k2-n),

which, by (2), is less than :.
Let us now assume that k < . Since a _> #, the probability that Merlin wins is

at most
Prob(# < (1- /4)k2-n) _< Prob(# < (1- e/4)E(#))

< Var(#) <
-(e/4)2E(#)2

16 1 16 1
me2 (k2-)2

< --n2c <
me2 3’



BOUNDED ROUND INTERACTIVE PROOFS IN FINITE GROUPS 103

again by the Chebyshev inequality combined with the fact that k2-n < u2-n

E(#). O

10. Two elementary lemmas on finite groups. In this section, we describe
the two elementary results in group theory on which the approximate upper-bound
protocol of the next section depends.

Let G be a group and gl, , g8 be a sequence of elements of G. The cube generated
by this sequence is the set

C(gl,...,gs) {gl...g.. ei 0, 1}.

Note that this set depends on the ordering of the gi. The sequence gl,’", g
is a sequence of cube-generators for G if G C(g,..., gs). In this case, clearly,
s _> log IGI. Somewhat surprisingly, this naive bound is very nearly tight, as the
following elementary result of Erd6s and Rnyi shows. (For a simple proof, see [BE].)

LEMMA 10.1 (see [ER]). Let G be a finite group of order m. Then G has a

sequence of s cube-generators, where s < logm + log Inm + 3.
(log and In denote base 2 and base e logarithms, respectively.)
We note that the exponent strings el...e provide a fairly economical encoding

of the elements of G; the "average redundancy" will be 2s/m < 8 Inm. The main
results of this paper critically depend on the fact that the right-hand side is bounded
by a polynomial of In m.

The following lemma establishes a local expansion property of groups. Since writ-
ing this paper, several algorithmic applications of this lemma have been found [Ba2],
[BCFS]. The lemma generalizes to vertex-transitive graphs, i.e., graphs with a transi-
tive group of automorphisms [Ba2].

LEMMA 10.2 (Local expansion of groups). Let S denote a set of generators of
the group G, and set T S U S-1 U (1}. Let D be any subset of Tt, the set of t-term
products of members of T (in any order). Let, finally, 0 < c _< 1/(2t + 1) be such that

(4) IDI <_ (1- 2at)lGI.

Then for at least one generator g E S,

(5) ID- Dgl >_ alDI.

Proof. For a contradiction, suppose that (5) fails for every g E S. The fact that
TkS generates G means that G [Jk>0

Let us observe that for each g- S, ID- Dg-l IDg- D -ID- Dg <_ alDI.
Observing, in addition, that

D Dxy C_ (D by) (D Dx)y,

it follows by induction on k that for any u Tk, we have ID- Du < kalD I.
As long as ka < 1, this implies that u D-D. Since a

_
1/(2t + 1), it follows

that T2t+l c D-D C T2t and therefore T2t T2t+l G.
Next we observe that for any u G, the number of x D such that xu D is

greater than (1-2at)lD I. This is the case because u e T2t and thus ID-Dul < 2ariD I.
Consequently, the number of pairs (x, u) such that x D and xu D is greater

than (1 2at)lGIIDI. On the other hand, the number of such pairs is precisely IOI 2.
Hence (1 2at)lGIIDI < IDI 2, contradicting assumption (4). D



104 L/SZL5 BABAI

11. The approximate upper-bound protocol.
THEOREM 11.1. Approximate upper-bound AMB-protocols .for the order of black

box groups exist.

Proof. Let 0 < e < 1. We construct an MAMS-protocol that, given a black box
group G and an integer k0, allows Merlin to win with probability greater than if
k0 >_ (1 / e)lGI, but forces him to lose with probability greater than - if k0 < IGI.

(As always, G is given by a list of generators, belonging to the group B(q) defined
by the oracle B. The reference to the identifier q and to the group B(q) will henceforth
be omitted.)

The protocol.
1. Merlin selects positive integers k and t such that k _< k0 and log k _< t <

log k / log In k / 3 and elements gl,’", gt E G (supposedly a short sequence of cube-
generators of G), along with a short proof (via the Reachability Lemma) that gl,..., gt

generate the group G (in the traditional sense). We note that k _< 2 < 8k In k.
Let C denote the cube generated by the gi. The following three steps are per-

formed concurrently.
2. Arthur and Merlin perform an AMS-protocol that Merlin is likely to win if

ICI >_ k/2 and is likely to lose if ICI < k/4.
3. Arthur and Merlin perform an AMS-protocol that Merlin is likely to win if

ICI _< (1 e/2)k and is likely to lose if ICI > (1 e/4)k.
4. Arthur and Merlin perform an AMS-protocol that Merlin is likely to win if for

each i- 1,...,t,
C Cg,

and Merlin is likely to lose if ICI >_ k/4, and for some i, 1 _< i _< t,

Merlin is the winner if he wins each step.
(By the phrase "likely to win," we mean a chance greater than 0.9, say.)
Before discussing the implementation of steps 2-4, we show that the protocol does

yield the desired approximate upper-bound verification.
CLAIM. The above MAMS-protocol accomplishes the objective stated in the first

paragraph of the proof.
Proof. Assume first that k0 _> (1 + e)lG I. Let (1 + )IGI _< k _< min(k0, 21GI}. In

this case, Merlin can correctly select cube-generators for G in step 1, yielding a cube
C such that k/2 _< ICl- IGI _< k/(1 + e) < (1 -e/2)k. Merlin is thus likely to win
steps 2 and 3. Since now C Cgi G for each i, Merlin is likely to win step 4 as
well.

Assume now that k0 < IGI and therefore k < IGI. In step 1, Merlin selects some
cube C c_ G. Assume Merlin is not "likely to lose" any one of steps 2-4; i.e., he has
greater than or equal to 0.1 chance in each case. It follows that k/4 _< ICI < (1- e/4)k
and IV- Cg < (e/St)lC for each i= 1,..., t. This last condition allows us to apply
Lemma 10.2 with S (gl,’", gt}, D C, and e/(8t). We conclude that

IG <_ ICI/(1- 2at) _< ICI/(1- e/4) < k < IGI,

a contradiction. This completes the proof of the claim. [:]

Now we turn to the implementation of steps 2-4.
Step 2 requires an approximate lower-bound protocol as discussed in 6.
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Let A {0,1}t. The map 7 A G defined by (u) gl...g, (u
(ul,...ut)) determines the equivalence relation ker on A (u and v are equivalent
if 7(u) 7(v)). The number of equivalence classes is IV[.

To complete step 3, we invoke Theorem 9.2. The language L will consist of the
triples (x, u, v), where (u) (v). (The input string x specifies the instance of the
black box group and the elements gl,...,gt. Therefore Ix > t r(x) -[ul- Iv[.)
Now [C[ lgL(X). If t is chosen as required in step 1, then k2-t > 1/(8 lnk)> 1/(6t).
The density condition of Theorem 9.2 is therefore met with any c > 1. (Observe
that we have made full use of the fact that the error term in Lemma 10.1 is of order
O(log log [G[).) We can thus apply Theorem 9.2 with our e/4 playing the role of e and
(1 -e/4)k in the role of k.

To implement step 4, Arthur selects a large number of random strings u E {0, 1}t
and requires Merlin to exhibit, for each i, some v v(u, i) e {0, 1} such that (u)
(v)gi. Merlin wins if he is able to exhibit such v(u, i) for every u generated by Arthur.
"Large" means about 1000t2/e.

If C Cgi for each i, Merlin is a sure winner. We must prove that Merlin is
likely to lose if for some i,

Iv- _> ( /8t)lCI,
This i8 le88 straightforward than it may seem since the elements 7(u) are not uniformly
distributed in C. Let e/8t. The probability that Merlin fails for a random u; i.e.,
7(u) C- Cg, i8 at least

Ic- Cg 12-  1cI2- c lC[/(6tk c/(24t)--e/(192te).

(The necessity to use the inequality [C[ _> k/4 along the way explains the role of step
2.) It follows that 1000t2/e random strings u suffice to make it likely for Merlin to fail
at least once.

Proof of the main results. The main results are stated in 4. As we have shown
there, we only need to prove Theorem 4.2A, which asserts that the order of a black
box group can be verified. To verify that the order of the black box group G is m
we require two AMS-protocols: one that verifies that m divides [G[ (Theorem 7.1),
and another that makes Merlin likely to win if [G[ _< m and likely to lose if [G[ _> 2m
(Theorem 11.1).

12. Corollaries. In this section we show a number of basic constructions of
group theory to be verifiable in AMB, where B is the group oracle.

First, we recall from [BSz] that the verification of the normal closure of a subgroup
of a black box factor group is in NPs. It follows that the verification of the commutator
chain, as well as the descending central series, and hence the verification of solvability
and nilpotence are in (NPf3coNP)s. We should mention that much stronger results in
this direction are now available; the normal closure of a subgroup in a black box group
can be computed in Monte Carlo polynomial time, and, consequently, solvability and
nilpotence can be disproved in Monte Carlo polynomial time [BCFLS]; so these two
properties belong to the complexity class coRs.

COROLLARY 12.1. The following questions regarding black box factor groups can
be reduced in polynomial time to verification of the orders of black box groups:
(i) homomorphisms,
(ii) kernels,

The verification of
(iii) minimal normal subgroups can be reduced to the verification of orders by a non-

deterministic polynomial time reduction.
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Therefore, these problems belong to the class (AM N coAM)B, and they belong to
(NP N coNP)B, assuming the conjecture that order verification belongs to NPs.

Proof. (i) Let G and H be black box factor groups, and let be a mapping of the
set S of generators of G into H. Following the idea of the proof of Proposition 4.10,
we observe that extends to a homomorphism precisely if IGI- I((g, (g))’g e S>I.

(ii) To verify the kernel of observe that Ker() N if and only if takes the
generators of N to the identity, and INI IGI/lIm()l.

(iii) Let M be a normal subgroup of G. If it is not minimal, show a smaller normal
subgroup. To verify that it is minimal, represent M as T1 x x Tk, where the Ti are
isomorphic simple groups. (Simplicity and isomorphism are reduced to "order"" guess
the standard name of the simple group, establish isomorphism via (i) above; cf. the
discussion in 4.) Now we distinguish two cases according to whether T1 is abelian. If
T1 is nonabelian, we establish that G acts transitively on the set {T1,..., Tk}. If T1
is abelian, then M is a vector space that we can construct explicitly, along with the
action of G on it. What we must show now is that this action is irreducible. This can
actually be done in polynomial time, according to a result of Rbnyai [Ro2].

The rest of this section will explicitly exploit the approximate lower-bound pro-
tocol, so the results to be stated will not be placed in NP (or coNP, respectively),
even assuming that "order" belongs to NP. A particularly important case in point
is coset disjointness, a problem not known to belong to NP even in the permuta-
tion group setting (where it generalizes GRAPH-NONISOMORPHISM). We put this
problem in AMB next. We remark that GRAPH-NONISOMORPHISM was put in
AM by Goldreich, Micali, and Wigderson [GMW]; their result was generalized to coset
disjointness in permutation groups in [BM]. Below, we do not use the [GMW] protocol.

COROLLARY 12.2. Verification of the following objects associated with a black
box factor group G is in (AM N coAM)B, where B is the group oracle:
(a) The intersection of two subgroups H, K <_ G.
(b) The order of a double coset HsK, H, K <_ G, s E G.
(c) Disjointness of double cosets HsK and HtK.
(d) Disjointness of subcosets Hs and Kt.
(e) The core of a subgroup H, i.e., the largest normal subgroup of G contained in H.

Proof. (a) Having guessed the subgroup D H K and verified D _< H K, we
only need to verify an approximate upper bound on the order of H K. The identity

IH ca KI IHKI [HI. IK[

reduces this to the verification of an approximate lower bound on the size of the set
HK, which can be accomplished using the hashing technique (Theorem 6.1). We note
that as a by-product, the exact order of the double coset HK has also been verified.
This settles (b) in view of the identity

[HsK[ I8-Hs. K[.

(c) It is known that the double cosets HsK and HtK either coincide or they
are disjoint. If they coincide, all we need to verify is that t HsK, which can be
done in NPs. If they are disjoint, we either verify that IHsgl IHtgl, or else an
approximate lower-bound verification for the union of these two double cosets reveals
that it is substantially larger than HsK, say.

(d) If the two subcosets Hs and Kt intersect, this can be verified in NPB by
exhibiting a common element. To verify disjointness, let D {(g, g) g G} be the
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diagonal subgroup of G G. Then the subcosets Hs and Kt are disjoint if and only if
the following double cosets in G G are disjoint: (U K). D and (U K). (s, t). D.

(e) The core of H is the intersection of all conjugates of H. Suppose that we
want to verify that the subgroup C is the core of H. First, we verify that C _< H and
C < G. Hence C is contained in the core. Next, we observe that every intersection
of subgroups is an intersection of <_ n subgroups (since n is an upper bound on the
length of any subgroup chain). Therefore it suffices to represent C as the intersection
of <_ n conjugates of H.

COROLLARY 12.3. Verification of the following objects associated with a black
box factor group G is in (AM N coAM)B, where B is the group oracle:
(f) The centralizer of an element.
(g) The centralizer of a subgroup.
(h) The center.
(i) Conjugacy of two elements.
(j) The maximal solvable normal subgroup of G.
(k) The nonabelian part of the socle of G (i.e., the product of all nonabelian minimal
normal subgroups).

Proof. (f) Let CG(x) be the centralizer of x E G, and let xG denote the set of
conjugates of x in G. Then ICG(x)llxl--IG[. Hence, to verify L CG(x) for some
L _< G, we check (in polynomial time) that L <_ CG(x), and we get an approximate
upper bound on ICG(x)l by obtaining an approximate lower bound on IxGI, using the
hashing technique.

(g) The centralizer of H is the intersection of the centralizers of its generators.
(h) A special case of (g).
(i) The proof is similar to item (c) in the previous corollary. Let x, y E G. Then

x and yG either coincide or they are disjoint. By item (f) we know [xGI and [YGI
and proceed to verifying their disjointness as for (c).

(j) and (k). Let M be the largest solvable normal subgroup of G and suppose
that we want to verify L M for some L <_ G. First, we verify that L is solvable
and normal. Next we exhibit the socle S of G/L and verify that it is the product
of nonabelian minimal normal subgroups of G/L, using item (iii) of Corollary 12.1.
This will simultaneously guarantee that L M and S is indeed the socle of G/M, as
claimed.

13. Automorphism groups: nondeterministic black box groups. In our
nondeterministic setting, it would have been more natural to follow [BSz] in defining
the black box as a device that does not itself perform the group operations, just
serves to verify the results if some witness has been provided. For instance, instead
of performing multiplication, it would accept or reject quadruples (x, y, z, w), where

Ixl lYl Izl n and Iwl nc. If x, y, z encode valid group elements, then the
quadruple (x, y, z, w) is accepted for some w if and only if x.y z. (So, w is a witness
of the fact that x.y z. No witness exists if z is not the product.) Similarly, the
verification of the inverse, and even the verification of the identity element requires a
witness. (We have omitted the group identifier q.)

All the NPs and AMB results stated remain valid under this "nondeterministic
black bo’ condition: the prover will always guess the product and provide a witness
to support the guess.

Another difference in the [BSz] model is that there, several strings are allowed to
encode the same group element.
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We must exercise care when adopting this model. For our statistical considera-
tions to remain valid, we need to postulate the encoding to be uniform in the sense
that each group element is encoded by the same number of strings, and this number
has to come certified with the group box.

Let the term "uniformly encoded nondeterministic black box groups" or "UNB
groups" refer to the two circumstances in its name, as defined above.

All the AMB and NPs results of this paper extend to UNB groups.
This model would have enabled us to treat factor groups without mentioning

them: the Reachability Lemma ensures that factors groups of UNB groups are them-
selves UNB groups. (To make this step, nondeterminism is necessary, even for the
verification of the identity element, and uniformity of the encoding will automatically
hold: the coset Ng will be encoded by any of its elements.)

The range of applicability of our result is significantly extended by the following
observation.

PROPOSITION 13.1. If G is a UNB group and H is a subgroup of Aut(G), then
H is a UNB group.

Proof. We must construct the group box for H. Elements of Aut(G) will be
represented by their action on a given set S of generators of G. So if each element
of G is represented by k strings, then each element of Aut(G) is represented by klSI
strings. The Reachability Lemma ensures that given an action on G in this way, the
image of any group element can be verified. Therefore compositions and inverses can
also be verified. D

We note that we are unable to verify generators for the full group of automor-
phisms. Proposition 13.1 makes claims about subgroups of Aut(G), given by gener-
ators. For instance, the center of such a subgroup, or the kernel of the action of a
group on another group, can be verified by AM-protocols.

14. Discussion and open problems. We have seen that the order of a black
box factor group can be verified by an AM-protocol, and this central result implies
that a series of other objects associated with black box groups can also be similarly
verified.

Perhaps the most important omission on our list of consequences is normalizers.
PROBLEM 14.1. Does there exist an AM-protocol to verify the normalizer of a

subgroup in a matrix group over a finite field?.
A positive answer would lead to another series of corollaries, including verification

of the fitting subgroup.
AM-verification of maximal subgroups and full automorphism groups seem to be

open even for permutation groups.
PROBLEM 14.2. Do there exist AM-protocols to verify (a) maximality of a sub-

group of a permutation group, or of a matrix group over a finite field; (b) the full
automorphism group of a permutation group, or of a matrix group over a finite field?

We have shown that isomorphism of black box factor groups belongs to AM. We
can show that this problem belongs to coAM as well [BKL].

We should mention that some of the problems considered here have polynomial
time solutions for permutation groups and their factor groups [KL]. Notable examples
are composition series [Lu], Sylow subgroups [Ka], [KL], kernels of actions, and cores

[KL]. Notable exceptions are centralizers and intersections.
In contrast, the list of polynomial time (Monte Carlo) algorithms for matrix

groups over finite fields is very short.
An interesting example is R6nyai’s polynomial time algorithm to determine the
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centralizer of a matrix group within SL(d, q) [Ro3]. That result was motivated by the
problem of verifying centralizers, proposed in an earlier version of this paper.

Another example is a Monte Carlo test by Neumann and Praeger [NP] to decide
whether a given set of matrices generates SL(d, q).

The Neumann-Prager algorithm works under the heuristic assumption that uni-
formly distributed random elements of the group generated are available. In the
polynomial time paradigm, such an assumption is justified in [Ba2] in great general-
ity: a polynomial time Monte Carlo algorithm is given to construct nearly uniformly
distributed random elements in any black box group.

Another sequence of algorithmic results encompassing all black box groups is
given in [BCFLS]. In that paper, a Monte Carlo algorithm is given, which reduces
in polynomial time the number of generators of a black box group to O(n) genera-
tors. This allows repeated application of polynomial time methods of construction
of certain subgroups without the danger of an exponential blowup of the number of
generators (due to our inability to perform membership tests). Another polynomial
time Monte Carlo algorithm from [BCFLS] constructs normal closures. Consequently,
the commutator chain and the descending central series can be constructed in Monte
Carlo polynomial time. This puts solvability and nilpotence of black box groups into
coR. The results extend to black box factor groups G/N, except in some cases such as
the solvability test and nilpotence tests, where membership test in N is also required.

Luks has recently announced deterministic polynomial time algorithms to test
solvability and nilpotence of matrix groups over finite fields.

A problem of great significance is to extend these algorithmic results to include
a wider class of matrix group problems.

Finally, we state a natural extension of the basic problems we have considered.
PROBLEM 14.3. Does membership/nonmembership in matrix groups over finite

fields have bounded round zero knowledge proof protocols [GMR]?
Acknowledgments. The author is grateful to Gene Luks, Mike Sipser, Lajos

Rbnyai, and Avi Wigderson for insightful comments, and to an anonymous referee for
pointing out some inaccuracies.
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DISJOINT PATHS IN A PLANAR GRAPH--A GENERAL THEOREM*
GUOLI DINGt, A. SCHRIJVER$, AND P. D. SEYMOUR

Abstract. Let D (V, A) be a directed planar graph, let (rl, Sl),..., (rk, 8k) be pairs of vertices
on the boundary of the unbounded face, let A1,..-, Ak be subsets of A, and let H be a collection of
unordered pairs from { 1,..., k}. Given are necessary and sufficient conditions for the existence of a
directed ri- si path Pi in (V, Ai) (for 1,..., k), such that Pi and Pj are vertex-disjoint whenever
(i,j} e H.

Key words, disjoint paths, trees, planar graph
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1. Introduction. Let D (V, A) be a directed graph, let (rl, sl),..., (rk, sk)
be pairs of vertices of D, let A,..., Ak be subsets of A, and let H be a collection
of unordered pairs from (1,... ,k}. We are interested in the conditions under which
there exist directed paths P,..., Pk so that

(1)
(i) Pi is a directed ri- si path in (V, Ai) (i- 1,..., k);

(ii) Pi and Pj are vertex-disjoint for each {i, j} E H.

In 3 we will discuss some special cases of this problem.
Since the problem is NP-complete, we may not expect a nice set of necessary and

sufficient conditions characterizing the existence of paths satisfying (1). The problem
is NP-complete even if we restrict the problem to instances with k 2, A A2 A,
and H {{1, 2}}. Moreover, it is NP-complete when restricted to A1 Ak
A, H is the collection of all pairs from {1,..., k}, and D arises from an undirected
planar graph by replacing each edge by two opposite arcs.

In this paper we give necessary and sufficient conditions for the problem when

D is planar and the vertices r,sl,... ,rk,Sk all belong to the
boundary of one fixed face I.

The characterization extends the one given by Robertson and Seymour [1]. In fact,
if (2) holds, there is an easy, greedy-type algorithm for finding the path Pi, as we
discuss below.

Let D be embedded in the plane ]t(2. We identify D with its image in the plane.
Without loss of generality, we may assume I to be the unbounded face. (Each face is
considered as an open region.) Moreover, we may assume that the boundary bd(I) of
I is a simple closed curve. This is no restriction, since we can extend D by new arcs
as long as we do not include them in any Ai and as long as we keep r, 81,..., rk, 8k
on bd(I).

We say that two pairs (r, s) and (r, s) of vertices on bd(I) cross if each r- s
curve in 2 \ I intersects each r- s curve in II2 \ I. Clearly, the following is a
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necessary condition for the existence of paths satisfying (1):

(3) cross-freeness condition: if {i,j} e H then (ri, si) and (rj,sj) do
not cross.

Now the following algorithm finds paths as in (1) if (2) holds. First, check if the
cross-freeness condition is satisfied. If not, our problem has no solution. If the cross-
freeness condition is satisfied, choose a pair (ri, si) so that the shortest )f the two
ri- si paths along bd(I) is as short as possible (over all 1,..., k). Without loss
of generality, k. Let Q be this shortest rk sk path along bd(I). If (V, Ak) does
not contain any rk sk path, then there are no paths satisfying (1). If (V, Ak) does
contain an rk sk path, let P be the (unique) directed rk s} path in (V, Ak) that
is nearest to Q. Next, repeat the algorithm for D, (rl, sl),..., (rk-, sk-), removing
from any Ai with {i, k} E H all those arcs incident with some vertex in Pk. After at
most k iterations we either find paths as required, or we find that no such paths exist.

The correctness of the algorithm follows from the following observation. Suppose
that there exist paths Q,..., Qk as required. Then, if k is as above, we may assume
without loss of generality that Qk is equal to Pk. Indeed, Q,..., Qk-1, Pk also form
a solution, since if Pk intersects some Qi, then also Qk intersects

We describe a second necessary condition. Let C be some curve in I2, starting
in I and ending in some face F. Let f(C) and l(C) denote the first and last point of
intersection of C with D. Let 1,.’., in be indices from {1,..., k} such that

(4)
(i) f(C), ril sil rin sin are all distinct;

(ii) The rij si part of bd(I) containing f(C) is contained
in the r6+ -si+ part of bd(I) containing f(C), for
j 1,...,n- 1;

(iii) {ij, i+1} E H for j 1,..., n 1.

For each j 1,..., n we define a set Wj as follows. If f(C), ri, si occur clockwise
around bd(I), Wj is the set of points p on D traversed by C such that some arc in

Ai is entering C at p from the left and some arc in Ai is leaving C at p from the
right. Similarly, if f(C), ri, si occur counterclockwise around bd(I), Wj is the set of
points p on D traversed by C such that some arc in Ai is entering C at p from the
right, and some arc in Ai is leaving C at p from the left.

We say that C fits i,..., in if there exist distinct points Pl," , Pn so that pj Wj
for j 1,..., n and so that C traverses p,’’’,pn in this order. Now we have the
following condition:

cut condition: each curve C starting and ending in I fits each
choice of i,"’,in satisfying (4), whenever (f(C),l(C))crosses
each (r6, s6) (j 1,..., n).

2. The theorem. We now prove the following theorem.
THEOREM. Let D (V, A) be a directed planar graph, embedded in the plane I2,

let (rl, Sl..),..., (rk, sk) be pairs of vertices olD on bd(I), with ri si fori 1,... ,n,
let A,... ,Ak be subsets of A, and let H be a set of unordered pairs from {1,... ,k}.

Then there exist paths P1,..., Pk satisfying (1) if and only if the cross-freeness
condition (3) and the cut condition (5) hold.
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Proof. Necessity of the conditions is trivial. To see sufficiency, we assume without
loss of generality that the arcs on bd(I) do not belong to any Ai. (We can add new
arcs to D (but not to any Ai), without violating the cross-freeness and cut conditions.)

Choose an arbitrary point P0 on bd(I), not being a vertex of D. For each i
1,..., k, let Q be that of the two r s parts of bd(I) that does not contain p0. For
each 1,..., k, let ’ be the set of faces F I of D for which there exists a curve
C starting in I and ending in F, such that f(C) E Qi, and such that C does not fit
some choice of il,..., in satisfying (4) with in i.

Note that, since no arc on bd(I) belongs to A, each arc in Q is on the boundary
of [.J 9. Let B be the set of arcs on the boundary of [.J but not in Qi. We show
that

(6) B is contained in A and contains a directed r s path.

Assume without loss of generality that ri,po, s occur in this order clockwise
around bd(/). Let a be an arc on the boundary of J’ and not in Q. We show that
a belongs to A and that a is oriented clockwise with respect to [.J.

Let a separate faces F E and F $’i. By definition of 9v, there exists a curve
C starting in I and ending in F, such that f(C) Q and such that C does not fit
some choice il,..., in satisfying (4) with in i. Now extend C to F by crossing a,
obtaining a curve C.

If C does not fit il,’", in, then F I (as F ). Then, however, C violates
the cut condition.

So C does fit i,..., in. Since C itself does not fit i,..., in, this implies that a

belongs to A and that a is oriented clockwise with respect to [.J 9. This proves (6).
Choose for each i 1,..., k a directed ri s path P in B. We finally show that

if {i, j} H, then P and Pj are vertex-disjoint. Assume without loss of generality
that 1, j 2, and let {1, 2} H. Suppose some vertex v is traversed both by P
and P2. Hence v is incident with some face F1 in 9 and with some face F2 in 9v2. It
follows that there exists a curve C from I to F1 such that f(C) Q and such that
C does not fit indices i,-.., in satisfying (4) with in 1.

By the cross-freeness condition, we know that parts Q1 and Q2 of bd(I) are either
contained in each other or are disjoint.

First, assume that they are contained in each other, say Q1 c_ Q2. Then each face
F I incident with v is contained in $’2. To see this, we can extend curve C via v
to F, yielding curve C. As C does not fit il,..., in 1, it follows that C does not
fit il,... ,in 1, in+l 2. So F E 92. As this holds for each face F I incident
with v, no arc incident with v belongs to B2, and hence P2 does not traverse v.

Next, assume that Q1 and Q2 are disjoint. (So po is in between Q1 and Q2.) Since
F2 belongs to $2, there exists a curve C from I to F2 not fitting indices i,.. ,
satisfying (4) (adapted to C’,il ",’’’, n’), such that f(C’) e Q2 and such that n" 2.

Connect the curves C and C by a F -F2 curve via v, yielding a curve C’ from I
to I. Then C does not fit il, in,n," i1, aS we can easily check. This violates
the cut condition.

The theorem can be seen to give a "good characterization."

3. Special cases. In this section we describe some special cases of the problem
and the theorem.

First, let G (V, E) be an undirected planar graph, embedded in 2. Let
{r, s},..., {rk, Sk } be pairs of vertices of G, each on the boundary of the unbounded
face I of G. Robertson and Seymour [1] proved that there exist pairwise vertex-disjoint
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paths P1,’", Pk in G where P connects r and s for 1,..., k, if and only if no
two of the pairs {r, s} cross and each vertex cut of G contains at least as many
vertices as it separates pairs from {rl, Sl},..., {rk, sk}.

This follows trivially from our theorem by replacing each arc by two opposite
arcs, and taking for H the collection of all pairs from {1,..., k}.

The second special case generalizes the first. Let G (V, E) be an undirected
planar graph, embedded in 2. Let R1,..., R be pairwise disjoint sets of vertices of
G, all on the boundary of the unbounded face I of G.

We say that two sets R and R’ of vertices on the boundary of I cross if some pair
of vertices in R crosses some pair of vertices in R’. We say that a cut separates a set
R of vertices if the cut separates {r, s} for some r, s in R.

Robertson and Seymour [1] proved more generally that there exist pairwise vertex-
disjoint trees T1,..., T in G such that T covers R (i 1,..., t) if and only if no
two of the R cross, and each vertex cut of G contains at least as many vertices as it
separates sets from R1,..., R.

This follows from the theorem by replacing each edge of G by two opposite edges,
by taking as pairs (r,s),’",(rk, sk) all pairs (r,s) for which there exists an i e
{1,... ,t} such that r,s e R, and by taking for H all pairs {j,j’} from {1,... ,k} for
which rj, sj, rj,, and s, do not all belong to the same set among R1,..., R. (We
take each Aj to be equal to the full arc set.)

As a third special case, consider a planar directed graph D (V, A) and a col-
lection of ordered pairs (rl,Sl),..., (rk, Sk) on the boundary of the unbounded face
I (with r - s for 1,..., k). Then the theorem implies that there exists a di-
rected r s path P for 1,..., k so that P1,’", Pk are pairwise vertex-disjoint
if and only if no two of the (r, s) cross, and for each cut C not intersecting any of
rl, Sl, rk, Sk, the following cut condition holds:

(7) If C separates (r,1, s,1),.-., (r,, s,), in this order, then C con-
tains vertices pl,’", p,, in this order so that for each j 1,..., n:

if rij is at the left-hand side of C, then at least one arc of
D is entering C at p from the left and at least one arc of
D is leaving C at pj from the right;

if ri is at the right-hand side of C, then at least one arc of
D is entering C at py from the right and at least one arc
of D is leaving C at py from the left.

This follows by taking for H the set of all pairs from {1,..., k} and taking each Ai
equal to A.

More generally, let D (V, A) be a planar directed graph, let R1,..., Rt be sets of
vertices on the boundary of the unbounded face I of D, and let, for each i 1,..., k,
ri be some vertex from Ri. The theorem gives necessary and sufficient conditions
for the existence of pairwise vertex-disjoint rooted trees T1,..., Tk in D, where T
has root ri and covers Ri (i 1,..., k). Again this follows straightforwardly with
reductions like the above.

Finally, let D (V, A) be a planar directed graph and let R,..., Rk be sets of
vertices on the boundary of the unbounded face I of G. Again, it is straightforward to
derive necessary and sufficient conditions for the existence of pairwise vertex-disjoint
strongly connected subgraphs D1,..., Dk such that Di covers Ri (for i 1,..., k).
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ON WELL-PARTIAL-ORDER THEORY AND ITS APPLICATION TO
COMBINATORIAL PROBLEMS OF VLSI DESIGN*
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Abstract. The existence of decision algorithms with low-degree polynomial running times for a
number of well-studied graph layout, placement, and routing problems is nonconstructively proved.
Some were not previously known to be in at all; others were only known to be in :P by way of
brute force or dynamic programming formulations with unboundedly high-degree polynomial running
times. The methods applied include the recent Robertson-Seymour theorems on the well-partial-
ordering of graphs under both the minor and immersion orders. The complexity of search versions
of these problems is also briefly addressed.

Key words, nonconstructive proofs, polynomial-time complexity, well-partially-ordered sets
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1. Introduction. Practical problems are often characterized by fixed-parameter
instances. In the VLSI domain, for example, the parameter may represent the number
of tracks permitted on a chip, the number of processing elements to be employed, the
number of channels required to connect circuit elements, or the load on communica-
tions links. In fixing the value of such parameters, we help focus on the physically
realizable nature of the system rather than on the purely abstract aspects of the
model.

In this paper, we employ and extend Robertson-Seymour poset techniques to
prove low-degree polynomial-time decision complexity for a variety of fixed-parameter
layout, placement, and routing problems, dramatically lowering known time-complexity
upper bounds. Our main results are summarized in Table 1, where n denotes the num-
ber of vertices in an input graph and k denotes the appropriate fixed parameter. (At
the referee’s urging, we also list relevant, previously published results from [5], [8], as
noted in the rightmost column of the table.)

In the next section, we survey the necessary background from graph theory and
graph algorithms that makes these advances possible. Sections 3-5 describe our results
on several representative types of decision problems, illustrating a range of techniques
based on well-partially-ordered sets. In 6, we discuss how self-reducibility can be used
to bound the complexity of search versions of these problems. A few open problems
and related issues are briefly addressed in the final section.

2. Background. Except where explicitly noted otherwise, all graphs that we
consider are finite and undirected. A graph H is less than or equal to a graph G in
the minor order, written H _m G, if and only if a graph isomorphic to H can be
obtained from G by a Series of these two operations: taking a subgraph and contracting
an edge. For example, the construction depicted in Fig. 1 shows that W4 --m Q3.
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TABLE
Main results.

General
problem area Problem

Best previous
upper bound Our result

circuit layout

Linear

arrangement

Circuit design

and utilization

Embedding

and routing

GATE MATRIX LAYOUT

MIN CUT LINEAR ARRANGEMENT

MODIFIED MIN CUT

TOPOLOGICAL BANDWIDTH*

VERTEX SEPARATION

CROSSING NUMBER*

MAX LEAF SPANNING TREE

SEARCH NUMBER

2-D GRID LOAD FACTOR

BINARY TREE LOAD FACTOR

DISK DIMENSION

EMULATION

open

o(-)

O(nk)

O(n)

O(nk2+2k+4)

open

O(n2k+1)

O(n2k2+4k+S)

open

open

open

open

O(n2) [5]

O(n2)

o() [81

O(n)

O(n) [8]

O(n)

O(n2)

O(n)

O(n) []

O(n3) [8]

Input restricted to graphs of maximum degree three.

G=Q3 H=W4

contract

FIG. 1. Construction demonstrating that W4 is a minor of Qa.
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G=K +2K H=C4
lift

FIG. 2. Construction demonstrating that Ca is immersed in K1 + 2K2.

Note that the relation <_m defines a partial ordering on graphs. A family F of
graphs is said to be closed under the minor ordering if the facts that G is in F and
that H _<m G together imply that H must be in F. The obstruction set for a family
F of graphs is the set of graphs in the complement of F that are minimal in the minor
ordering. Therefore, if F is closed under the minor ordering, it has the following
characterization: G is in F if and only if there is no H in the obstruction set for F
such that H _m G.

THEOREM 2.1 (see [25]). Graphs are well-partially-ordered by <_m.
THEOREM 2.2 (see [24]). For every fixed graph H, the problem that takes as input

a graph G and determines whether H <_m G is solvable in polynomial time.
Theorems 2.1 and 2.2 guarantee the existence of a polynomial-time decision algo-

rithm for any minor-closed family of graphs, but do not provide any details of what
that algorithm might be. Moreover, no proof of Theorem 2.1 can be entirely con-
structive. For example, there can be no systematic method of computing the finite
obstruction set for an arbitrary minor-closed family F from the description of a Turing
machine that precisely accepts the graphs in F [9].

An interesting feature of Theorems 2.1 and 2.2 is the low degree of the poly-
nomials bounding the decision algorithms’ running times (although the constants of
proportionality are enormous). Letting n denote the number of vertices in G, the time
required to recognize F is O(n3). If F excludes a planar graph, then F has bounded
tree-width [22] and the time complexity decreases to O(n2).

A graph H is less than or equal to a graph G in the immersion order, written
H _<i G, if and only if a graph isomorphic to H can be obtained from G by a series
of these two operations: taking a subgraph and lifting2 a pair of adjacent edges. For
example, the construction depicted in Fig. 2 shows that Ca _<i K1 / 2K2 (although
C4 m gl + 2K2).

The relation <i, like <m, defines a partial ordering on graphs with the associated
notions of closure and obstruction sets.

THEOREM 2.3 (see [21]). Graphs are well-partially-ordered by <.

A partially-ordered set (X, <) is well-partially-ordered if (1) any subset of X has finitely many
minimal elements and (2) X contains no infinite descending chain xl > x2 > x3 > of distinct
elements.

2 A pair of adjacent edges uv and vw, with u v w, is lifted by deleting the edges uv and vw
and adding the edge uw.
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The proof of the following result is original, although it has been independently
observed by others as well [20].

THEOREM 2.4. For every fixed graph H, the problem that takes as input a graph
G and determines whether H <_i G is solvable in polynomial time.

Proof. Letting k denote the number of edges in H, we replace G (V, E with
G’ IV’, E’}, where IV’ klV + IEI and IE’I 2klE I. Each vertex in Y is replaced
in G with k vertices. Each edge e in E is replaced in G with a vertex and 2k edges
connecting this vertex to all of the vertices that replace e’s endpoints. We can now
apply the disjoint-connecting paths algorithm of [24], since it follows that H _<i G
if and only if there exists an injection from the vertices of H to the vertices of G
such that each vertex of H is mapped to some vertex in G that replaces a distinct
vertex from G, and such that G contains a set of k vertex-disjoint paths, each one
connecting the images of the endpoints of a distinct edge in H. [

Theorems 2.3 and 2.4, like Theorems 2.1 and 2.2, only guarantee the existence of
a polynomial-time decision algorithm for any immersion-closed family F of graphs.
The method we use in proving Theorem 2.4 yields an obvious time bound of O(nh+6),
where h denotes the order of the largest graph in F’s obstruction set. (There are
O(nh) different injections to consider; the disjoint-paths algorithm takes cubic time
on G, a graph of order at most n2.) Thanks to the next theorem of Mader, however,
we find that the bound immediately reduces to O(nh+3) because the problem graphs
of interest permit only a linear number of distinct edges.

THEOREM 2.5 (see [14]). For any graph H there exists a constant CH such that
every simple graph G (V, E with IEI > cHIY satisfies G >_ H.

We show in 4 that by exploiting excluded-minor knowledge on immersion-closed
families the time complexity for determining membership can, in many cases, be
reduced to O(n2).

3. Exploiting the minor order. Given a graph G of order n, a linear layout of
G is a bijection g from V to {1, 2,..., n}. For such a layout g, the vertex separation at
location i, s(i), is I{u" u E V, g(u) _< i, and there is some v E Y such that uv E and
t(v) > i}l. The vertex separation of the entire layout is s max{s(i) 1 _< i <_ n},
and the vertex separation of G is vs(G) min{s" g is a linear layout of G}.

Given both G and a positive integer k, the Af:P-complete VERTEX SEPARA-
TION problem [13] asks whether vs(G) is less than or equal to k. It has previously
been claimed that VERTEX SEPARATION can be decided in O(nk2+2k+4) time [4],
and is thus in P for any fixed value of k. We now prove that the problem can be
solved in time bounded by a polynomial in n, the degree of which does not depend
on k.

THEOREM 3.1. For any fixed k, VERTEX SEPARATION can be decided in
O(n2) time.

Proof. Let k denote any fixed positive integer. We show that the family F of
"yes" instances is closed under the minor ordering. To do this, we must prove that if
vs(G) <_ k then vs(H) <_ k for every H _<m G. Without loss of generality, we assume
that H is obtained from G by exactly one of these three actions: deleting an edge,
deleting an isolated vertex, or contracting an edge.

If H is obtained from G by deleting an edge, then vs(H) <_ vs(G) <_ k because
the vertex separation of any layout of G either remains the same or decreases by 1
with the removal of an edge. If H is obtained from G by deleting an isolated vertex,
then, also clearly, vs(H) <_ k.

Suppose that H is obtained from G by contracting the edge uv. Let g denote a
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layout of G whose vertex separation does not exceed k and assume that l(u) < g(v).
We contract uv to u in the layout/’ of H as follows: we set g(x) g(x) if g(x) < g(v)
and set g(x) g(x)- 1 if g(x) > g(v). Let us consider the effect of this action
on the vertex separation at each location of the layout. Clearly, st,(i) st(i) for
1 <_ < g(u). If there exists a vertex w with g(w) > g(u) and either uw E E
or vw E, then st, ((u)) _< st((u)). Otherwise, st, ((u)) _< st((u)) 1. Similar
arguments establish that st,(i) < st(i) for the ranges l(u) < < g(v) and (v) < i < n.
Therefore, the vertex separation of/’ does not exceed k and vs(H) < k.

We conclude that, in any case, H is in F, and hence F is minor-closed. It remains
only to note that there are trees with arbitrarily large vertex separation (such an
excluded planar graph ensures bounded tree-width, and thus a time complexity of

Given a graph G and a positive integer k, the N’P-complete SEARCH NUMBER
problem [19] asks whether k searchers are sufficient to ensure the capture of a fugi-
tive who is free to move with arbitrary speed about the edges of G, with complete
knowledge of the location of the searchers. More precisely, we say that every edge of
G is initially contaminated. An edge e uv becomes clear either when a searcher is
moved from u to v (v to u) while another searcher remains at u (v), or when all edges
incident on u (v) except e are clear and a searcher at u (v) is moved to v (u). (A clear
edge e becomes recontaminated if the movement of a searcher produces a path with-
out searchers between a contaminated edge and e.) The goal is to determine if there
exists a sequence of search steps that results in all edges being clear simultaneously,
where each such step is one of the following three operations: (1) place a searcher on
a vertex, (2) move a searcher along an edge, or (3) remove a searcher from a vertex.
It has been reported that SEARCH NUMBER is decidable in O(n2k+ak+s) time [4].
As has been independently noted by Papadimitriou [18], however, minor-closure can
be applied to reduce this bound.

THEOREM 3.2. For any fixed k, SEARCH NUMBER can be decided in O(n2)
time.

Proof. The proof is straightforward by showing that, for fixed k, the family of
"yes" instances is closed under the minor ordering and by observing that there are
excluded trees.

Consider next the AfT)-complete MAX LEAF SPANNING TREE problem [11].
Given a connected graph G and a positive integer k, this problem asks whether G
possesses a spanning tree in which k or more vertices have degree one. This problem
can be solved by brute force in O(n2k+1) time. (There are () ways to select k leaves
and O(n) possible adjacencies to consider at each leaf. For each of these O(n2k)
candidate solutions, the connectivity of the remainder of G can be determined in
linear time because there can be at most a linear number of edges.) Although this
means that MAX LEAF SPANNING TREE is in P for any fixed k, we seek to exploit
minor-closure so as to ensure a low-degree polynomial running time.

THEOREM 3.3. For any fixed k, MAX LEAF SPANNING TREE can be decided
in O(n2) time.

Proof. Let k denote any fixed positive integer. Consider the proper subset of the
"no" instances, the family F of graphs, none of whose connected components has a

spanning tree with k or more leaves. F is clearly closed under the minor ordering, from
which the theorem follows because we need only test an input graph for connectedness
and nonmembership in F.
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4. Exploiting the immersion order. An embedding of an arbitrary graph G
into a fixed constraint graph C is an injection f: V(G) V(C) together with an

assignment, to each edge uv of G, of a path from f(u) to f(v) in C. The minimum
load factor of G relative to C is the minimum, over all embeddings of G in C, of the
maximum number of paths in the embedding that share a common edge in C.

For example, for the case in which C is the infinite-length one-dimensional grid,
the minimum load factor of G with respect to C is called the cutwidth of G. In the
Alia-complete MIN CUT LINEAR ARRANGEMENT problem [11], we are given a
graph G and an integer k, and are asked whether the cutwidth of G is no more than
k. Related A/P-complete problems address the cutwidth of G relative to C when C
is the infinite-length, fixed-width two-dimensional grid (2-D GRID LOAD FACTOR)
or when C is the infinite-height binary tree (BINARY TREE LOAD FACTOR).

THEOREM 4.1. For any fixed k and any fixed C, the family of graphs for which
the minimum load factor relative to C is less than or equal to k is closed under the
immersion ordering.

Proof. Let an embedding f of G in C with load factor no more than k be given.
Suppose that H <_ G. If H C_ G, then the embedding that restricts f to H clearly
has load factor no more than k. If H is obtained from G by lifting the edges uv and
vw incident at vertex v, then an embedding for H can be defined by assigning to the
resulting edge uw the composition of the paths from u to v and from v to w in C.
This cannot increase the load factor.

COROLLARY 4.2. For any fixed k, MIN CUT LINEAR ARRANGEMENT, 2-D
GRID LOAD FACTOR, and BINARY TREE LOAD FACTOR can be decided in
polynomial time.

This result has previously been reported for MIN CUT LINEAR ARRANGE-
MENT, using an algorithm with time complexity O(nk-l) [16]. We now prove that
it is sometimes possible to employ excluded-minor knowledge on immersion-closed
families to guarantee quadratic-time decision complexity.

THEOREM 4.3. For any fixed k, MIN CUT LINEAR ARRANGEMENT, 2-D
GRID LOAD FACTOR, and BINARY TREE LOAD FACTOR can be decided in
O(n2) time.

Proof. For MIN CUT LINEAR ARRANGEMENT, it is known that there are
binary trees with cutwidth exceeding k for any fixed k [2]. Let T denote such a tree.
Because T has maximum degree three, it follows that G --m T implies G _>i T. Thus
no G _m T can be a "yes" instance (recall that the "yes" family is immersion closed)
and we know from [22] that all "yes" instances have bounded tree-width. (Tree-
width and the associated metric branch-width are defined and related to each other
in [23].) Now we need only search for a satisfactory tree-decomposition, using the
O(n2) method of [24]. Testing for obstruction containment in the immersion order
can be done in linear time on graphs of bounded tree-width in this setting [24], given
such a tree-decomposition.

Sufficiently large binary trees are excluded for 2-D GRID LOAD FACTOR as
well (recall that both k and the grid-width are fixed).

For BINARY TREE LOAD FACTOR, it is a simple exercise to see that all "yes"
instances have bounded tree-width by building a tree-decomposition with width at
most 3k from a binary tree embedding with load factor at most k. (The decomposition
tree T can be taken to be the finite subtree of C that spans the image of G. For vertex
u E V(T), the associated set of vertices of G contains the inverse image of u if one
exists, and every vertex v V(G) with an incident edge that is assigned a path in C
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that includes u.) D

5. Other methods. The application of Theorems 2.1-2.4 directly ensures poly-
nomial-time decidability. A less direct approach relies on the well-known notion of
polynomial-time transformation, as we now illustrate with an example. The Af:P-
complete MODIFIED MIN CUT problem was first introduced in [13]. Given a linear
layout of a simple graph G, the modified cutwidth at location i, c(i), is I{e e
uv E E such that g(u) < i and g(v) > i}l. The modified cutwidth of the entire layout
is c max{ct(i) 1 _< i _< n}, and the modified cutwidth of G is mc(G) min{c" t
is a linear layout of G}. Given both G and a positive integer k, the MODIFIED MIN
CUT problem asks whether mc(G) is less than or equal to k. Observe that, while the
MIN CUT LINEAR ARRANGEMENT problem addresses the number of edges that
cross any cut between adjacent vertices in a linear layout, the MODIFIED MIN CUT
problem addresses the number of edges that cross (and do not end at) any cut on a
vertex in the layout.

When k is fixed, neither the family of "yes" instances nor the family of "no"
instances for MODIFIED MIN CUT is closed under either of the available orders.
Nevertheless, we can employ a useful consequence of well-partially-ordered sets.

CONSEQUENCE (see [8]). If (S, <_) is a well-partially-ordered set that supports
polynomial-time order tests .for every fixed element of S, and if there is a polynomial-
time computable map t: D S such that .for F c D, (a) t(F) C_ S is closed under
<_ and (b) t(F) N t(D F) , then there is a polynomial-time decision algorithm to
determine .for input z in D whether z is in F.

To use this result on fixed-k MODIFIED MIN CUT, observe that if any vertex
of a simple graph G has degree greater than 2k + 2, then G is automatically a "no"
instance. Given a simple graph G with maximum degree less than or equal to 2k / 2,
we first augment G with loops as follows: if a vertex v has degree d < 2k / 2, then it
receives (2k + 2) -d new loops. Letting G’ denote this augmented version of G, we
now replace G’ with the Boolean matrix M, in which each row of M corresponds to
an edge of G’ and each column of M corresponds to a vertex of G’. That is, M has

IE’I rows and n columns, with Mij 1 if and only if edge i is incident on vertex j. M
and k’ 3k + 2 are now viewed as input to the GATE MATRIX LAYOUT problem
[3], in which we are asked whether the columns of M can be permuted so that, if in
each row we change to every 0 lying between the row’s leftmost and rightmost 1,
then no column contains more than k ls and ,s. Thus a permutation of the columns
of M corresponds to a linear layout of G. For such a permutation, each in column
i, 1 < < n, represents a distinct edge crossing a cut at vertex in the corresponding
layout of G.

THEOREM 5.1. For any fixed k, MODIFIED MIN CUT can be decided in O(n2)
time.

Proof. We apply the consequence, using the set of all graphs for S, _<m for <_, the
set of simple graphs of maximum degree 2k / 2 for D, the family of "yes" instances
in D for F, and the composition of the map just defined from graphs to matrices
with the map of [5] from matrices to graphs for t. Testing for membership in D and
computing t are easily accomplished in O(n2) time. That t(F) is closed ,lnder <_m
and excludes a planar graph for any fixed k is established in [5]. Finally, condition (b)
holds because, for any G in D, t(G) is a "yes" instance for GATE MATRIX LAYOUT
with parameter 3k / 2 if and only if G is a "yes" instance for MODIFIED MIN CUT
with parameter k. [:]
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6. Search problems. Given a decision problem liD and its search version Hs,
any method that pinpoints a solution to Hs by repeated calls to an algorithm that
answers HD is termed a self-reduction. This simple notion has been formalized with
various refinements in the literature, but the goal remains the same: to use the exis-
tence of a decision algorithm to prove the existence of a search algorithm. Note the
crucial importance of self-reducibility in the current context, given that Theorems
2.1-2.4 only yield decision algorithms, not search procedures.

It sometimes suffices to fatten up a graph by adding edges to isolate a solution.
For example, this strategy can be employed to construct solutions to (fixed-k) GATE
MATRIX LAYOUT, when any exist, in O(n4) time [1]. It follows from the proof of
Theorem 5.1 that the same can be said for MODIFIED MIN CUT as well. We leave
it to the reader to verify that such a scheme works for the search version of (fixed-k)
VERTEX SEPARATION, by attempting to add each edge in V x V- E in arbitrary
order, retaining in turn only those whose addition maintains a "yes" instance, and at
the end reading off a satisfactory layout (from right to left) by successively removing a
vertex of smallest degree. This self-reduction automatically solves the search version
of SEARCH NUMBER, also (see the discussion of "2-expansions" in [4]).

Conversely, it is sometimes possible to trim down a graph by deleting edges so
as to isolate a solution. It is easy to see that this simple strategy yields an O(n4)
time algorithm for the search version of (fixed-k) MAX LEAF SPANNING TREE, by
attempting to delete each edge in E in arbitrary order, retaining in turn only those
whose deletion does not maintain a "yes" instance.

Another technique involves the use of graph gadgets. A simple gadget, consisting
of two new vertices with k edges between them, is useful in constructing a solution to
(fixed-k) MIN CUT LINEAR ARRANGEMENT, when any exist, in O(n4) time [1].
A similar use of gadgets enables efficient self-reductions for load factor problems. (On
BINARY TREE LOAD FACTOR, for example, we can begin by using two k-edge
gadgets uv and wx to locate a vertex y of the input graph that can be mapped to a
leaf of the constraint tree by identifying u, w, and y.)

Indeed, polynomial-time self-reductions exist for all of the problems that we study
in this paper. In addition to the straightforward methods just mentioned, faster but
more elaborate techniques are described in [6], [9].

7. Concluding remarks. The range of problems amenable to an approach
based on well-partially-ordered sets is remarkable. Although the problems that we
have addressed in this paper are all fixed-parameter versions of problems that are
AlP-hard in general, we remind the reader that by fixing parameters we do not auto-
matically trivialize problems, and thereby obtain polynomial-time decidability (con-
sider, for example, GRAPH k-COLORABILITY [11]). Moreover, the techniques that
we have employed can be used to guarantee membership in P for problems that have
no associated (fixed)parameter [8].

Table 1 suffers from one notable omission, namely, BANDWIDTH [11]. The
only success reported to date has concerned restricted instances of TOPOLOGICAL
BANDWIDTH. Both BANDWIDTH and the related EDGE BANDWIDTH problem
[7] have resisted this general line of attack so far. Clearly, BANDWIDTH is at least
superficially similar to other layout permutation problems we have addressed, and
fixed-k BANDWIDTH, like the others, is solvable in (high-degree) polynomial-time
with dynamic programming [12]. Perhaps BANDWIDTH, however, is really different;
it is one of the very few problems that remain A/P-complete when restricted to trees
[10]o
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The results that we have derived here immediately extend to hypergraph prob-
lem variants as long as hypergraph instances can be efficiently reduced to graph
instances. For example, such reductions are known for HYPERGRAPH VERTEX
SEPARATION and HYPERGRAPH MODIFIED MIN CUT [17], [27].

Finally, we observe that even partial-orders that fail to be well-partial-orders
(on the set of all graphs) may be useful. For example, although it is well known
that graphs are not well-partially-ordered under the topological order, it has been
shown [15] that, for every fixed h, all graphs without h vertex-disjoint cycles are well-
partially-ordered under topological containment. Also, polynomial-time order tests
exist [24]. Problems such as (fixed-k) TOPOLOGICAL BANDWIDTH, therefore,
are decidable in polynomial time as long as the input is restricted to graphs with no
more than h disjoint cycles (for fixed h). Similarly, we might employ the result [26]
that graphs without a path of length h, for h fixed, are well-partially-ordered under
subgraph containment.
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REFERENCES

[1] D. J. BROWN, M. R. FELLOWS, AND M. A. LANGSTON, Polynomial-time self-reducibility:
Theoretical motivations and practical results, Internat. J. Comput. Math., 31 (1989),
pp. 1-9.

[2] M.-J. CHUNG, F. MAKEDON, I. H. SUDBOROUGH, AND J. S. TURNER, Polynomial time

algorithms for the rain cut problem on degree restricted trees, SIAM J. Comput., 14
(1985), pp. 158-177.

[3] N. DEO, M. S. KRISHNAMOORTHY, AND M. A. LANGSTON, Exact and approximate solutions

for the gate matrix layout problem, IEEE Trans. Computer-Aided Design, 6 (1987),
pp. 79-84.

[4] J. A. ELLIS, I. n. SUDBOROUGH, AND J. S. TURNER, Graph separation and search number,
in Proc. 21st Allerton Conf. on Communication, Control and Computing, Urbana,
Illinois, 1983, pp. 224-233.

[5] M. R. FELLOWS AND M. A. LANGSTON, Nonconstructive advances in polynomial-time
complexity, Inform. Process. Lett., 26 (1987), pp. 157-162.

[6] , Fast self-reduction algorithms for combinatorial problems of VLSI design, in Proc.
3rd Aegean Workshop on Computing, Corfu, Greece, 1988, pp. 278-287.

[7] ., Layout permutation problems and well-partially-ordered sets, in Proc. 5th MIT
Conf. on Advanced Research in VLSI, Cambridge, Massachusetts, 1988, pp. 315-327.

[8] , Nonconstructive tools for proving polynomial-time decidability, J. Assoc. Comput.
Mach., 35 (1988), pp. 727-739.

[9] , On search, decision and the efficiency of polynomial-time algorithms, in Proc.
21st ACM Symp. on Theory of Computing, Seattle, Washington, 1989, pp. 501-512.

[10] M. R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND D. E. KNUTH, Complexity results for
bandwidth minimization, SIAM J. Appl. Math., 34 (1978), pp. 477-495.

[11] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory
of JkfP-Completeness, Freeman, San Francisco, CA, 1979.

[12] E. M. GURARI AND I. n. SUDBOROUGH, Improved dynamic programming algorithms for
bandwidth minimization and the min cut linear arrangement problem, J. Algorithms,
5 (1984), pp. 531-546.

[13] T. LENGAUER, Black-white pebbles and graph separation, Acta Inform., 16 (1981), pp. 465-
475.

[14] W. MADER, Hinreichende Bedingungen fiir die Existenz yon Teilgraphen, die zu einem

vollstlindigen Graphen homSomorph sind, Math. Nachr., 53 (1972), pp. 145-150.
[15] Wohlquasigeordnete Klassen endlicher Graphen, J. Combin. Theory Ser. B, 12

(1972), pp. 105-122.



126 M. It. FELLOWS AND M. A. LANGSTON

[16] F. S. MAKEDON AND I. H. SUDBOROUGH, On minimizing width in linear layouts, Lecture
Notes in Comput. Sci., 154 (1983), pp. 478-490.

[17] Z. MILLER AND I. H. SUDBOROUGH, Polynomial algorithms for recognizing small cutwidth
in hypergraphs, in Proc. 2nd Aegean Workshop on Computing, Loutraki, Greece,
1986, pp. 252-260.

[18] C. H. PAPADIMITaIOU private communication, 1988.
[19] T. D. PARSONS, Pursuit-evasion in a graph, in Theory and Application of Graphs, Y. Alavi

and D. R. Lick, eds., Springer-Verlag, Berlin, New York, 1976, pp. 426-441.
[20] N. ROBERTSON, private communication, 1987.
[21] N. ROBEITSON AND P. D. SEYMOUR, Graph minors IV. Tree-width and well-quasi-

ordering, J. Combin. Theory Ser. B, 48 (1990), pp. 227-254.
[22] , Graph minors V. Excluding a planar graph, J. Combin. Theory Set. B, 41 (1986),

pp. 92-114.
[23] , Graph minors X. Obstructions to tree-decomposition, J. Combin. Theory Ser. B,

52 (1991), pp. 153-190.
[24] , Graph minors XIII. The disjoint paths problem, to appear.
[25] , Graph minors XVI. Wagner’s conjecture, to appear.
[26] P. D. SEYMOUR, private communication, 1989.
[27] I. H. SUDBOROUGH, private communication, 1988.



SIAM J. DISCRETE MATH.
Vol. 5, No. 1, pp. 127-143, February 1992

1992 Society for Industrial and Applied Mathematics
011

ON TENSOR POWERS OF INTEGER pROGRAMS*
ROBIN PEMANTLEt, JAMES PROPP$, AND DANIEL ULLMAN

Abstract. A natural product on integer programming problems with nonnegative coefficients is
defined. Hypergraph covering problems are a special case of such integer programs, and the product
defined is a generalization of the usual hypergraph product. The main theorem of this paper gives a
sufficient condition under which the solution to the nth power of an integer program is asymptotically
as good as the solution to the same nth power when the variables are not necessarily integral but
may be arbitrary nonnegative real numbers.

Key words, integer program, linear program, hypergraph, covering
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1. Definitions and notations. The minimization problems that we consider
here are of the form "Minimize the quantity

ClXl -- C2X2 -- -" CdXd
subject to the constraints

allXl + a12x2 +’" + aldXd

_
bl

a21xl + a22x2 +"" + a2dXd

_
b2

amlxl + am2x2 +"" + amdXd

_
bm,

where aij, bi, and cj are fixed nonnegative real numbers, and x are unknown nonneg-
ative integers." Label the constraints C(1),..., C(m). We would lose no generality
by throwing out those variables x for which c 0 (together with every constraint

C(i) for which ay > 0) and those constraints for which b 0, thus making all b and
cj positive. For the time being, however, we do not require positivity.

We may write our integer program more compactly as "Minimize cTx subject to
Ax >_ b with x >_ 0 and integral," where A is a nonnegative m-by-d matrix, b is a
nonnegative column vector of length m, c is a nonnegative column vector of length d,
and x ranges over the set of nonnegative integer column vectors of length d. Assume
further that b > 0 implies the existence of a j for which aij > 0. We denote this
integer program by the triple P (A, b, c). Our positivity assumptions on A, b, and
c imply that feasible solution vectors x exist; the minimum possible value of cTx as
x ranges over all solution vectors is called the value of P, denoted v(P).

Associated with the integer program P is its LP-relaxation, obtained by dropping
the requirement that the entries in the solution vector be integers. We let v*(P) (the
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LP-relaxed value of P) signify the optimum of this relaxed linear program. Note that
v*(P) is a real number between 0 and v(P).

Also associated with the minimization program P is the program P+/-, "Maximize
bTy subject to ATy <_ c, with y _> 0 and integral." The program P+/- is called the
dual of P. The well-known duality theorem asserts that the optimum values of the
respective LP-relaxations of P and P+/- are equal; that is, if we extend our definitions of
v and v* to cover maximization programs in the natural way, we have v* (P+/-) v* (P).
However, it is by no means true that v(P+/-) v(P); for, in general, we have

0

_
v(P+/-) <_ v* (P+/-) v* (P) <_ v(P),

so that if b and c have integer entries, but v* (P) is not an integer, there is no chance
of the integers v(P+/-) and v(P) being equal.

Given two minimization programs P and P, there is natural way to define two
other programs called their sum and tensor product. (For wholly analogous construc-
tions in information theory, see pp. 65-66 of [7]. See also [1], where the analogous
sum of two network flow problems is seen to correspond to parallel-composition of the
two networks.) Suppose P- (A, b, c), P’- (A’, b’, c’), where A is m-by-d and A’ is
m’-by-d’. We define A @ A’ as the (m + m’)-by-(d + d’) matrix

b @ b as the vector of length m + m obtained by concatenating the vectors b and b,
and cd as a similar concatenation; we then define the sum P@P of the programs P
and P to be the program (A@ A,b@b,c@d). To define multiplication of programs,
it is notationally convenient to allow indices for vectors and matrices to be not just
natural numbers, but also pairs of natural numbers; then, the tensor product of A
and A’ may be defined as the matrix whose ((i,j), (k,/))th entry is aikal. (If, as is
often done, we re-index the product so that the indices are natural numbers, then the
matrix A (R) A may be depicted as

A A’al 1A al 2A al n
a21 a22 a2 hA’

Aam 1A am 2 am nA

however, this representation is not necessary for our purposes.) We define b (R) b as
the column vector of length mm whose (i, j)th entry is bib, and c(R) d as the column
vector of length nn’ whose (k,/)th entry is ckc. We conclude by defining the product
P (R) P of the programs P and P to be the program (A (R) A, b (R) b, c (R) d).

We leave it to the reader to verify that and (R) satisfy the natural commutativ-
ity, associativity, and distributivity properties; moreover, we can define the "empty
program" (no variables, no constraints) and the "identity program" (with A as the
1-by-1 identity matrix, and b and c as vectors whose lone entry is 1) to serve as iden-
tity elements for @ and (R), respectively. We further remark that, defining @ and (R)

for maximization programs in the obvious way, we have (P @ P)+/- P+/- P+/- and
(P (R) P)+/- P+/- (R) P+/-. Finally, we point out that if P is a minimization program
in which some of the entries of the b-vector or c-vector equal 0, there is a canonical
program P obtained by throwing out the corresponding variables and constraints;
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moreover, the mapping P - P’ preserves v(.) and v*(.) and commutes with the op-
erations @ and (R). Hence, in the following we may without loss of generality assume
that bi and cj are positive for all i, j and that v(P) > O.

An easy fact from the next section is that v*(P (R) P’) v*(P)v*(P’); however, an
example there will show that it is not true in general that v(P (R) P’) v(P)v(P’), and
that we must content ourselves with the weaker statement v(P (R) P’) <_ v(P)v(P’).
If we define p(R)n as p (R) p (R)... (R) p with n occurrences of P, then this inequality
implies that v(P(R)+) <_ v(P(R))v(P(R)) for all i, j; by Fekete’s lemma [2], we conclude
that as n gets large, the quantity

/v(P(R)n)

approaches its infimum, which we call the asymptotic optimum value of P. The
following theorem gives conditions on P that force the asymptotic optimum value to
equal the value of the LP-relaxation of P.

THEOREM 1. Let P (A, b, c) be an integer minimization program in which bi
and cj are strictly positive .for all and j. Suppose there exists an optimum solution-
vector (a(1), (2),..., (d)) .for the LP-relaxation of P such that

aij )
a’j(j)/v* (P)

(11 1-I. \ b < 1 lot all i.
3

Then /v(P(R)’) --. v*(P) as n -- oc.

(In condition (1), we are to take 0 1, as usual. If we multiply the exponent
V*(P), the resulting inequality is equivalent to (1) and looks simpler, but the form
we have given will be more useful.)

It has already been mentioned (see the first paragraph of 1) that once we have
assumed that our program P satisfies aiy, bi, c _> 0 for all i, j, we may as well assume
that bi > 0 for all i and cj > 0 for all j. An explanation of the role played by
condition (1) will be given later. For now, let us mention the following result.

THEOREM 2. Suppose P (A, b, c) is an integer minimization program in which
0 <_ a <_ b and c > 0 for all i and j. Then //v(P(R)’) -- v*(P) as n -- oc.

This is a special case of Theorem 1. The hypothesis of Theorem 2 gives us
ay/b _< 1 for all i, j, so that condition (1) is automatically satisfied by any optimum
solution-vector a.

Theorem 2 is strictly weaker than Theorem 1, because condition (1) is strictly
weaker than aij _< bi. For example, the set of (x, y) in the positive quadrant for which
the matrix },
which strictl

x) satisfies (1) when b c (1, 1)T is the region ((x,y): xXyy <_ 1
includes the unit square. It can be shown that the condition xXyy <_1

is sharp for programs of this kind; that is, /v(P(R)n) --, v*(P) if and only if xy <_ 1.
It would be interesting to know if condition (1) is sharp in general.

Section 2 of this paper outlines the relationship between integer programming and
hypergraph theory and gives the basic results on tensor powers of integer programs.
Section 3 contains a probabilistic proof of Theorem 1. Section 4 contains a constructive
(in fact, greedy) proof of Theorem 2.

2. Background and preliminary results. First, we briefly recapitulate the
discussion of hypergraphs and integer programs contained in [3]. A hypergraph 7-l
(V, E) is a finite vertex set V together with a collection E C 2y of nonempty subsets
of V, called (hyper)edges. A cover of 7-/is a set of vertices C that intersects every



130 R. PEMANTLE, J. PROPP, AND D. ULLMAN

edge of T/; that is, for all e e E, C e # . The covering number T(7-l) is the smallest
cardinality of a cover of 7-/. Suppose has d vertices and rn edges; then the incidence
matrix of 7-/ is the m-by-d matrix A with (i,j)th entry equal to 1 if the ith edge
contains the jth vertex, and equal to 0 otherwise. Furthermore, if we let b and c be
vectors of length m and d, respectively, consisting entirely of l’s, and associate with
each cover C of 7-/a d-vector x whose jth entry is 1 or 0, according to whether or not
C contains the jth vertex of /, then T(?-/) is seen to equal the value of the integer
minimization program (A, b, c). This integer programming viewpoint naturally leads
us to consider the relaxed version of the program in which the integrality constraint
has been dropped; the value of the relaxed program is called the fractional covering
number T* (7-/) of 7-/.

The definitions that appear in 1 all correspond to notions that have already been
used in the theory of hypergraphs; for example, if Pi is the program that corresponds
to the problem of determining T(?-/i) (i 1,2), then P1 (R) P2 corresponds to the
problem of determining T(I X 7-/2), where 7-/1 2 is the hypergraph defined as
follows (with denoting Cartesian product on the right):

E(?-/1 7-/2)= {el "el e E(?/1),e2 e E(?-/2)}.

In [8], McEliece and Posner proved (in different notation) a special case of Theorem
1, namely,

lira /r(ln) r*()
n--+oo

This amounts to our Theorem 1 in the special case that the matrix A consists entirely
of O’s and l’s, and the vectors b and c consist entirely of l’s. This analogy suggests
the following definition.

DEFINITION 3. A program P is a fuzzy hypergraph covering (FHC) program if
all bi and cj are equal to 1 and 0 < ai,j < 1 for all i, j. (The terminology arises by
analogy with fuzzy sets.)

This paper extends McEliece and Posner’s result to a more general class, including
FHC programs.

Remark. It is not immediately clear that the condition cj 1 for all j is inessen-
tial, but an argument for this is given to finish the proof of Theorem 1 after it has
been proved in the case where cj 1 for all j. Note, however, that the normalization
of b to a vector of ones breaks the symmetry between P and P+/- and may thus change
whether v(P) v(P+/-). Finally, the condition 0 _< a <_ 1 may not be entirely relaxed
without invalidating the theorem (see the second-to-last paragraph of this section).

Example. A typical FHC program is the following: "Minimize Xl / x2 subject to

1
(2) Xl + x2 _> 1,

1
(3) XI -[-X2

__
1,

with xl, X2

_
0." This program P is associated with the matrix
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Clearly, v(P) 2, with optimal solution vectors x (1, 1) and (0,2). To determine
v* (P), note that t4he3 feasibility of x (, ) implies that v* (P) < 7

g, while the
feasibility of y (g, g) for the dual program p_L implies that v*(P) v*(Pg.-L> 7

The tensor square of this program, p(R)2, has coefficient matrix

1
A(R)2 5

1 1 1 1/23 6

9 3 3

and we readily see that x (0, 1, 1, 1) is a solution vector, so that v(P(R)2) _< 3. This
illustrates that v(P(R)2) may be strictly less than v(P)2. Here v(p(R)2) 1/2 - and,

7in fact, by Theorem 1, v(P(R)’) 1/n .
The following proposition does not make use of the FHC property, but the fuzzy

hypergraph point of view may still be helpful to the reader in interpreting the state-
ments and their proofs.

PROPOSITION 4. The following hold:
(i) v* (P E) P’) v* (P) + v* (P’);
(ii) v(P @ P’) v(P) + v(P’);
(iii) v*(P (R) P’) v*(P)v*(P’);
(iv) v(P (R) P’) <_ v(P)v(P’).
Proof. To prove (i) and (ii) note that if x and x’ are solution vectors for P and

P, then their concatenation is a solution vector for P P; and, conversely, every
solution vector for P @ P is such a concatenation. To prove (iii), suppose x and x
are optimal solution vectors to the respective linear programs P and P. Then since

(A (R) A’)(x (R) x’) (Ax) (R) (A’x’) >_ b (R) b’

(note the use of nonnegativity), x (R) x is a feasible vector for the product program
P (R) P with

(R) x’)
v* (P)v* (P’),

so that v*(P (R) P’) <_ v*(P)v*(P’). On the other hand, suppose that y and y’ are
optimal solution vectors to the dual programs p_L and P +/-; then y (R) y is a feasible
vector for the program P+/- (R) P +/- (P (R) P)+/- with

(R) (R) u’)
v* (P)v* (P’),

so that v*(P (R) P’) >_ v*(P)v*(P’). (Note that we have applied the duality theorem
three times: to P, to P’, and to P(R)P’.) We conclude that v*(P(R)P’) v*(P)v*(P’).
The proof of (iv) is the same as the first half of the proof of (iii) (but we no longer
have a duality principle to provide us with the reverse inequality). Fl

The preceding proposition gives us an upper bound on v(P (R) P). The following
less obvious result (an extension of the first inequality in Fiiredi’s formula [3, (5.14)])
gives us a lower bound.

PROPOSITION 5. It holds that v(P (R) P’) >_ max{v* (P)v(P’), v(P)v* (P’)}.
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Proof. Put P (A, b, c), P’ (A’, b’, c’). By symmetry, it is enough to show that

v*(P) <_ v(P(R)P’)

when v(P’) > 0. Given an optimal solution vector z to P (R) P’, indexed by pairs (k, 1),
where 1 <_ k _< d and 1 <_ _< , define

1
xk v(P’) cz(k,L)

We show that x is a feasible solution to the LP-relaxation of P. Fix i and note that

Setting

yl Z aik

k -- Z(k,O,

we get

bi
aikXk v(P’)

However, since

for all j, y is a feasible solution to P, and hence satisfies

cy >_ v(P’)

Thus

akxk >_ bi v(p,)
v(P’

bi,
k

establishing that x is indeed a feasible solution to P. We conclude that

v(P(R)P’)
v(P’)

which was to be shown.
Proposition 4(iii)implies that /v(P(R)n) >_ /v*(p(R)n) v*(P). Our main

theorem states that if P is an FHC program or, more generally, if P satisfies condi-
tion (1), then, in fact, /v(p(R)n) -- v*(P) as n -- oc. Our first proof of this fact
relies heavily on the ideas of McEliece and Posner and, in particular, uses the same
sort of probabilistic construction as theirs did; however, our argument is necessarily
more complicated, since optimal solution vectors x will typically need to have entries
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much larger than 1 to satisfy the constraints. In our second proof, we use a greedy
construction as in LovKsz’s proof of the McEliece and Posner theorem [6].

It should be mentioned that the convergence /v(P(R)’) -- v*(P) does not hold
for integer minimization programs in general. As an illustration of this, let P be the
program "Minimize x 4- y 4- z subject to 2x _> 1, 2y >_ 1, 2z _> 1 with x, y, z _> 0 and
integral." Then v(P(R)’) 3n for all n, whereas v*(P) . Hence, we see that for
convergence to v*(P) to hold, something like the FHC property is required.

It should also be mentioned that the convergence /v(P(R),) . v*(P) typically
does not hold for integer maximization programs, even when all of the aj are O’s and
l’s. For example, consider the problem P of maximizing xl 4- x2 4- x3 4- x4 4- x5 subject
to the constraints that xl + x2, x2 + x3, x3 + x4, xa + Xh, and x5 + xl all be at most 1.
Viewed as an integer program, this is equivalent to finding the largest independent set
of vertices in the pentagon graph C5. More generally, the nth power of P is equivalent
to finding the largest independent set of vertices in the nth strong power of C5 (see [4]
for graph-product and graph-power terminology). The limit /v(P) is known as the
Shannon capacity of the graph C5 [9]. It has been shown [5] that the Shannon capacity
of the graph C5 is x/; on the other hand, v*(P) is , since (1/2, 1/2, 1/2, 1/2, 1/2) is
a solution to both P and P+/-. This example shows that Theorem 1 does not dualize
to a theorem about maximization programs; that is, /v((P+/-)(R)) need not approach
v*(P+/-) v*(P).

3. Proof of Theorem 1. The proof of Theorem 1 requires some ideas from the
theory of two-player zero-sum games. Treat the matrix A as the payoff matrix in
a two-player zero-sum game between Alpha, who names a variable (column of A),
and Beta, who names a constraint (row of A), where Alpha tries to maximize the
payoff and Beta tries to minimize the payoff; the payoff is aj when constraint i and
variable j are chosen. (To prepare for the multi-indices that are to follow, write
as a(i,j).) Alpha has an optimal mixed strategy that chooses each variable x(j)
with some probability u(j). The expected value of the payoff under this strategy is
called the value of the game (see [10]) and will be denoted by 8. There is a very
simple relationship between this game and the LP-relaxation of the program P with
matrix A and with b and c consisting of ones, namely, that if (a(1),... ,a(d)) is a
feasible solution for the linear program, then u(j) a(j)/Yj a(j) gives a strategy
for Alpha with a guaranteed payoff of at least 1/j a(j). Moreover, v*(P) (the value
of the linear program P) is equal to 1/8 (the reciprocal of the value of the matrix
game), with each optimal solution-vector a giving rise to an optimal strategy u. In
the case where the c vector is not all ones, it will still be convenient to let u(j) denote
a(j)/Yj a(j), where (a(1),..., a(d)) (a feasible solution with minimal cost) is given
by the hypothesis of Theorem 1.

To illustrate this, consider the previous example of minimizing X 4- x2 subject
to the constraints X 4- x2 _> 1 and 1/2Xl 4- X2 1; x 4- x2 is minimized by choosing

4 and v*x and x2 , (P) . The best strategy for Alpha in the game with
payoff matrix

(1)A=
1

is to choose u(1) -35/ - and u(2) -. Then S -, which is clear from
the fact that the expected payoff against this strategy is -, whether Beta chooses
constraint 1 or constraint 2 or any probabilistic combination of the two. In other
words, yd a(i, j)u(j) for i 1, 2.
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Remark. For ease of exposition, we will assume hereafter that, as in the preced-
ing example, all of Beth’s strategies are equivalent against Alpha’s chosen optimal
strategy; i.e.,

(4) E a(i, j)u(j) ,
for all i, where u(j) a(j)/j ((j) with c as in the statement of Theorem 1. There
is no loss of generality in doing so, since if this is not the case, there is always a way
to make it be true by diminishing some of the a(i,j) without changing the value of
the game (in other words, without making the integer programming problem or its
LP-relaxation any easier). Informally, this amounts to reining in the slack in all the
constraints where the inequality is strict for the optimal solution vector.

The proof requires a probabilistic construction. Assume without loss of generality
that bi are all equal to one, since v, v*, and the truth of condition (1) for P and its
tensor powers are all preserved by the normalization that divides each aij by b and
sets bi equal to one. Then (1) becomes

(5) Ha(i,j)(i’J)(i) <_ 1

for all i. For ease of exposition, assume also that the c vector is all l’s (the last
paragraph of the proof handles the case of general positive c vectors). Let v0 be
any constant greater than v*(P) and let Y [v for n large (just how large, we
will decide later). It will be shown via (12) below that v*(P) _> 1 and hence that
V/v 1. To determine a set of values for the dn variables in the n-fold tensor
product of P such that the sum of the variables is V, begin with all the variables equal
to zero, and then select one of them according to a certain probability distribution
and increment it by 1. Repeat this V times with the choices being independent and
identically distributed. It will be shown that for the correct choice of probability
distribution, this procedure has a positive probability (in fact, a probability close to
1) of producing a feasible integer vector. The probability distribution is exactly the
same as the probability distribution used by McEliece and Posner [8]. That is to say,
the probability of choosing the variable x(jl,j2,"" ,jn)is given by u(jl)u(j2)... U(jn)
where u is the optimal strategy for Alpha. The proof that this construction works,
however, is more involved than the one in the paper by McEliece and Posner.

Proof of Theorem 1. Choose a vector at random according to the scheme described
in the previous paragraph. The random vector will be feasible if forevery constraint
C(i,..., in) the sum of the coefficients of the V randomly chosen variables in that
constraint is at least 1. For each variable x x(jl,’",jn), the coefficient in the
constraint C--C(il,... ,in) is just the product

n

H a(ik, jk).
k--1

Note that the value of this product depends on the number of times each pair (i, j)
occurs in the list of (ik,jk), but not on the order of these pairs, and with that in mind
define the type of the constraint-and-variable pair (C,x) to be the matrix Y, where
Y(i,j) is (l/n) times the number of times the pair (i,j) occurs in the list of (ik,jk).
Also, define

r r(Y) H a(i’J)Y(i’)
i,j
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so that the coefficient of x in C is just r(Y)n.
The proof will proceed by finding for each constraint C a matrix Y for which,

with high probability, the number of times we select a variable x such that (C, x) is
of type Y is at least r(Y) -n. In other words, the coefficients in C of the randomly
chosen variables sum to at least r-nrn 1, even if we ignore all but those variables x
for which (C, x) is of one particular type. This is less surprising than it might at first
seem, since the number of types is polynomial in n, whereas all other quantities are
growing exponentially; hence, in restricting to those x for which (C, x) is of a certain
type, we are not losing an exponentially significant contribution.)

Fix a particular constraint C C(il,..., in) and define its type to be the vector
of length m such that (i) is equal to (l/n) times the number of times appears in
the list of the ik. Define the m-by-d matrix

Z(i,j) a(i,j)(i)u(j)/S.

Note that

EZ(i’J)=(i)(Ea(i’j)u(j)/$)j J
(i)’

by (4). Also, note that r r(Z) 1-Iida(i,j)a(i’J)(Y)Z(i)/s, which is the product
over i of positive powers of quantities 1-Ij a(i,J)a(i’j)u(j), each of which is at most 1
(by (5)); thus

(8) r _< 1.

Now define an approximation 2 to Z recursively in j by

1
[nZ(i,j)]2(i, j) - j--1 j--1

if E 2(i,j’) <_ E Z(i,j’),
j’=l j’=l

and

1
LnZ(i,j)J2(i, j) - j--1 j--1

ifE 2(i,j’) > E Z(i,j’).
j’=l j’=l

The important properties of 2 are that
(i) Z(j, j) 0 implies 2(i, j) 0;
(ii) nZ(i, j) is an integer;
(iii) IZ(i, j) 2(i, j)[ < l/n; and
(iv) j 2(i, j) Z(i,j) Z(i).

They follow immediately from the definition. The reason we want conditions (i) and
(iii) to hold is so that calculations involving 2 can be approximated by calculations
involving Z; the reason we want conditions (ii) and (iv) is so that Z will actually be
the type of a constraint-and-variable pair (C, x) for some x.

Define

(Z) H a(i’J)2(i5)
i,j

The immediate object is to estimate the number of variables x of the V that are
chosen (with repetition) for which the pair (C, x) is of the type Z, and show that this
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number is very likely to be at least -n. Each time a variable x x(jl,... ,j,) is

chosen, the chance that (C, x) is of the type Z is just the chance that for each i, the
values of the jk for which ik form the multiset that has n2(i, 1) ones, n2(i, 2)
twos, and so on. Denote this probability by P(2). Then

P() Ii [multi(n(i);n(i, 1),"’,n(i,m)) u(j)n2(i’J)]
where multi(x; yl, y2,’" ") denotes the multinomial coefficient with x on top and yl, y2,"

on the bottom. Evaluate these multinomial coefficients by assuming n _> 3 and by
using the inequalities

x!>xxe-x and x!<nxe-
for the numerator and denominator, respectively. Here 0 1 by convention. After
all the e and n factors cancel, we obtain

(9) P(2) >_ n-md (i)(i) H 2(i’J)-2(i’J) H u(J)2(i’J)
i,j

Note that if we replace 2 by Z everywhere in the bracketed expression, it becomes

YI (i)(i) H z(i, j)_z(i,) H u(J)Z(i’)
i,j i,j

H (u(J)(i)Z(i’j)-i) Z(i’j)

i,j

(101 H (Sa(i’J)-) Z(i5)

i,j

,S H a(i,j) -Z(i5)
i,j

where the first equality follows from (7) and the second follows from the definition of
Z in (6). We proceed to rewrite (9) in terms of S/r. Specifically, we will approximate
(9) by a version with Z replacing Z, thereby introducing an additional error factor of
the form (1 i(n))n with i(n) 0 as n -- c. By property (iii) of 2,

2(i,j)-2(,J) x_> inf y-Z(ilj)
where the infimum is taken over nonnegative x and y satisfying Ix- Yl < 1/n. Denote
this infimum by 1- O(n); since the function x ln(x) (with 0 In 0 defined to be 0) is
uniformly continuous on [0, 1], O(n) 0 as n x). Thus, putting 1- i(n)
(1 O(n))’d, we get

II 2(i,

’ > (1 O(n))md 1 (n)
H Z(i, j)-z(i,j)
i,j
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with 51(n) 0 as n oc. Also note that

u(j)2(i,J)-z(i5)

which is at least u(j) 1In when u(j) > 0 and is 1 when u(j) 0; either way, the
fraction is at least Umin l/n, where Umin is the minimum of the positive entries of u.
Thus

H u(J)2(i’J)
i,j > (Uminl/n)mdI u(J)z(a)
i,j

Letting 52(n) be defined by 1 52(n) tminmd/n(1 (l(n)), we conclude that

(11)

P(2) >_ n-md(1 52(n))n (i)(i) H Z(i’J)-Z(i’J) H u(J)Z(i’J)
i,j i,j

n-rod(1 2(n))n(,/r)n

where 52(n) 0 as n -- cx.
The other estimate of this sort that we will need is a bound on in terms of r.

Take > 0 with r _< a(i,j) and _< 1/a(i, j) for all a(i, j) O. Then

a(i,j)2(,)

a(i, j)z(i,i) a(i, j)2(i,j)-z(i5) >_ ?l/n

for all i, j, and

H a(i’J)2("J)
i,j

>- H, l-I
?md/n r

Then from (11) it follows that

(12) P(2) > Q(n)(S/),
where Q(n) (1- 52(n))mdn-rod. (Note that ,(1,(2, and Q depend only on n,
not on which constraint was chosen. What will end up being important about Q(n) is
that /Q(n) - 1 since 5(n) --, 0.) Since Sir lim$/ _< limnQ(n)l/P(,)1/ <_
limnQ(n)1/n 1, it follows that v*(P) 1/, >_ 1/r >_ 1, and the debt we incurred
in the paragraph before the proof of Theorem 1 by claiming V/v 1 is paid. A
more meaningful interpretation of (12) is that if we choose a variable x x(jl,.., j)
at random with probability u(jl).., u(j), the probability that (C, x) is of type Z is
at least Q(n)(S/). Also, recall that if (C,x) is of type Z, then the coefficient of x
in C is .

The last step in the proof of Theorem 1 is an application of the following lemma.
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LEMMA 6. Let a, b, c, e be positive real numbers with ab/(1 + e) >_ c >_ 1 >_
b. Consider a family (Xi} of at least an independently and identically distributed
Bernoulli random variables with P(Xi 1) _> bn. Then there is some positive constant

e-eanand some positive integer N for which P(- Xi < c’) < whenever n > N.
Furthermore, N and can be chosen to depend only on e.

Assuming the lemma for the moment, the rest of the proof of Theorem 1 is as
follows. We have selected Y von variables for some v0 > v*(P) 1/S. Then for
any fixed constraint C C(il,..., iN), we have chosen a matrix Z and its associated
value so that each variable chosen by our random scheme has coefficient at least
with probability at least P(2). Let a- vo, b- P(2)1/, and c- max(l, 1/). Let
Xi be the Bernoulli random variable that equals 1 if the ith variable chosen, x, has
the property that (C, x) is of type 2 and equals 0 otherwise. Since converges to r
as n gets large, and since r _< 1 by (8), it follows that for any > 0, 1/ > 1-
for sufficiently large n. Then (12) implies that the first inequality in the hypothesis
of Lemma 6 is satisfied with any e < v0,- 1 for sufficiently large n, since ab/c >_
voSQ(n)I/n/c and Q(n)/’/c -- 1. The second inequality is guaranteed by the
choice of c and the last is true because b is a positive power of a probability. The
conclusion of the lemma is that the probability of there being enough variables of
type 2 to satisfy the constraint (namely, -n of them) is at least 1- e This
is true uniformly over all constraint types for sufficiently large n, and since there
are only exponentially many constraints C, the sum of the failure probabilities over
all constraints goes to zero as n goes to infinity. In particular, the constraints are all
satisfied with nonzero probability for n sufficiently large, and that proves the theorem.

The case where the c vector is not all l’s. Suppose that (a(1),... ,a(d)) is an
optimal solution to the program. Then letting u(j) c(j)/Ej a(j) gives a strategy
in the two-player game that achieves a payoff of 1/Ej c(j). Letting S 1/Ey c(j),
the calculation after (7) still shows that condition (1) implies r _< 1, and (12) still
gives _< 1. Here we have borrowed another page from matrix-game theory to assert
that the optimal solution with the new c vector will, in general, have a different
set of dominated strategies for Alpha (i.e., a different set of j for which u(j) 0),
but that each Ea(i,j)u(j) will still be 1/8 for all i such that strategy is not a
dominated strategy for Beta. Note that since the set of dominated strategies changes
with the c vector, the modification of dominated strategies as in the paragraph before
condition (1) must come after looking at the c vector. Ignore the cost vector c for the
moment and use the same randomized algorithm as before to choose [(e + -:y a(j))]
variables to increment, where e is a new, arbitrarily small, positive number. Since
the number of variables is going to infinity, the constraints are now satisfied with a

probability that goes to one as n --, . The expected total cost of the variables chosen
is [(e + Ej a(J))], so the probability that the cost exceeds (2e + Ey o(j))n(cTu)n
goes to zero as n goes to infinity; hence, in particular, the probability that the cost
is at most (2e + ,j a(j))n(cTu)n, and that the constraints are all satisfied that, is

positive for large n. However, cTu cTa/-y a(j), SO, for large enough n, there

are feasible integer vectors with cost at most ((2cTa/j-j aj)e + cTa) for arbitrarily
small e. The theorem is proved. [:]

Proof of Lemma 6. This is a standard large deviation estimate, but, to get 5
to depend only on e, the usual moment estimate will be redone from scratch. The
following fact can easily be seen by looking at chords of the graph of ln(1 x) near
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x 0, below:

(13) ln(1- zu) - 1 uniformly over z e [0, 1] as u 0.
z ln(1 u)

(The expression is taken to be 1 when z or u is 0.) Letting t >_ 0 be a free parameter,
the moment calculation is

P(E Xi < cn) P(e --x > e-tC)

<_ Eet( x) / e-tC"

(Ee-tX1)an/e-tc
_< (1 b(1 e-t))an/e-tcn.

Exponentiating (13), we see that for all 7 e (0, 1), u can be chosen small enough
so that for any z e [0, 1], 1- zu <_ ((1- u)Z). Then with z bn and u 1- e-t we
have that for any 7 E (0, 1) and sufficiently small t, the following inequality holds for
any b E [0, 1]"

1 bn(1 e-t) <_ ([1 -(1 e-t)]b) e-tb.

Then

(14) P(E Xi < c) <_ e-t(-c).

Fix any 7 such that /ab > c. The right-hand side of (14) increases when b and
c are decreased by the same factor, and also when b is decreased, so assume without
loss of generality that ab/(1 + e) c 1. Then the exponent in the right-hand side
grows like (1 + )n, so for any 5 (0, ln(1 + )), there is an N for which the left-hand
side of (14) is bounded by e-en whenever n > N. It is clear that 5 and N can be
chosen to depend only on e. [:]

4. Proof of Theorem 2. The proof of Theorem 1 made delicate use of the
structure of the nth power of an integer program. In contrast, the proof presented
in this section is based on very general lemmas about semi-FHC programs (defined
below), and only at the very end does the notion of a product of integer programs
make an appearance. Even then, we appeal only to the most basic facts about P(R)
namely, that v*(P(R)n) v*(P)n, and that the number of constraints in P(R)ngrows
exponentially, not faster.

We will prove the following restatement of Theorem 2 (obtained by rescaling, as
in the proof of Theorem 1).

THEOREM 7. Suppose that P (A, b, c) is an integer minimization program in
which 0 <_ aj <_ 1, b 1, and cj > 0 for all and j. Then /v(P(R),) -- v*(P) as

We will prove Theorem 7 by analyzing a somewhat broader class of programs
than those that satisfy its hypothesis. Say that an integer program P (A, b, c) is
of semi-FHC type if all of the entries of A are in [0, 1] and all of the entries of c are
positive (the entries of b may be arbitrary real numbers). Call a constraint trivial
if it is satisfied by all real vectors x (i.e., all its coefficients are 0 and its right-hand
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side is less than or equal to 0), and call a program trivial if all its constraints are
trivial. Given an integer program P (A,b,c) of semi-FHC type, let m denote
the number of nontrivial constraints, S(P) denote the sum of the entries of b, and
D(P) denote maxj(-iaj/cj}. When P is of FHC type, S(P) m; when P is
trivial, S(P) <_ O. (The notation "D(P)" originates from the fact that when P is
a hypergraph-covering program, D(P) coincides with the maximum degree of the
hypergraph, i.e., the maximum number of edges sharing a vertex.)

Our argument begins with the observation that v*(P) >_ S(P)/D(P) for any
nontrivial semi-FHC program P. To see this, let y be the vector of length m, all of
whose components equal lID(P). Since the jth row-sum of AT is at most D(P)cj,
the jth component of the vector ATy is less than or equal to cj for every j. Hence
y is a feasible solution to the dual program P+/-, whence v*(P) v*(P+/-) >_ bTy
S(P)/D(P).

In particular, suppose that P is as in Theorem 7, and Q is a nontrivial semi-
FHC program such that every feasible solution to P is also feasible for Q. Then
S(Q)/D(Q) < v*(Q) < v*(P). This upper bound on the ratio S(Q)/D(Q) is the key
ingredient in the proof of the following fact.

LEMMA 8. If P is as in Theorem 7 and cj <_ v*(P) for all j, then there is a
nonnegative integer vector x* such that cTx <_ 2(ln 10 4- 1)v*(P) and at least one-

fourth of the entries of the column vector Ax* exceed 1.

Proof. We define a sequence of semi-FHC programs p(0) p, p(1), p(2), ",

p(N), where N will be specified later, together with a sequence of d-component integer
vectors u() 0, u(1), u(2), ..., u(N) in the following iterative way. We assume that
p(k) (A(k),b(),c) has already been defined, and wish to define p(k+l). Take

j (more properly speaking, jk) such that --(k)/cj D(P(k)) and let u(k+) beij
the vector obtained from u(k) by incrementing its jth component by 1. Let b(k+l)

equal b(k) minus the jth column of A(k). Lastly, to define A(k+l), call a row of A()

satisfied if the corresponding entry of b(k+l) is negative; replace all the entries in all
the satisfied rows of A(k) by O’s and call the resulting matrix A(k+l). Terminate this
greedy procedure after N steps, where N is chosen to be the smallest integer such

N--1that -k=O cJk >-- v* (P) In 10.

Note that under this scheme, if we fix between 1 and m and look at the ith
entries of the successive vectors b() b(1), b(2) b(g) we see a sequence of numbers
that decreases by at most 1 at each stage until a negative term appears, at which
point the sequence is constant (since the corresponding row of A gets "zeroed out").
Hence all the entries of all the b-vectors lie in the interval [-1, 1].

Also note that a feasible solution for p(k) remains feasible for p(k+l), since the
only change made in passing from the former to the latter is that certain constraints
have been relaxed (some of the entries in the b-vector have decreased), while other
constraints have been effectively dropped (some of the rows of the A-matrix have been
zeroed out). Therefore any feasible solution for p(0) p is feasible for each p(k). If
p(k) is nontrivial, this implies that S(p(k))/D(P(k))

_
v*(P) and hence

S(p(k+l))/S(p(k)) S(P(k)) cjkD(p(k))
S(p(k))

D(p(k))
1- cj S(p(k)
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<1
v*(P)

< e--cjk Iv* (P)

for all k between 0 and N- 1. Multiplying these N inequalities together, we obtain

S(p(N))/S(p)
_

e -N-lk=o cjk /v*(P)

1

If any of the p(k) are trivial then so is p(N), so that S(P(N)) 0, from which we
see that the foregoing inequality holds in this case as well. We have shown that the
sum of the entries of b(g) (all of which lie between -1 and 1) is at most oS(P)

0)1-6 -i b m/lO. This means that at least a quarter of its entries are less than 3
(since, otherwise, the average of the entries of b(N) would be at least (1/2) + 1/4 (-1)
> 0,al contradiction). On the other hand, we also know that all of the entries of

b() were l’s, so at least a quarter of the entries of b() b(g) must exceed 3; since

b(g)

_
b(0) -Au(N), we have Au(N)

_
b(0) -b(g), so that at least a quarter of the

Also, by the minimality of N and our assumption on c, weentries of Au(g) exceed 3"
N-I V* V*conclude that cTu(N) -k=o cj / cjN <_ (P) In 10 / (P) (ln 10 + 1)v*(P).

Setting x* 2u(N), we obtain a vector with the desired properties. [:]

LEMMA 9. If P is as in Theorem 7, S(P) > 1, and cj <_ v*(P) for all j, then

v(P) <_ 100 v* (P) In S(P)

Proof. Let x* be the vector of Lemma 8 with cTx <_ 2(ln 10 + 1)v*(P) and with
the property that at least one-fourth of the entries of Ax* exceed 1. Let P’ be the
integer program obtained from P by dropping all the constraints that correspond to
the values of for which (Ax*)i >_ 1. Note that any feasible solution to P’, if increased
by adding x*, yields a feasible solution to P; hence

v(P) <_ v(P’) + 2(ln 10 + 1)v*(P)

Note that P’ has at most three-fourths as many constraints as P. Hence, iterating
this reduction process K times, where

K log4/3 S(P)] > log4/3 S(P),

we obtain a program Q such that

v(P)

_
v(Q)+ 2K(ln 10 + 1)v*(P)

The number of constraints in Q, however, is at most

({)g S(P) < ({)log4/as(P) S(P) 1;

that is, Q is the empty program, with no constraints and with value 0. Hence

v(P) <_ 2K(ln 10 + 1)v* (P)
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2 [lnS(P)l (lnlO+

_< 100 v* (P) In S(P),

as claimed, the last inequality following from the fact that [x]/x cannot be too large
when x is bounded away from zero. D

The following lemma will permit us to assume that in Theorem 7 no component
of the vector c is greater than v*(P).

LEMMA 10. If P is as in Theorem 7 and ck > v*(P), then every optimal solution
x* to the LP-relaxation of P has x O.

Proof. If x* is a feasible solution for P then so is z*, given by

x( +) for j # k,
zj = x2 forj=k,

since

>_ (1 + x) xk 1.

If x* is optimal as well, then

,2+ +
jk

=(l+x)cjx; + -ckx
J

(1 + x)v*(P) CkX

v* (P) (Ck v* (P))x,

*=0. [:]which implies that xk

Proof of Theorem 7. Let m be the number of constraints of P; we may suppose
that m > 1 since the result is trivial for m 1. Note that p(R)n has only mn

constraints. Assume first that cj _< v* (P) for all j. Then all of the entries of c(R)n are
at most v* (P)n v* (P(R)) for all n, so that by Lemma 9 we have

v(P(R)n) <_ 100v* (P(R)) ln(mn) 100n ln(m)v* (p)n,

from which we can conclude that v/(P(R)n) v*(P). On the other hand, if c
v*(P) for some k, then we may drop those variables xk from the program P. This
can only make v(P(R)) larger, but does not affect v*(P) because of Lemma 10, so we
have reduced the problem to the first case, which has just been solved.
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Abstract. Given a graph G and positive integer d, the pair-labeling number r*(G, d) is the
minimum n such that each vertex in G can be assigned a pair of numbers from (0, 1,...,n- 1} so
that any two numbers used at adjacent vertices differ by at least d modulo n. All possible values of
r* (G, d), given the chromatic number of G, are determined.

Key words, pair labeling, star chromatic number
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1. Introduction. Fiiredi, Griggs, and Kleitman [FGK] have recently examined
the pair labeling number r(G, d), which is the minimum n such that each vertex in
G can be assigned a pair of numbers from {0,..., n- 1} so that any two numbers
used at adjacent vertices differ by at least d. They discovered all possible values for
r(G, d) when the chromatic number of G is fixed at k, namely, r(G, d) e [d(k- 1)+
3, d(k- 1) + k + 1] when k _> 2, with all values in this interval realized. The problem
was motivated by an application involving assignment of channel frequencies without
interference. From a purely mathematical point of view, we think it somewhat more
natural to consider the minimum n such that each vertex in G can be assigned a pair
of numbers from {0,..., n- 1} so that any two numbers used at adjacent vertices
differ by at least d modulo n. We denote this minimum by r*(G, d). Our main result
is analogous to that of [FGK] but the interval is [d(k- 1)+ 3, dk + k].

Our notation is largely standard and similar to that of [FGK]. Sets given in
interval notation [a, b] are subsets of the integers. For a set S and nonnegative integer
t, (tS) is the collection of t-subsets of S. All graphs G (V, E) are simple and
undirected. We use N to denote the nonnegative integers.

A pair labeling of a graph G is a function f: V --. (N2) from the vertices of G to
pairs of integers. We refer to two measures of the distance between pairs of integers
A, B. The distance d(A, B) is the minimum value of la- b over all a E A and b E B;
the distance d*(A,B) is the minimum value of la-bln over all a A and b B, where

la- bin is the minimum of la- b and n- ia- b (in this case, we always assume that
a, b [0, n- 1]). We usually write d* with n to be understood. For a pair labeling f of
G we define d(f) to be the minimum value of d(f(v), f(w)) over all adjacent vertices
v and w, and similarly d(f). Finally, we define r(G, d) to be the minimum n such
that there is an f: V -. ([0,,-1]) with d(f) >_ d and r*(G,d) to be the minimum n

such that there is an f: V - ([0,,-1]) with d(f) >_ d. Note that when d 1 there
is no difference between the two notions of distance (two pairs have distance at least
one if and only if they are disjoint), so we assume henceforth that d _> 2.

Our main result is the following theorem.
THEOREM. uppose that G has chromatic number k. If k 1, then r*(G, d) 2.

If k 2, then r* (G, d) 2d + 2. If k 4, then r* (G, d) e [3d + 4, 4d + 4]. Otherwise,
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14, 1990.
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:Department of Mathematics, Lewis and Clark College, Portland, Oregon 97219.

144



PAIR LABELINGS OF GRAPHS 145

r*(G, d) e [(k 1)d / 3, kd + k].
realized by suitable graphs G.

When k >_ 3, all values in the stated intervals are

2. Star chromatic number. We summarize here some results of Vince IV] for
later use. Suppose that f is an n-coloring of a connected graph G, that is, a function
from the vertices of G to [0, n- 1], and define c,(f) to be the minimum over all
adjacent v and w of If(v)- f(w)ln. Define the star chromatic number of G, X*(G),
to be the minimum over all n and all n-colorings f of n/c, (f). Vince showed that the
minimum exists and indeed is attained for some n at most the number of vertices in
G.

We will use two results proved in IV]. First, for all connected G, X(G)- 1 <
x*(G) <_ x(G). Define Gn,m to be the graph whose vertices are the integers in [0, n- 1]
and with v adjacent to w if and only if Iv- win >_ m. Vince proved that for 1 _< m <

3. Easy lemmas. The cases k 1 and 2 are easy, and we discuss them no
further. For k _> 3, the upper bound kd + k is easy to establish. Suppose that the
k-chromatic graph G is colored with k colors {0,..., k- 1}. Replace color i by the
pair {i(d / 1), i(d + 1) + 1} thus labelling the graph with the pairs {0, 1}, {d + 1, d
2}, , {(k 1)(d + 1), (k 1)(d + 1) + 1}, all at distance at least d mod (kd + k) from
each other. For G Kk, it is easy to see that no n < kd + k suffices, so the upper
bound is sharp.

Recall that a graph homomorphism from G (V, E) to U (W, F) is a function
h" V -- W, which preserves adjacency. Vertex labeling problems can often be stated
in terms of homomorphisms; for example, G has chromatic number at most k if and
only if there is a homomorphism from G to Kk, and if G is homomorphic to H then
x(G) <_ x(H). Note also that if G is homomorphic to U then x*(G)

_
x*(H). Define

the graph G*(n, d) to have vertex set ([0,,-1]) and an edge connecting two vertices
v, w if and only if d*(v, w) >_ d. It follows immediately from the definitions that
r*(G, d) <_ n if and only if G is homomorphic to G*(n, d).

To establish the lower bound when k 4, we must show that any graph G with
r*(G, d) <_ d(k- 1) + 2 has chromatic number at most k- 1. For this, it is sufficient
to show that the chromatic number of G*(d(k- 1) + 2, d) is at most k- 1, for if
r* (G, d) _< d(k 1) + 2 then G is homomorphic to G* (d(k 1) + 2, d) and so G has
chromatic number at most k- 1. When k 4 we do the same with G*(d(k- 1) + 3, d).

LEMMA. The chromatic number of G*(d(k- 1) + 2, d) is at most k- 1.

Proof. We indicate how to color G*(d(k- 1) + 2, d) with k- 1 colors. Consider
the vertex v {i, j} with 0 <_ i < j <_ d(k- 1) + 1. Color v with color m _< k- 2 if
md <_ < (m + 1)d and color vertex {d(k 1), d(k 1) / 1} with color k 2. Any two
vertices with the same color are at distance d- 1 or less, so this is a proper coloring
of the graph.

LEMMA. The chromatic number of G*(3d + 3, d) is at most 3.

Proof. Consider the vertex v {i, j }. If v N [1, d is nonempty, color v with color
0. If v [d + 2, 2d + 1] is nonempty, and v is not color 0, color it with color 1. If
v ( [2d + 3, 3d + 2] is nonempty and v is not colored, color it with color 2. Color
{0, d + 1} color 0, {d + 1, 2d + 2} color 1 and {2d + 2, 0} color 2. It is easy to check
that this is a proper coloring. [:]

To show that the lower bound is sharp, we will prove that the chromatic number
of G*(d(k- 1) + 3, d) is at least k for k 4 and that the chromatic number of
G*(3d + 4, d) is at least 4. This will be our major task. Note that this implies also
that r*(G*(d(k-1)+3, d),d) d(k-1)+3 for k 4, since otherwise G*(d(k-1)+3, d)



146 DAVID R. GUICHARD AND JOHN W. KRUSSEL

is homomorphic to G*(d(k- 1) / 2, d) and so has chromatic number less than or equal
to k- 1; similarly for k- 4.

It remains to be seen that all values in the intervals are realized by some graphs
G. For k _> 3 and E [d(k 1) / 4, d(k 1) + k + 1], [FGK] found graphs Gi with
chromatic number k and r(Gi, d) i and containing a vertex adjacent to all the other
vertices in the graph. It is easy to see that r*(Gi, d) i + d- 1, so that all values in
[dk + 3, dk + k] are realized.

This leaves the remainder of the interval, [d(k- 1)+4, dk+2] or [d(k- 1)+5, dk+2]
when k 4. By the main lemma of 4 x(G*((k 1)d + 3, d)) _> k when k 4 and
by the first lemma in 3 x(G*(kd + 2, d)) <_ k. Since G*(n 1, d) is a subgraph of
G*(n, d) this implies that X(G*(n, d)) k when n is in [d(k- 1)- 3, dk + 2]. Similarly,
x(G*(n, d)) 4 when n is in [3d + 4, 4d + 2]. Thus it seems natural to try to show
that r*(G*(n, d), d) n. For this, it suffices to show that some graph G (regardless
of chromatic number) has r*(G, d) n, for then G is homomorphic to G*(n, d) but
not to G*(n- 1, d) and so G*(n, d) cannot be homomorphic to G*(n- 1, d). In fact,
since all values in [d(k- 1) + 3, d(k- 1) + k- 1] are attained (by the argument of the
preceding paragraph) we are only missing the intervals [d(k- 1) + k, dk + 2] (which
are empty when k > d + 2).

LEMMA. If n > 2d + 2 is not d (mod d + 1), then r*(Gn,d+l, d) n.

Proof. To see that r*(G,,d+l, d) <_ n, label vertex v with the pair (v, v - 1}.
For the other direction, suppose (for a contradiction) that Gn,d+l is homomorphic to
G*(n- 1, d). Every vertex in Gn,d+ is contained in an n/(d + 1) clique. We claim
that a vertex (i,j} in G*(n- 1, d) is not contained in such a clique if li- Jln- >- d.
For if li- Jl-I _> d, then (i,j} can be contained in no clique larger than 1 + (n-
1 2d)/(d / 1)J, which is less than [n/(d / 1)] if n is not d mod d + 1. This implies
that the image of each vertex of G,d+ is a vertex (i,j} with li- jl-I < d.

Denote the image of vertex v by (i.,j} with 0 < j i < d or n 1 d <
i -j < n- 1. If v and w are adjacent in Gn,d+, then the pairs (iv, j} and (i, jv
are at distance at least d mod n- 1 and so the integers i and i are at distance at
least d + 1 mod n- 1. This means that the map v i is a homomorphism from
Gn,d+l to Gn-l,d+l, contradicting the fact that X*(en,d_t_l) > x*(en_l,d+l).

This lemma takes care of all the missing values for n except 3d - 2--this is the
only n which is both d (mod d- 1) and contained in an interval [d(k 1) + k, dk - 2].
Careful examination of the proof of the lemma reveals that r*(G3d+2,d+,d) --3d + 2.
The proof is essentially unchanged if we know that no vertex in Gn,d+l maps to (i, j}
with li- jln- >_ 2d. However, when n- 1 3d + 1 no two integers i,j can be as
much as 2d apart.

4. The main lemma. We are now ready to prove our principal lemma, finishing
the proof of the theorem.

LEMMA. When k 3, x(G*(kd + 3, d)) >_ k + 1, and x(G*(3d + 4, d)) >_ 4.

Proof. The cases k 2 and k 3 are quite easy, and we do them first. The
rest of the proof is done by induction on k, beginning with k 4 as the basis of the
induction.

When k 2, G*(2d + 3, d) contains a cycle of length 2d / 3, namely (0,
(d + 1, d + 2}, (2d + 2, 0},..., (d + 2, d + 3}, (0, 1}, so its chromatic number is at least
3, as desired.

Now suppose that k 3. The graph G*(3d/ 4, d) contains a subgraph isomorphic
to G3d/4,d/l, namely, the graph induced by the vertices (i, + 1 mod 3d + 4). This
subgraph has star chromatic number (34 + 4)/(4 + 1) so its chromatic number is 4,
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and therefore G*(3d / 4, d) has chromatic number at least 4, as desired.
For the rest of the proof, it is convenient to adopt the point of view used in [FGK].

We think of the pairs of integers from [0, n- 1] as the edges of the graph Kn, and we
are interested in coloring the edges of Kn so that edges which are distance d or more
apart (as measured by d*) are different colors. We picture Kn with all of its vertices
on a circle and numbered consecutively around the circle. The edges (i, i + 1 we call
rim edges, others we call diagonals. (We should, of course, write "i + 1 mod n," but
we will continue to leave out the mod--all arithmetic on vertices is mod n.)

At most d + 1 rim edges may be colored any one color, and if this many are a
single color, they must be consecutive on the circle. If the edges of Kn are colored
with k colors, there must be at least 3 color classes containing d + 1 rim edges.

Our proof is by induction. Suppose that n 4d + 3 and that the edges of Kn
are properly colored with 4 colors. The color classes restricted to the rim edges must
consist of three classes of d + 1 consecutive edges and one class of d consecutive edges.
Suppose that the vertices that lie between these color classes on the rim are i, + d+ 1,
i+2d/2, and i/3d/3. The diagonal (i, +2d/2 is at distance d from (i/d, i/d/ 1},
{i + d / 1, i + d + 2}, and (i + 3d / 2, i / 3d + 3, and must therefore be the same
color as the edges in the color class containing the d rim edges between i + 3d + 3 and
i. Similarly, the diagonal (i + d / 1, i + 3d / 3} must be this same color. These two
diagonals, however, are at distance d from each other so they must be different colors,
a contradiction. This establishes the lemma for k 4.

Now suppose that n kd + 3, k > 4, and that the lemma is true at k 1. For a
contradiction, suppose that the edges of Kn have been properly colored with k colors.
We will refer to a color class restricted to rim edges as a rim class.

CLAIM 1. For any rim class consisting of d + 1 consecutive edges of color A and
forming a path from vertex to vertex + d + 1, we can adjust the coloring of K, so
that all edges of color A meet one of the vertices (i + 1, i + 2,..., + d}, except the
edge (i, + d + 1, and so that all edges that do meet one of these interior vertices are
colored A.

First, color all such edges color A. Then there may be edges like e in Fig. 1,
which are also colored A but which are far from some of these newly colored edges. It
is easy to see, however, that e can be colored the same color as edge f (or edge g if e
meets vertex i) since edge e is distance at most d- 1 from any edge which meets i.

h
/ d / 1 g

FIG. 1

If edge h is not color A then the d vertices {i + 1,..., i + d} may be removed,
leaving a complete graph on (k 1)d + 3 vertices whose edges are properly colored
with k- 1 colors, a contradiction. This proves the claim. [:]

CLAIM 2. Any rim class that does not consist of either d or d + 1 consecutive
edges cannot be adjacent to a rim class of d + 1 edges that have color A.

For a contradiction, assume such a rim class does exist. Without loss of generality
suppose that the rim class colored A consists of the path {i,..., i + d / 1} and the
other rim class contains {i- 1, i}. Adjust the coloring so that the A color class consists
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of the rim edges, the edge h, and the diagonals meeting the interior of the rim class, as
above. Adjacent to the rim class A will be some number (at most d- 1) of consecutive
edges of color B, then an edge of color C; see Fig. 2. (Vertex i- d may be the left
endpoint of the edge colored C.)

FzG. 2

Now if we color edge h and all edges incident at which are color C with color
B, and color all edges incident at i- d which are color B with color C, then we still
have a proper coloring of the edges. As above, removing the vertices {i + 1,..., + d}
leaves a complete graph on (k 1)d+ 3 vertices whose edges are properly colored with
k- 1 colors, a contradiction. This proves the claim. [:]

CLAIM 3. All rim classes consist of d or d + 1 consecutive edges.
Suppose not. Then we have somewhere a rim class of size d / 1 and color A

adjacent to one or more consecutive rim classes consisting of d consecutive edges, the
last of which is adjacent to a class not of either type.

We will alter the coloring. Start by altering the coloring so that the edges of color
A are precisely the edges which meet the interior of the rim class plus the edge joining
the endpoints of the rim class. Suppose that the adjacent rim class consists of d edges
of color A. Every edge of color A must meet one of the d / 1 vertices that form this
path, and it is therefore safe to color all edges that meet the d- 1 interior vertices
of the path with color A. The same argument may be repeated for each of the rim
classes of d consecutive edges in turn.

We now have a situation almost identical to that of Fig. 2, except that the rim
class to the right of vertex consists of only d consecutive edges; see Fig. 3. Using the
same argument, we may color all edges incident at that are color A or C with color
B, and color all edges incident at i- d that are color B with color C and still have a
proper coloring of the edges. Once more, removing the vertices {i + 1,..., i + d} leaves
a complete graph on (k 1)d + 3 vertices whose edges are properly colored with k 1
colors, a contradiction. This proves the claim.

FIG. 3

Now we may assume that all diagonals that meet the interior of one or two rim
classes are colored with the color of one of those rim classes, and that a diagonal
joining the endpoints of a rim class of size d + 1 is colored to match the rim class.
Also, we may assume that each endpoint of each rim class of size d meets at least
one diagonal whose other endpoint is outside of the rim class but which is colored the
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color of the rim class, since, if not, we nay remove d of the d + 1 vertices in the rim
class for a contradiction as above.

We refer to diagonals that join the endpoints of rim classes as main diagonals.
Except for the diagonal joining the endpoints of the rim class, exactly one main diag-
onal at each end of a rim class of size d is colored to match that rim class--at least
one as noted in the previous paragraph, and at most one, since they must meet at
their other endpoints to be within distance d- 1 of each other.

There may be fewer than k colors actually used on the rim, in which case there are
some extra colors that appear only on main diagonals. Either the diagonals colored
with extra color A meet at a single vertex, or there are three of them that form a
triangle. If the former is the case, then we may remove the common vertex and any
d- 1 other vertices to form a complete graph on (k 1)d + 3 vertices whose edges are
properly colored with k- 1 colors, a contradiction. We conclude that three edges are
colored with each extra color. If d _> 3, we may remove the three endpoints of these
edges and enough other vertices to make a total of d vertices removed, producing a
complete graph on (k 1)d / 3 vertices whose edges are properly colored with k 1
colors, a contradiction.

Thus, either d 2 or there are no extra colors. Let R, R _< k, be the number
of colors that are used on the rim and D (d / 1)R- kd- 3 the number of rim
classes of size d. The number of main diagonals which can be colored is at most
3(k- R) + 2D +R (that is, 3(k R) edges colored with extra colors, 2D edges colored
with the color of a rim class of size d and R edges joining the endpoints of a single rim
class to each other), while the number of main diagonals that must be colored is
We would like to know, therefore, that the former is less than the latter, which means
that 0 < R2 R(1 + 4d) + 12 + 4kd 6k. If there are no extra colors, R k and this
becomes 0 < k2 7k+ 12 which is true when k > 4. Otherwise, d 2 and the question
is whether 0 < R2 -9R+ 2k+ 12. This quadratic in R has discriminant 33- 8k, which
is negative when k > 4, so the inequality is established, the main diagonals cannot be
colored, and this contradiction finishes the proof of the main lemma.
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Abstract. This paper presents a family ofmemory-balanced routing schemes that use relatively short paths
while storing relatively little routing information. The quality of the routes provided by a scheme is measured
in terms of their stretch, namely, the maximum ratio between the length of a route connecting some pair of
processors and their distance. The hierarchical schemes k (for every integer k > presented in this paper
guarantee a stretch factor ofO(k2) on the length ofthe routes and require storing at most O(k. n /k. log n log D)
bits of routing information per vertex in an n-processor network with diameter D. The schemes are name
independent and applicable to general networks with arbitrary edge weights. This improves on previous designs
whose stretch bound was exponential in k.

The proposed schemes are based on a new efficient solution to a certain graph-theoretic problem concerning
sparse graph covers. The new cover technique has already found several other applications in the area ofdistributed
computing.

Key words, communication networks, routing tables, communication-space trade-offs, graph covers
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1. Introduction. Delivering messages between pairs of processors is a basic activity
ofany distributed communication network. This task is performed using a routing scheme,
which is a mechanism for routing messages in the network. The routing mechanism can
be invoked at any origin vertex and be required to deliver a message to some destination
vertex.

Using edge lengths to reflect transmission costs and delays, we naturally desire to
route messages along paths that are as short as possible. A straightforward approach to
this goal is to store a complete routing table in each vertex v in the network (specifying
for each destination u the first edge along some shortest path from v to u). This approach
clearly guarantees optimal routes, but is too expensive for large systems since it requires
a total of O(n 2 log n) memory bits in an n-processor network. Thus a major problem
in large-scale communication networks is the design of routing schemes that produce
efficient routes and have relatively low memory requirements. The efficiency ofa routing
scheme is measured in terms of its stretch, namely, the maximum ratio between the
length of a route produced by the scheme for some pair of processors and their distance.

The problem of managing the trade-off between efficiency and memory in routing
schemes was first raised in [KK1]. The solution given there and in several subsequent
papers [BJ], [KK2], [Pr], [S], [FJ1], [FJ2], [FJ3], [SK], [vET1], [vLT2] applies only
under some special assumptions or for special classes of network topologies. In [PU] the
problem is dealt with for general networks. The paper presents a family of hierarchical
routing schemes (for every integer k >= that guarantee stretch O(k) and require storing
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a total of O(k3n + 1/k log n) bits of routing information in the network. This behavior
is almost optimal, as implied by a lower bound given in [PU] on the space requirement
of any scheme with a given stretch.

While the method of [PU] is appropriate for designing a static routing scheme, it
is not suitable for situations in which the routing scheme needs to be updated occasionally.
Such updates may be needed when the topology of the network changes (due to failures,
recoveries or other reasons). Each such update involves recomputing the edge costs in
the network and deciding on the new routes accordingly. (In this paper, we ignore the
issue of determining the link costs and concentrate on the step of setting up a rout-
ing table.)

In such situations, it is necessary that the routing scheme can handle arbitrary edge
costs (as well as arbitrary network topologies). Another crucial requirement is name
independence. By this, we mean that the addresses used to describe the destination of
messages should be permanently fixed and independent of the routing scheme. This
precludes routing strategies in which the route design also involves selecting an addressing
label for each vertex (typically, encrypting partial information necessary for determining
the routes leading to it). This approach clearly violates the principle that routing-related
system activities must be transparent to the user. Finally, in the nonstatic case, a bound
on the total (or average) memory requirements is insufficient. This is because, in such
setting, vertices may play different roles and thus require varying amounts of space. For
instance, a vertex may be designated as a "communication center" or may just by chance
be the crossing point of many routes in a particular scheme. This forces every vertex to
have sufficient memory for performing the most demanding role it may ever need to
perform. It is thus necessary to guarantee a bound on the worst-case memory requirements
of each vertex. (See [ABLP] for a more detailed discussion of these issues.)

Unfortunately, the routing strategy of [PU] lacks all of these three properties. It
deals only with unit-cost edges, it is name dependent, and there is no bound on the
worst-case memory requirements ofeach vertex. Consequently, these problems are tackled
in ABLP ], [P2 ]. The schemes proposed in these two papers succeed in achieving these
desirable properties, but at the cost of an inferior efficiency-space trade-off. In an n-
processor network of diameter D, the schemes HSk of [ABLP], for k >_- 1, use
O(k.log n. n l/k) bits of memory per vertex and guarantee a stretch of O(k2.9k), while
the schemes Rk of P2 ], for k >_- 1, use O(log D- log n. n l/k) bits of memory per vertex
and guarantee a stretch of O(4k). Thus the stretch becomes exponential in k, in contrast
with the linear dependency achieved in [PU].

The schemes presented in this paper are basically the same as those of[P2 ], except
that they employ a new, more efficient construction for the underlying graph-theoretic
structure (to be described later) and thus improve the trade-off. In particular, for every
graph G and every integer k >- 1, we construct a hierarchical routing scheme o’tk with
stretch O(k2) using O(k. n/k’log n log/9) memory bits per vertex. Thus the new scheme
regains the polynomial dependency ofthe stretch factor on k. (Note that in all the results
discussed here, the "interesting" range is _-< k _-< log n; for k > log n, the stretch degrades
with no compensation in memory requirements.)

Let us comment that the schemes of ABLP] still have two advantages over the new
schemes. First, their space complexity is purely combinatorial; i.e., it does not depend
on the edge weights. This may be significant if we allow superpolynomial edge weights.
Second, that scheme has an efficient distributed preprocessing algorithm for setting the
routes, while the preprocessing stage ofthe current schemes, as described here, is sequential.

These bounds are presented in a slightly different form in [ABLP], [P2]; for comparison, we unify
presentation here by fixing the exponent of the n factor in the memory bounds to be 1/k.
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More efficient distributed preprocessing algorithms and faster constructions are further
developed in AP4 ], LS ].

The schemes of [P2] and this paper are based on solving a certain graph problem
(handled previously in [P 1]) involving the construction of sparse covers. This problem
(described in detail in 3) addresses some basic issues concerning network decomposition
strategies, and the new cover algorithm described here has already found several other
useful applications in the area of distributed network algorithms. For some of these
applications, see AR], AKP], AP ], AP2 ], AP3 ], AP5 ], P2 ].

The paper is organized as follows. Section 2 formally defines the problem. Section
3 gives the new solution to the sparse cover problem. Finally, 4 presents the hierarchical
routing scheme.

2. Definition of the problem. We consider the standard model of a point-to-
point communication network, described by an undirected graph G (V, E), V
{ 1, ..-, n ). The vertices V represent the processors of the network, and the edges E
represent bidirectional communication channels between the vertices. A vertex may
communicate directly only with its neighbors, and messages between nonadjacent vertices
are sent along some path connecting them in the network.

We assume the existence of a weight function w" E +, assigning an arbitrary
positive weight w(e) to each edge e e E. Also, there exists a name function name V --U, which assigns to each vertex v e V an arbitrary name name (v) from some ordered
universe U of names. We sometimes, abuse notation, referring to name (v) simply as v.

For two vertices u, w in a graph G, let dist a u, w) denote the (weighted) length of
a shortest path in G between those vertices, i.e., the cost of the cheapest path connecting
them, where the cost of a path (el, es) is Z=iss w(ei). (We sometimes omit the
subscript G where no confusion arises.)

A routing scheme RS for the network G is a mechanism for delivering messages in
the network. It can be invoked at any origin vertex u and be required to deliver a message
Mto some destination vertex v (which is specified by its name) via a sequence ofmessage
transmissions.

We now give precise definitions for our complexity measures for memory and stretch.
The memory requirement of a protocol is the maximum amount of memory bits used
by the protocol in any single processor in the network. The communication cost oftrans-
mitting a message over edge e is the weight w(e) of that edge. The communication cost
ofaprotocol is the sum ofthe communication costs ofall message transmissions performed
during the execution of the protocol. Let C(RS, u, v) denote the communication cost
of the routing scheme when invoked at an origin u, with respect to a destination v and
an elementary (O(log n) bit) message, i.e., the total communication cost of all message
transmissions associated with the delivery of the message. Given a routing scheme RS
for an n-processor network G (V, E), we say that RS stretches the path from u to v
by C(RS, u, v)/dist (u, v). We define the stretch factor of the scheme RS as

[ C(RS, u,v) 1Stretch (RS) u,vmaxv d-st iti
Next, let us define some basic graph notation. The j-neighborhood of a vertex v 6

V is defined as

N(v) w[ dist(w,v)<=j).

Given a subset of vertices R
_

V, denote the m-neighborhood cover ofR by

,A/’m(R)= {Nm(V)IV6R).
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Denote the diameter of the network by

D Diam (G) max (dist u, v)).
,t V

For a vertex v E V, let

Rad v, G max dist a v, w) ).
wV

Let Rad (G) denote the radius of the network, i.e.,

Rad (G) min Rad v, G) ).
vrV

A center of G is any vertex v realizing the radius of G (i.e., such that Rad (v, G)
Rad (G)). To simplify some ofthe following definitions, we avoid problems arising from
0-diameter or 0-radius graphs by defining Rad (G) Diam (G) for the single-vertex
graph G { v }, ). Observe that for every graph G, Rad (G) -<_ Diam (G) =< 2 Rad (G).
(Again, in all of the above notations, we may sometimes omit the reference to G where
no confusion arises.)

Finally, let us introduce some definitions concerning covers. Given a set of vertices
S

__
V, let G(S) denote the subgraph induced by S in G. A cluster is a subset of vertices

S
_
Vsuch that G(S) is connected. We use Rad v, S) (respectively, Rad (S), Diam (S))

as a shorthand for Rad v, G(S)) (respectively, Rad (G(S)), Diam (G(S))). A cover is
a collection of clusters 0 { S, Sm } such that U S; V. The number of clusters
in the cover 5’ is denoted by Ol. Given a collection of clusters 0, let Diam (9)
max/Diam (S and Rad (5’) max/Rad (S ). For every vertex v E V, let deg. (v)
denote the degree of v in the hypergraph (V, O), i.e., the number of occurrences of v in
clusters S O. The maximum degree of a cover 5 is defined as

A( 5) max dege (v).
vV

Given two covers O {S1, Sm} and - { T, Tk}, we say that "subsumes 6t’ if, for every S; e 0, there exists a T e - such that Si
___

T.
3. Constructing a sparse cover. The main novel graph-theoretic tool on which we

base our constructions is the following theorem, to be proved in this section.
THEOREM 3.1. Given a graph G (V, E), vI n, a cover 5, and an integer

k >= 1, it is possible to construct a cover ’- that satisfies thefollowing properties"
(1) ’- subsumes 0,
(2) Rad () =< (2k Rad (O), and
(3) A()__< 2klOOl 1/.
Let us remark that it is possible to replace the degree bound of property (3) with

O(k. n/k). This requires a more complex algorithm and analysis, and therefore we prefer
to state the theorem as above. In most of the applications of which we are aware, there
is no real difference, as I1 n.

The two previously known results of this type, described in [P1 ], [P2], are both
weaker than the current one. In the first, the bound on the radius of the output cover -is exponential in k (specifically, Rad (-) =< 4 Rad 6)). The other result features a
polynomial radius bound, but it bounds only the average degrees ofvertices in the output
cover ’.

3.1. The construction of the cover. The problem ofconstructing a subsuming cover
is handled by reducing it to the subproblem of constructing a partial cover. The input
of this problem is a graph G (V, E), vI n, a collection of (possibly overlapping)
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clusters , and an integer k >= 1. The output consists of a collection of disjoint clusters
that subsume a subset _c of the original clusters. The goal is to subsume

"many" clusters of , while maintaining the radii ofthe output clusters in @- relatively
small. We now describe a procedure cover (), achieving this goal. The formal code
for the procedure is given in Fig. 1.

The general structure ofprocedure cover () is similar to the algorithms presented
in [P ], P2 ]. It starts by setting //, the collection of unprocessed clusters, to equal
The procedure then operates in stages, corresponding to the iterations ofthe main "repeat"
loop in the code of Fig. 1, which are henceforth referred to as the main stages. Each
main stage constructs one output cluster Y e -, by merging some clusters of //. The
stage begins by arbitrarily picking an input cluster O in //and designating it as the
kernel ofthe output cluster to be constructed next. The cluster is then repeatedly merged
with intersecting input clusters from o//. This is done in a layered fashion, adding one
layer at a time. This growth process is performed by iterations of the internal "repeat"
loop of the procedure, henceforth referred to as the internal iterations. At each such
internal iteration, the original cluster is viewed as the kernel Y, and the resulting cluster
Z consists of all input clusters in //that intersect Y. For the next iteration, Y is set to
the current Z. The merging process performed by the internal loop is carried repeatedly
until reaching the appropriate sparsity condition, specified as follows. Throughout the
process, the procedure keeps the clusters Y and Z also in an "unmerged" form, i.e.,
as collections , e containing the original input clusters from //that were merged
into Y and Z. The cluster Z is viewed as satisfying the sparsity condition when fl --<
] 1/k (meaning that the next internal iteration increases the number of clusters

merged into Z by a factor of no more than 11/k). Upon reaching this condition, the
current output cluster is finalized to be the kernel Y of the resulting cluster Z, and the
procedure adds Yto the output collection -. Also, every input cluster in the collection

is added to , and every input cluster in the collection e is removed from
Then a new main stage is started, constructing the next output cluster. These main stages
proceed until //is exhausted. The procedure then outputs the sets and .
repeat

Select an arbitrary cluster

z {s}
repeat

Y Usy s
z {SlSeU,

unU IZl Ill/lYl
HH-Z
VT VT U {Y}

until N
Output (P, OT).

/* set of unprocessed input clusters */
/* set of subsumed input clusters */

/* set of subsuming output clusters */
/* main stage */

/* initial kernel */

/* merge layers around kernel */

/* sparsity condition */

FIG. 1. Procedure Cover ().
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,--8

7",--0

repeat

(vTz,

until 7

/* is the collection of remaining (unsubsumed) clusters */
/* 7" is the output cover */

/* invoke procedure Cover */

FIG. 2. Algorithm Man.

It is important to note that the output cluster formed by each main stage consists
ofonly the kernel Y, and not the entire cluster Z, which contains an additional "external
layer" of clusters. The role of this external layer is to act as a "protective barrier"
shielding the generated cluster Y, and providing the desired disjointness between the
different clusters Y added to -.

Note that each of the original clusters in @ is covered by some cluster Y e
constructed during the execution of the procedure. However, some original clusters
are excluded from consideration without being subsumed by any cluster in -; these
are precisely the clusters merged into some external layer e . Therefore there may
be clusters left in after the main algorithm removes the elements of . This is why
a single application ofprocedure Cover by the main algorithm is not enough, and many
phases are necessary. (In contrast, the algorithms of[P ], [P2 can essentially be thought
of as based on a single application of a variant of this process, in which entire Z clusters
are taken into the output cover, yielding possibly wide overlaps.)

We now present the algorithm Ma+/-n, whose task is to construct a cover as in Theorem
3.1. The input to the algorithm is a graph G (V, E), VI n, a cover A’, and an
integer k >= 1. The output collection ofcover clusters - is initially empty. The algorithm
maintains the set of "remaining" clusters . These are the clusters not yet subsumed
by the constructed cover. Initially, 9, and the algorithm terminates once
The algorithm operates in (at most k[ S/I l/k) phases. Each phase consists of the activation
of the procedure Cover (), which adds a subcollection of output clusters - to
and removes the set of subsumed original clusters from . That the partial cover

" constructed by the procedure consists of disjoint clusters ensures that each phase
contributes at most one to the degree of each vertex in the output cover -. Algorithm
Main is formally described in Fig. 2.

3.2. Correctness and analysis of the regional cover. The properties of procedure
cover are summarized by the following lemma.

LEMMA 3.2. Given a graph G V, E), vI n, a collection of clusters t, and
an integer k, the collections - and constructed by procedure cover () satisfy
thefollowing properties:

subsumes l,
(2) Y f) Y’= for every Y, Y’ e -,
(3) 11 >= [l[-/,and
(4) Rad (-) _-< (2k Rad ().
Proof. First, let us note that since the elements of/at the beginning ofthe procedure

are clusters (i.e., their induced graphs are connected), the construction process guarantees
that every set Y added to is a cluster. Property (1) now holds directly from the
construction.
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Let us now prove property (2). Suppose, seeking to establish a contradiction, that
there is a vertex v such that v 6 Y f3 Y’. Without loss of generality, suppose that Y was
created earlier (i.e., in an earlier main stage) than Y’. Since v Y’, there must be a cluster
S’ such that v S’ and S’ was still in //when the algorithm started the main stage
constructing Y’. However, every such cluster S’ satisfies S’ N Y 4: . Therefore, in the
main stage that created Y, the construction step creating the collection from Y at the
last internal iteration should have added S’ into r and eliminated it from //, a contra-
diction.

Property (3) is derived as follows. It .is immediate from the sparsity condition
(governing the termination of the internal loop) that the resulting pair , e satisfies
el -< ll/kl 1. Therefore

which proves property (3).
Finally, we analyze the increase in the radius ofclusters in the cover. Consider some

main stage of procedure Cover in Fig. 1, starting with the selection of some cluster S e. Let J denote the number of internal iterations executed during this main stage.
Denote the initial set by r0. Denote the set &r (respectively, Y, ) constructed on
the ith internal iteration (1 =< =< J) by (respectively, Yi, lJi ). Note that for =<
-< J, ’i is constructed on the basis of /Ji, -/J and Yi IOsei S. We proceed

along the following chain of claims.
CLAIM 3.3. il >= l i/k for every 0 <= <= J 1, and strict inequality holdsfor

i>=l.
Proof. The proof follows by induction on i. The claim is immediate for 0.

Assuming the claim for >= 0, it remains to prove that

I&ril> l/klr;_l,

which follows directly from the fact that the sparsity condition was not met, since the
internal loop was not terminated. Z]

COROLLARY 3.4. It holds that J <= k.
CLAIM 3.5. For every <= <= J, Rad (Yi) =< (2i Rad ().
Proof. The proof follows by straightforward induction on i. The base case is im-

mediate, since Y1 S e . The inductive step follows from the fact that, for 2 =< =< J,

Rad (Yi) <= Rad (Yi + 2 Rad (),

since &ri_ is created from Yi_ by adding into it all //clusters intersecting it, and Yi
is simply a merge of all the clusters in ’i- 1. [-]

It follows from Corollary 3.4 and Claim 3.5 that

Rad (Yj) -< (2k Rad (),

which completes the proof of the last property of the lemma. Vq

We are now ready to prove Theorem 3.1.
Proofof Theorem 3.1. We must prove that, given a graph G (V, E), VI n, a

cover O, and an integer k >= 1, the cover - constructed by algorithm a+/-n satisfies the
three properties of the theorem.

Let i denote the set at the beginning of phase and let ri [i[. Let ’i
denote the collection - added to - at the end ofphase and let be the set
removed from at the end of phase i.
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Property (1) follows from the fact that - [--Ji i, Q [..Ji i, and, by
property (1) of Lemma 3.2, @- subsumes i for every i. Property (2) follows
directly from property (4) ofLemma 3.2. It remains to prove property 3 ). This property
relies on the fact that, by property (2) of Lemma 3.2, each vertex v participates in at
most one cluster in each collection -i. Therefore it remains to bound the number of
phases performed by the algorithm. This bound relies on the following observations. By
property (3) of Lemma 3.2, in every phase i, at least [ -> i[ 1/k clusters of
i are removed from the set i, i.e., r; / =< rg r]- /.

CLAIM 3.6. Consider the recurrence relation X +1 Xi X, for 0 < a < 1. Let
f n denote the least index such that X given Xo n. Then

1--n
f(n)< (1-a)ln2"

Proof. It follows from the definition off(n) that

n/2
f(n)<=+f(n/2),

(n/2)"

since x decreases by at least (n/2)" in each of the first k steps =< _-< k until x _-< n/
2. From this, we get (recalling that f aXdx aX/In a and a < 0) that

log

f(n)<=n-" (2"-x)<n-"Jx (2"-)Xdx=
= =0 (l-a) In 2"

Consequently, since ro
phases of algorithm a+/-n, and hence A(-) =< 2kl 5’1 /. This completes the proof of
the theorem.

4. The routing scheme. In this section, we describe our routing strategy and the
structures that it uses in the network. Our approach is based on constructing a hierarchy
of covers in the network and using this hierarchy for routing. In each level, the graph is
covered by clusters (namely, connected subgraphs), each managed by a center vertex.
Each cluster has its own internal routing mechanism (described in the following section ),
enabling routing to and from the center. Messages are always transferred to their destin-
ations using the internal routing mechanism ofsome cluster, along a route going through
the cluster center. It is clear that this approach reduces the memory requirements of the
routing schemes, since we must define routing paths only for cluster centers. However,
it increases the communication cost, since messages need not be moving along shortest
paths. Through an appropriate choice of the cluster cover, we guarantee that both over-
heads are low.

4.1. Tree routing. In this section, we discuss the basic tree routing component used
inside clusters. This component, used earlier in P2 ], is similar to (yet simpler than) the
one used in [ABLP]. It is based on a shortest path tree T rooted at a center r of the
cluster S and spanning the cluster. Routing messages to the root is a straightforward task.
We need a mechanism enabling us to route a message from the root, where the destination
is not necessarily in the tree (in which case, the message is to be returned to the root
with an appropriate notification).

This subproblem was treated in previous papers using a simple scheme called the
interval routing scheme, or ITR [SK], [PU]. This scheme is based on assigning the
vertices u e T a depth-first numbering DFS (u) and storing at a vertex u its own depth-
first search (DFS) number and the numbers DFS (u’) of each of its children u’ in the
tree. Then routing a message from the root r to a vertex v (assuming that r knows the
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value DFS (v)) involves propagating the message from each intermediate vertex u with
children Ul, uu (ordered by increasing DFS numbering) to the child u; such that
DFS u; _-< DFS (v) < DFS ui + (setting DFS uq + to oe ). In total, the communi-
cation cost of sending a message inside the cluster S is, at most, 2 Rad (S).

Using the ITR scheme for our purposes poses some new technical problems. First,
the scheme requires using the DFS numbers as routing labels, which interferes with the
name-independence requirement. This problem is solved in [ABLP] by introducing a
distributed data structure called the "tree dictionary." This data structure stores the data
items (name (v), DFS (v)) for every vertex v e S. (Recall that name (v) is the original
name of the vertex v, taken from the ordered universe U.) These data items are ordered
by original names as keys. The structure therefore enables the root to retrieve the DFS
label ofa vertex v, DFS (v), using its original name name (v) as a key, and thus eliminates
the need to know the DFS labels in advance by the origins.

The data structure is organized by simply storing the data items one at each node
of the cluster, in increasing name order, along the DFS tour defined on the tree T. That
is, the root r (with DFS (r) stores the first (lowest-keyed) item (corresponding to
the node w with the lowest name (w)), the second vertex u (with DFS (u) 2) stores
the next item, and so forth. Let K(u) denote the key (or name) of the item stored at u.
In addition to its own data item, a vertex u stores the key K(u’) for each of its children
u’ in the tree.

Let us now describe the process by which a processor v searches for a label DFS (w),
given an original name Nw name (w). It first sends a query to the root asking for the
item. There are three cases to be distinguished. IfNw < K(r), then the search immediately
ends in "failure." IfN K(r), then the searched item is stored locally at the root, and
the search is completed successfully. Finally, suppose that Nw > K(r). Let the children
of r (ordered by increasing DFS numbering) be Ul, uu. Advance the query to the
child ui such that K(ui) <= Nw < K(ui +) (setting K(uq + l) oe). The search now
proceeds by propagating the query downward in the tree, applying the same rule at each
intermediate vertex visited along the way (except that the first of the three cases cannot
occur at any other vertex but the root). In the case where the search arrives at a "dead
end" (i.e., a leaf u that does not store the searched item), the returned answer is again
"failure." The reply is finally returned to the root, which then forwards it to v.

Clearly, the cost of the search is, at most, 2 Rad (S). Also, maintaining the tree
dictionary involves the following memory requirements. Each vertex of S must store its
own item, as well as the first key of each of its children in the tree. This leads us to the
second problem introduced by using either the ITR scheme or the tree dictionary, namely,
that the memory stored at a vertex depends linearly on its degree and thus may be as
high as ft(n) in the worst case. This interferes with the balanced-memory requirement.
This second problem is handled in [ABLP] by proving that we can embed into any tree
a tree of "small" degrees, without paying too high a price in memory and without in-
creasing the depth of the tree "too much," where the degrees and depth are controlled
by some parameter k.

LEMMA 4.1 (see [ABLP]). For any rooted tree T, there exists an embedded tree
T’ on the same set of nodes and with the same root, but with a different set of edges,
so that

the maximal degree of T’ is 2n l/k;
(2) an edge ofT’ is a path oflength at most two in T;
3 depthT, v _-< (2k depthT (v) for every node v.
We construct for the given tree T an embedded tree T’ as in Lemma 4.1 and organize

the dictionary on the embedded tree T’, which is ofmaximal degree O(nl/k). By property
(1) of Lemma 4.1, each vertex of S must store O(n 1/ log n) bits. The length of the
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resulting search path is stretched by a factor of 2k by property (3) of Lemma 4.1.
Hence we now pay up to 4k. Rad (S) messages for the search ofDFS (u) in the dictionary,
for any u e V, regardless ofwhether u e S, plus up to 4k. Rad (S) messages for the routing
itself.

Summarizing, we get the following lemma.
LEMMA 4.2. For every graph G, cluster S in G, and integer k >= 1, the tree-routing

component described above guarantees the delivery of messages between vertices in the
cluster S (or "failure" messages in the case where the destination is not in the cluster)
with communication 8k. Rad (S) and requires using O(n 1/k log n) bits per vertex.

Let us remark that, in fact, the scheme actually used in [ABLP] is aimed at solving
a somewhat harder task than ours. It therefore uses a special type ofstratified tree structure,
which increases the resulting complexity. This feature is not needed here, and, conse-
quently, we use only the basic "tree dictionary." In the scheme as presented in ABLP],
both the memory requirements and the communication complexity are higher by a
factor of k due to this stratified structure.

4.2. Regional routing schemes. Each level in our hierarchy constitutes a regional
(C, m)-routing scheme, which is a scheme with the following properties. For every two
processors u, v, if dist u, v) =< m, then the scheme succeeds in delivering messages from
u to v. Otherwise, the routing might end in failure, in which case the message is returned
to u. In either case, the communication cost of the entire process is at most C.

In this section, we describe how to construct a regional (O(k2m), m)-routing scheme
using O(k. n/.log n) memory bits per vertex, for any integers k, m >= 1. The main
stage of the construction involves an application of Theorem 3.1. We start by setting
0 AlUm(V) and constructing a cover as in the theorem, with parameter k. Next,
we provide internal routing services in each cluster T by selecting a center (T) and
constructing a tree-routing component for T rooted at this center. By property of
Theorem 3.1, the cover subsumes Am(V); that is, for every vertex v V, there is a
cluster T - such that Nm(l) T. Consequently, we associate with every vertex v V
a home cluster home (v) -, which is the cluster containing Nm(V). (In the case where
there are several appropriate clusters, select one arbitrarily.) A processor v routes a message
by sending it to its home cluster center g (home (v)). The center uses the tree routing
mechanism to forward the message to its destination. If that destination is not found in
the cluster, the message is returned to the root and, from there, to the originator.

The correctness and complexity of the constructed regional scheme are dealt with
in the following lemma, relying on the properties ofthe tree-routing mechanism and the
constructed cover.

LEMMA 4.3. For every graph G and integers m, k >= 1, the mechanism described
above is a regional O(kZm), m)-routing scheme, and it can be implemented using
O(k. n /k. log n) memory bits per vertex.

Proof. Let us first determine the stretch guarantees of the scheme. Suppose that
dist (u, v) =< m for some processors u, v. By definition, v Nm(u). Let T be the home
cluster of u. Then Nm(u) T; so v T. Hence, by Lemma 4.2, the tree routing on T
will succeed in passing the message from u to v. Furthermore, regardless of whether the
message is delivered, the routing proceeds along a path of length at most 8k. Rad (T).
By property (2) of Theorem 3.1,

8k.Rad (g(T),T)<=8k(2k 1)m< 16km.

Implementing the routing scheme involves the following space requirements. By
Lemma 4.2, each vertex v must store up to O(n/ log n) bits for every - cluster to
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whom it belongs (i.e., for deg- (v) clusters). By property 3 ofTheorem 3.1, this degree
is O(k.n/k), since V’m(V) n. This gives a total of O(k.nZ/k.log n) bits per vertex.
Finally, note that substituting 2k for k in the construction modifies the memory bound
into O(k.n 1/. log n), while multiplying the stretch bound by 4. U]

4.3. The hierarchical routing scheme. Finally, we present our family ofhierarchical
routing schemes. For every fixed integer k >= 1, construct the hierarchical scheme as
follows. Let 6 [log Diam (G)]. For _-< _-< 6, construct a regional (O(]2mi), mi )-
routing scheme R;, where m 2 , as in the last section, using O(k.n /. log n) memory
bits per vertex. Each processor v participates in all 6 regional routing schemes R.. In
particular, v has a home cluster home (v) in each R and it stores all the information it
is required to store for each of these schemes.

The routing procedure operates as follows. Suppose a vertex u wishes to send a
message to a vertex v. Then u first tries using the lowest-level regional scheme R; i.e.,
it forwards the message to its first home cluster center g(home (v)). If this trial fails, u
retries sending its message, this time using regional scheme R2, and so on, until it finally
succeeds.

LEMMA 4.4. The hierarchical routing scheme g/t has Stretch (gcgk) O(k).
Proof. Suppose that a processor u needs to send a message to some other processor

v. Let d dist (u, v) and j [log d ] (i.e., 2- < d =< 2 J). The sender u successively
tries forwarding the message using the regional schemes R, R2, and so on, until the
message finally succeeds in arriving v. By Lemma 4.3, the regional scheme Rj will nec-
essarily succeed, if no previous level did. (Note that the highest-level scheme R has
m 2 >_- Diam (G) >= d and therefore will always succeed.)

Denote the total length of the combined path traversed by the message by o. By
Lemma 4.3,

J
p <= O(kZ2i)-<O(kZ2J+ )<=O(kZ)’dist (u,v). [-q

i=1

THEOREM 4.5. For every graph G and every fixed integer k >= 1, it is possible to
construct (in polynomial time) a hierarchical routing scheme with Stretch (gcgg)
O(k2), using O(k.n/.log n log Diam (G)) memory bits per vertex.

Proof. Construct the 6 [log Diam (G)] regional schemes Ri, as in the previous
section. The memory requirements of the hierarchical scheme are thus composed of 6
terms, each bounded by O(k. n/.log n) by Lemma 4.3. The total memory requirements
are thus bounded by O(k.n /k. log n log Diam (G)) bits per vertex. []

5. Discussion. Several problems remain open for further research. First, the trade-
off obtained here is still not optimal, and it is conceivably possible to reduce the stretch
factor of the routing schemes from O(k2) to O(k). It is also desirable to eliminate the
dependency of the memory requirements of the scheme on the edge weights.

The issue of efficient preprocessing, revolving around the problem of faster and
communication-efficient distributed algorithms for constructing a coarsening cover, was
studied further in [AP4], [LS]. In particular, the distributed asynchronous clustering
algorithm of AP4 has a global communication cost of O(E. log4 F/). The randomized
synchronous clustering algorithm of [LS] applies to the 1-neighborhood cover U (V)
and takes time O(log2 n).

Acknowledgments. The authors thank Steve Ponzio for pointing out an error in a
previous version of the paper. Thanks are also due to two anonymous referees, whose
comments helped to improve the presentation of this paper.
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CHVATAL CUTS AND ODD CYCLE INEQUALITIES
IN QUADRATIC 0 1 OPTIMIZATION*
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Abstract. In this paper a new lower bound for unconstrained quadratic 0 minimization is investigated.
It is shown that this bound can be computed by solving a linear programming problem of polynomial size in
the number of variables; and it is shown that the polyhedron STM, defined by the constraints ofthis LP formulation
is precisely the first Chvfital closure of the polyhedron associated with standard linearization procedures. By
rewriting the quadratic minimization problem as a balancing problem in a weighted signed graph, it can be
seen that the polyhedron defined by the odd cycle inequalities is equivalent, in a certain sense, with St31. As a
corollary, a compact linear programming formulation is presented for the maximum cut problem for the case
of weakly bipartite graphs.

Key words, unconstrained quadratic 0 programming, pseudo-Boolean functions, weighted 2-satisfiability,
maximum cut problem, Chvfital cut, Chvfital closure
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1. Introduction. The quadratic 0 minimization problem consists in determining
the minimum over { 0, } of quadratic polynomials of the form

1.1 f(x) qo + ., qixi + qijxixj.
<=i<j<=n

Since this problem is NP-hard, many approaches have been proposed to obtain good
lower bounds on its optimal value. In [20 several such approaches were proved to yield
exactly the same lower bound, called the roof-dual value off(x), and denoted here
by C2.

The simplest way of defining the roof-dual value is first to rewrite the problem
min {f(x)lx 0, 1} } by introducing new variables Y ij and constraining Yo to take
the value xixj for every x {0, }( =< < j =< n). We thus obtain the following
equivalent linear 0- program (see 2)"

min Lf(x, y) qo + ., qixi + .,
i=1 <=i<j<=n

subject to

(1.2)

y0->_0

xi- yij O

x- yij>- O

1-xi-x+ yo>-O

li<j<=n,

(1.3) xi5 {0, 1), l<=i<=n.
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Now let S[2 be the polyhedron described by the constraints (1.2). Then C2
min (Lf(x, y)[(x, y)e S[2]). Clearly, C2 is a lower bound on min

Some of the results of 20 were generalized in 9 ], where a hierarchy C2, Ca,
Cn of lower bounds was introduced, with the property that C2 --< Ca --< --< Cn
min (f(x)l x e (0, l)). The present paper is devoted to a further study of the
bound Ca.

We recall in 2 one ofthe possible definitions of the bound Ca as being the optimal
value of a linear programming problem C min { Zf(x, y) (x, y) e S[3] }. We give an
explicit description of the polyhedron S 3]by a system of linear inequalities involving all
inequalities (1.2), plus O( n additional inequalities (Theorem 2.3).

In 3, we prove that SE3 is nothing but the first Chvfital closure of St2 (Theo-
rem 3.3).

In 4, we first recall a transformation of the quadratic 0 minimization problem
into a weighted signed graph balancing problem. We consider a set-coveting formulation
(CC) (see formula (4.2) of this paper) of the latter problem, where the objective is to
cover all negative cycles of the signed graph by a minimum weight set of edges. Note
that the number of constraints of (CC) may be exponentially large in the size of the
graph. We establish in Theorem 4.2 that C3 is exactly the optimal value of the linear
relaxation of (CC).

We state in 5 an interesting corollary of Theorem 4.2: the relaxation of the max-
cut problem defined by all trivial and odd cycle inequalities [8], [17] can be expressed
as a polynomial-size linear programming problem (Theorem 5.1 ). In particular, the
max-cut problem for weakly bipartite graphs 5 ], [17] admits such a compact linear
programming formulation (see also 6 ).

The proofs of our main results rely heavily on algebraic manipulations ofpolynomial
expressions like 1.1 ). The remainder of this section contains some definitions and basic
observations about such expressions, which will be used throughout the paper.

A pseudo-Boolean function is a real-valued function defined on { 0, )" (for some
integer n). Every pseudo-Boolean function on 0, )" has a unique polynomial expression
of the form

(1.4) f(x,, x.) E qr 1- x,
TeA xeT

where V Xl, X2, Xn } is a set of 0 variables, A is a collection of subsets of V,
and qr 4 0 for all T A, and where I-Ix e x 1.

Let V { 1, 2, x, denote the set of complemented variables, where the
complement of a variable x; is defined by ; xi. The elements of L V U V are
called literals.

A posiform is an expression of the form

(1.5) (xl, ,x,, ,2,)= a I-I u,
Tft u T

where fl is a collection of subsets ofL, and ar> 0 for all Te 2. (For the sake ofsimplicity,
we may assume that the elements of 2 do not contain complemented pairs of variables.)
The degree of the posiform 1.5 is the maximum size of a set T 2.

Every posiform defines a unique pseudo-Boolean function f through the natu-
ral correspondence

f( Xl, ,Xn) (Xl, ,Xn,1, ,n) for all (Xl, ,Xn)e O, } n.
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In this case, is said to be a posiform off. Observe that a pseudo-Boolean function may
have many distinct posiforms.

The set of quadratic pseudo-Boolean functions forms a vector space, of dimension
/ n + (), over the reals. Let 22 be the cone generated by the set of nonnegative,

quadratic pseudo-Boolean functions having a posiform of degree two (quadratic posi-
forms), let 23 be the cone generated by the nonnegative, quadratic pseudo-Boolean
functions having a posiform of degree three (cubic posiforms), and let 2n denote the set
ofall nonnegative, quadratic pseudo-Boolean functions in n variables (a slightly different
definition of 2, 3, 2n was used in [9]; these definitions, however, can be proved to
be equivalent). Clearly, 2 - 3 --- 2, and the inclusions are strict.

Example 1.1. Let f( x, x2, x3) x x2 + x X3 / X2X3 Xl X2 X3 / 1. Then
fe 3, since f XlX2X3 / XlX2X3. f is not in 2, however.

It was observed in 9 that the cones 22, 3, n are finitely generated. We denote
by 90(2), 90(23), and 90(n) the sets of extremal elements of these three cones.

2. A linearization technique. We present in this section a precise definition and a
characterization of the bound C3. Our approach is based on a classical linearization
technique for nonlinear 0 optimization problems (see, e.g., ], 3 ], 4 ], 13 ], 15 ],
16 ], 20 ], 22 ], 24 ], 25 ], 27 or the survey 21 ]). We recall here the formulation

given in 9 ].
First, observe that there is a natural one-to-one correspondence between the quadratic

pseudo-Boolean functions over { 0, }"

(2 f( x)de qo + qi xi + ., qixix
i= -<i<j<=n

and the linear functions over R + ), given by

(2.2) f(x) *- Lf( x, y)def qo + , qi xi + , qoYi,
<=i<j<=n

where (x, y) denotes the vector (x, x,, Y2, Yn-,n) In+ (’).
Let Q denote the Boolean quadric polytope, i.e., the convex hull of the points

(x, y) Rn + )satisfying the conditions y xx, for -< <j =< n (see [25]) as follows:

(2.3) Q conv (x,y
xir{O, 1},i= 1, ,n

The minimization off(x) over { 0, 1} can be reformulated now as a linear pro-
gramming problem

(2.4) min Lf(x,y) s.t.(x,y)Q.

We say that a linear function

l(x,y)= 0+ Z lx + Z lyi
<-i<j<n

induces a valid inequality for Q if

V(x,y)Q’l(x,y)>--O.

The following observation is immediate, using the bijection f,--, Lf (see [9] and recall
the definitions of and () in ).
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Remark 2.1. A quadratic function f is nonnegative, i.e., f6 n, if and only if LT
induces a valid inequality for Q. Furthermore, f 3(n) if and only if Lf induces a
facet for Q.

Example 2.1. The functions x x2, x2 x xx2, x2 x2 x x2, and xlx2
x x2 + xx2 are quadratic and nonnegative. It follows that the inequalities Y12

0, Xl Y12 0, X2 Y12 0, and x x2 %- Y12 0 are valid for Q.
Now there is a natural way to introduce a relaxation of (2.4) by defining the

polyhedron S Ikl (for k 2, 3, n) as the set of vectors (x, y) satisfying the inequalities
Lg(x, y) >= 0 for all g M(k) and considering the minimization ofL( x, y) over St.
For k 2, 3, n, we define the lower bound Ck by

clef
Ck min {Lf(x,y)l(x,y)Stkl}.

Note that Q Stnl___ St3J Stl, and hence C2 --< C3 =< Cn min {f(x)[xe {0,
We leave it as an easy exercise to verify that 3(2) { HI) b/, I) L } (where L is the
set of literals), and hence that Stel is described by inequalities (1.2). As discussed in the
Introduction, C2 is the roof-dual value of f(see 20 ).

Our next goal in this section is to characterize more explicitly the polyhedron S
and hence also the bound C3. For this, we first need to describe the basis 3(3).

Consider the following sets of posiforms:

(2.5) 2={uvlu, vL} and tJ3={uvw+ff)fflu,v, wEL

As discussed above, M(_) M2. We show now that 3(3) 2 [,-J 3.
THEOREM 2.2. 2 to 3 is a basisfor 3.
Proof. Since uvw + u vw uv + uw + vw u v w + 1, 2 [J 3 is contained

in 3. Consider now a posiform 4, and assume that
can be written as a nonnegative combination of posiforms from 0 tO 33. To check
this, express in the form

(2.6) 4 bb+ , aT I-I U,
b o02 t_J 3 TA uT

where b >- 0 (b e 2 tO 3), aT > 0, IT[ 3 (T A), and AI is as small as pos-
sible (trivially, 4 can always be expressed in that form). Say ]A[ > 0, and let T
{ u, v, w } e A. Since 4 is a cubic posiform of a quadratic pseudo-Boolean function, the
cubic part of aT, uvw must be cancelled by some other cubic terms, which can only be
of the form if, v, w } (or { u, , w } or u, v, v } or ti, , v }. By symmetry, we may
assume that A contains a set T2 that is either 27, v, w } or if, , v }. We may assume

> a Then, using the identitieswithout loss of generality that aT T.

and

aT uvw + aT ffvw aT: aT)uvw + aT.: vw,

aT uvw + aTu vw (aT, ar) uvw + ate( uvw + ff ff, ),

the size of A can be reduced in (2.6). Since this contradicts our choice of (2.6), the
theorem is proved. Vq

As a corollary, we get the following theorem.
THEORZM 2.3. For every quadratic pseudo-Boolean function in n variables, the

bound C3 can be computed by solving a linear programming problem involving n + ()
variables and 4 + 4 constraints with 1, O, + coefficients.
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Proof. Applying Theorem 2.2, we get that STM is the polyhedron described by
the inequalities

(2.7)

yij>= O

xi nt- Yij <= 0
xj + yij <= O

xi + xj- Yij <=
x q- xj + Xk- Yij- Yik- Yjk -<

--Xi + Yij + Yik- Yjk <= 0
--Xj qt_ Yij- Yik q- Yjk -< 0

Xk Yij q- Yik + Yjk 0

<=i<j-<n,

<=i<j<k<=n.

3. Linearization and Chvfital closure. Let P be a polyhedron and let PI P be the
convex hull of its integral points. If b is an integer and a is an integral vector such that
aT(x, y) > b is valid over P, then aT(x, y) >= b + is a valid inequality for P. This
second inequality is called a Chvrtal cut for P. Let P’ denote the Chvrtal closure of P,
i.e., the polyhedron obtained by introducing all possible Chvfital cuts for P:

P’f{(u,v) a T( u, v) >_- b + for all integral a, b ]
with aT(x,y)> b for all (x,y)rP J

Defining pC0) p and PCk+l) pCk), for k 0, 1, we get a decreasing sequence of
polyhedra p0)

_
p)

_
pt. It was shown in [12] that if P is bounded, there is

always a finite index such that P pet) (see also [28] for rational polytopes).
The proof that SI21’ S 31 will rely on a couple of technical lemmas. Let us call a

posiform 1.5 integral if all coefficients aT T 6 2) are integral.
LEMMA 3.1. Let S { ul, ut be a subset ofthe literals, and let

l-1 l-I

(3.1) gs ff + "3t- U U "+" ff U + -Jl- bl bl

i=1 i=1

l-1 1-1

(3.2) hs
i=1 i=1

Then gs + 2qg and hs 2qh for some integral posiforms qg, qh 23.
Proof. The lemma is easily proved by induction on l, using the following observation:

for arbitrary literals { u, v, w }
_

L,

(3.3) 2(uvw+ ffv)q- --(uv-- ff(C))+(uw+ ffv)+(vw-C-(C)v).

The posiforms gs and hs defined by (3.1)-(3.2) will be called circulant posiforms.
LEMMA 3.2. Let g ’2 be a quadratic integral posiform such that g(x) is oddfor

every x { O, } n. Then g + 2h for some integral posiform h 3.
Proof. We can assume that all the coefficients ofg are 0 or and that g has as few

terms as possible. In particular, we can also assume that g is simple; i.e., no u and z7 or
no uv and u have positive coefficients at the same time in g (where u, v are arbitrary
literals).

If the term uv is present in g, then is also present. To see this, write g in the
form g uv + aft + bu + cv + d, where a is a 0 coefficient and b, c, d are functions
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not depending on u or v. Because g] u ,v + g] u ,v 0 + g] u 0, + g] 0. 0 must
be even, it follows immediately that a 1.

We can assume that there is no linear part in g. To see this, we note that if u
is present in g, then uv cannot be present for any v; indeed u + uv + ff uv + u +
uv + 2uv + , and hence g 2uv would also be an "odd quadratic posiform,"
with fewer terms than g from which the conclusion would easily follow. Then u, and
thus 7, are not involved in any other terms of g; hence g]u 0 and g[u-- can be of the
same parity only if both u and t7 are present, contradicting the simplicity of g.

Thus, in the nontrivial cases, we can assume that g is of the form

(3.4) g=
i,j) Jo i,j) Jl

for some disjoint sets J0 and J1 of pairs of indices.
Let do (xi) { i, j) J0 and d (xi) { i, j) e J 1.
do(xi) and d(xi) are of the same parity; i.e., do(xi) + d(xi) is even for every

variable xi. To see this let X denote the 0-vector, and let X’ denote the Boolean vector
different from zero only at the ith coordinate. Then g(X) g(X’) is even, but g(X)
g(X’) is equal to do(xi dl (xi ).

Consider now the graph G with vertex-set { 1, 2, n } and edge-set J0 U J.
Every vertex has even degree in G. By a well-known theorem of Euler, it follows that J0
U J can be partitioned into edge disjoint cycles. This partitioning is easily seen to induce
a similar decomposition of g into a sum of circulant posiforms.

The statement now follows immediately from Lemma 3.1 and the fact that g
is odd. U]

We now prove the announced statement.
THEOREM 3.3. STM is the Chvdtal closure of SI21.
Proof. To show that S[21’ STM, it is enough to prove that the constraints

L(x,y) >= 0 for bM( 3)\(2)

are valid inequalities for S[2]’. The posiforms b e 3( 3)\3(2) are exactly the posi-
forms b uvw + ff for some { u, v, w

_
L, by Theorem 2.2. Therefore, by (3.3)

Luw+w + 1/2 >-- 0 is a linear consequence ofSI21; hence Lvw+a >-- 0 is a proper Chvfital
cut for S 2.

For the converse relation, STM
_
S[-1’, we show that any Chvfital cut for S[2 is a

valid inequality for STM. Let us consider a nonnegative linear combination of the con-
straints describing S 2]

(3.5) at(x, y)- Z’= abLb(X, y) ->- O,
b O(2)

a >= 0. From this, we can obtain a proper Chvfital cut only if a is integral, {z’] > z
minx,y) st at(x, y) >= z’, and z is not integer. Here z is the optimum value ofthe linear
programming problem z min at(x, y) subject to L(x, y) >= 0 for all b (). Let
B denote the matrix of a dual optimal basis of this problem and let/3 r >_- 0 be the
corresponding dual solution, i.e., a r /3 rB. Lemma 4 in [25 states that any basic
submatrix of St-] can be transformed by elementary row and column operations to a
form, containing 0s everywhere, except 2 2 blocks in the main diagonal, all of which
have determinants equal to +2. This implies that there are unimodular matrices U and
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V such that the components of (UBV) -1 are all integer multiples of 1/2. Since 2/3 T

aTV(2(UBV)- U, it follows that the components of 2/3 are all integers. Now we have

aT(x, y)-- Z ibLb(X, y),
b (oo2)

(where the summation runs only over the basic elements of 3( 2)); hence 2z is an
integer and the resulting Chvtal cut has the form

(3.6) aV(x,y)>=z+1/2.

Furthermore, for this cut to be proper, 2z must be odd. Hence
clef

(3.7) g 2L 2z 23bb
b (2)

is a quadratic posiform with integral coefficients, which takes only odd values. Then
Lemma 3.2 applies, and g 3 follows. Thus Lg_ >_- 0; i.e., (3.6) is a linear
consequence of SI31. V1

Finally, we show that the bound C3 "strictly improves" on the roof duality bound

C2. This is stated more precisely in the following theorem.
THEOREM 3.4. Ifminx {0.},f(x) > C2, then C3 > C2.
Proof. By definition of C2, there is a quadratic posiform e 2 such that f

C2 + . Let (x, Y) Zu,vL auvUV, where au >= 0 for u, v e L. The inequality
min f(x) > C2 is equivalent to the fact that the quadratic Boolean equation

(3.8) k uv=O
auv 0

is inconsistent. This implies by [2] that there is a variable x and there are literals Ui,

1, k and vj, j 1, such that axu, aau+ for 1, k 1, aakx, a,
a+1

for j 1, 1, and a are all positive. Let us choose e > 0 such that 2e is
still less than any of these coefficients, and let ’ be such that

(3.9)
k-1 l-1

f=Cz+’We xu W fflx+ ffiUi+ lAt-.1)l-[-)l. -[- E )j1)j+
i=1 j=l

Here, by the selection of e, ’ is again a quadratic posiform. Thus to prove the theorem,
it is enough to show that the quadratic expression in the brackets can also be expressed
as the sum of a positive constant plus a cubic posiform. For this, let us consider the
identity 2ab ab + [ + a + b, where a and b are arbitrary literals. If we apply
this identity to every term in the brackets of (3.9), we get

2 xu + ffx + iUi + 1AV 21)1 + )l2+ Z )j1)j+
i=1 j=l

k-1

(3.10) (xuI+Y)+ , (iui++uii+)+(x+uY)
i=1

+ (21)1 +Xl)+ Z ()j1)j+ + 1)j)j+ 1)--(l2-- 1)lx)
j=l

Here both of the bracketed expressions are circular posiforms of the type (3.1); thus the
statement follows from Lemma 3.1. V1
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A weaker statement stating that all fractional vertices of S 2] are cut off by facets of
STM (namely, by the so-called "triangle inequalities," i.e., inequalities in (2.7) involving
three indices) has been shown in [25]. It is a direct consequence of Theorem 3.4, also.

Note that Theorem 3.4 provides an indirect polynomial time test for the tightness
of C2 (see 20 for a more direct approach). By contrast, it was shown in 9 ], 11 that
it is NP-hard to decide whether minx 0.1 , f(x) C3.

4. Odd cycles in signed graphs. The close relationship between quadratic 0-
minimization, on the one hand, and combinatorial problems like signed graph balancing
or max-cut, on the other hand, has long been noted and exploited (see, e.g., [8], [10 ],
18 ], 19 ], 21 ], 26 ], etc.). For the sake of completeness, we now recall the necessary
concepts (see [10] for a more thorough discussion).

Let G be a weighted signed graph, i.e., an undirected graph (V, E) together with a
set of positive weights Oele E E} and a bipartition {E+, E-} of the edge-set E. The
edges in E+ are called positive; those in E- are called negative. A cycle of G is called
odd if it contains an odd number of negative edges (odd cycles are often called negative,
or frustrated; we use this terminology to stress the analogy between the signed graph
balancing problem and the max-cut problem; see 5 ). The graph G is balanced if it has
no odd cycle 23 ].

The balancing problem for a weighted signed graph G is to find a subset F _c E of
the edges, the deletion ofwhich makes the graph balanced, and such that the total weight
of F, i.e., eeF Ole, is minimal. This problem can easily be converted to a quadratic
0 minimization problem. Let xi, E Vbe 0 variables associated to the vertices of
G. Let

def
(4.1) a Ole(XiXj-ij)3I- Ole(Xi,j3c-Xi,j).

(i,j) eE- (i,j) eE

Then the minimization of 4a over { 0, }lvl is equivalent with the graph balancing
problem for G, and an optimal set F is formed by those edges for which the corresponding
terms in 4a do not vanish at the optimum (see [19]).

Conversely, to a quadratic pseudo-Boolean function f, we can associate a weighted
signed graph Gf, such that the minimization of fcorresponds in a natural way to the
balancing problem for Gf. To see this, first consider the following definitions, inspired
by formula (4.1).

For variables x and y, an expression x)7 + Yy is called a positive bi-term, while
xy + Yy is called a negative bi-term.

If E denotes a collection of bi-terms such that no pair of variables is involved in
more than one element of E, and ae > 0 for e E, then the quadratic pseudo-Boolean
expression ZeE aee is called a bi-form. Note that 4(x) 4(Y) for every bi-form
and for every 0 vector x.

Bi-forms offer a natural representation of quadratic pseudo-Boolean functions, as
shown below.

Remark 4.1. (see [10]). For any quadratic pseudo-Boolean function f in the vari-
ables xl, ..., xn there is a unique constant ef and a unique bi-form f in the variables
x0, x, .-., xn such that

f( x, ,Xn) f qt- f(1,Xl, ,Xn).

We call qf the bi-form off. Note that, if f is given by its unique quadratic polynomial,
then cf and f can easily be found in O(/7 2) time. Hence, the minimization of f is
polynomially equivalent to the minimization of its bi-form.
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To a quadratic pseudo-Boolean function fand its unique bi-form 4f -eE aee,
we can now associate a unique weighted signed graph Gf, as follows.

The vertices of Gf correspond to the indices { 0, 1, n } of the variables of 4f,
and its edges correspond to those pairs i, j) for which there is a bi-term in finvolving
the variables X and xj.

An edge of Gf is called positive (negative) if the associated bi-term is positive (neg-
ative); the weight of an edge is the positive coefficient ae of the associated bi-term in f.

With these definitions, it is easy to see that as f, and thus the minimization of
f is equivalent to the balancing problem on Gf.

Example 4.1. Consider the quadratic pseudo-Boolean function given by

f= -3xl + 12Xz-X3 + 3x4 + 14x5

10xlx2 + 12xx3-6xlxs- 14x2x3 4- 4x3x4- 10x4x.

The unique bi-form of f is then

4f 5 (Xo.fl + .foX1 + 6 (XoX5 + .fo.fs) + 5 (Xl.2 4- -," 1X2)

+ 6(x x3 +.21.23) + 3(x.f5 +.fxs) + 7 (x2.f3 +.f2x3)

+ 2 (X3X4 + )3)4) 4- 5 (X4.5 4-

satisfying the equation f(xl, "", xs) 4/(1, x, ..., xs) 13; i.e., cf= -13. The
corresponding weighted signed graph Gf is given on Fig. 1.

Consider now the following "cycle coveting" formulation ofthe balancing problem
for GI:

minimize aey
eE

(4.2) (CC) s.t. ye>_- ’C6 ,
erC

Yer { O, 1} VerE,

where denotes the collection of all odd cycles for Gf.

positive edges

negative edges

FIG. 1. The graph Gf ofthe pseudo-Boolean function given in Example 4.1.
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The linear programming dual of the continuous relaxation of problem (CC) is the
"cycle packing" problem, below:

maximize c
C

(4.3) (CP) s.t. Cae VerE(Gf),
Ce

c>_-0

Denoting by v(CC) (respectively, v(CP)) the optimal value of (CC) (respectively,
(CP)), we can summarize the observations made so far in this section by the follow-
ing relationships:

(4.4) min f(x)--f min bf(x)=/)(CC)>I)(CP).
X{0,1} X6 {0,1} n+l

So cf+ v(CP) is a lower bound for the quadratic 0 minimization problem. The main
result of this section is stated in the following result.

THEOREM 4.2. For every quadratic pseudo-Boolean function f, C3 cf + v CP).
This statement complements the result proved in [10, Thm. 3.1], that C2 cf is

always equal to the optimal value of a further relaxation of the cycle packing problem.
The proof of Theorem 4.2 relies on a characterization of C3, which was established

in [9] and is restated below.
LEMMA 4.3. For every quadratic pseudo-Booleanfunctionf, C3 is the largest constant

c such thatf- c is a cubic posiform"

C3 max { c If- c + , OO3, C constant }.
Proof. See 9 ].
For the sake of simplicity, we do not distinguish in what follows between edges of

a signed graph and bi-terms of the associated bi-form. Thus, the notation e e E+ can
indifferently refer to a positive edge e (i, j) of G or to a positive bi-term (xi +
of OG. The same applies for the notation e E-.

Proof of Theorem 4.2. Let denote an optimal solution to problem (CP); i.e.,
v(CP) Zc. c. We construct a cubic posiform e 3, such that f cf+ v(CP) +
k, as follows. Observe that if C is an odd cycle in Gf, then ,eC e is a posiform of type
(3.1); hence Lemma 3.1 applies, and we have

f-- cfW dpf= cf + aee
eE(G:)

(Oe--ceC)e-J-CC(ece)
eE(Gf) Ce C

--f+ C C+[eE(Gc)(Oe--ceC)e-F Cg2cqcI
cf+v(CP)+J.

Since ff 3, the inequality C3 >- cy + v(CP) follows from Lemma 4.3.
For the converse inequality, let us use Lemma 4.3 to write f C3 + if, where J

3. Let also W C3 cf. We will show how to construct a feasible solution ofproblem
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(CP), which has an objective function value at least equal to W. This will imply W =<
v(CP), and hence C3 -< cf + v(CP), as required.

Now comes the construction of . By Theorem 2.2, k has the form

where u, v, w L are literals, and u, /uv, and u,w are nonnegative reals. Introducing a
new variable, x0, we now define

, , u( UXo + ao + Y u(UVXo + aro + , uvw( uvw + ar, .yu,,(uv+ ar)+ , .ruw(UVW+ a,),

where u, v, w are literals from L U Xo, Yo }, and 3’u, 3’uw are nonnegative reals obtained
from the /3’s. For this posiform r/, we have (x,..., Xn) rt(1, x,’", x,,)
n(0, Y, n), and thus

(4.5) f( x, ,Xn)-- Cf"-
If there is no cubic term in r, then r is a bi-form, and thus, by (4.5) and by the

uniqueness of f, we have W 0. Then the feasible solution 0 is as required.
If there are cubic terms in n, then, using (3.3),

"Y(4.6) "y,,vw(UVW+ ffv) =-- [(uv + ff)+(vw+ff.,)+(wu+ vff)] 3’----w
2

and we can represent r as a nonnegative combination of bi-terms, which we consider as
edges of an associated graph G, on the vertex set { 0, 1, ..., n ). Note that, if we do
not combine the coefficients of identical bi-terms after using identity (4.6), then
we can look at G, as a graph with parallel edges. In particular, to each cubic
term 3’,,,w(UVW + ffv) of 7, there corresponds an odd triangle C { (uv + ff),
vw + ff, ), wu + vff) } with weight 6c 7,,w/ 2. Let T { C, 6c) } denote the collection
of pairs of triangles and weights, corresponding to the cubic terms of 7, and let E
{ (e, re)} denote the collection of pairs of edges e (uv + ff) and weights 6e 3’uv
corresponding to the quadratic terms of ft. With these notations and with W’ W,
we have

(4.7) WW rt W + _, t3 e + , 6c ( -1+ , eI
e,re) E C,rc) T \ C

Assume now for a moment that the expression

(4.8) = , t3eeq- , t3c,e
(e,re)eE (C,rc)eT eeC

which appears in the fight-hand side of (4.7), is a bi-form. Then, from identities (4.5)
and (4.7), and using Remark 4.1, we can conclude that W’ W ,c,c)T 6c, 4,
bf, and G, Gf. Since all triangles C such that (C, 6c) e Tare odd cycles, the assignment

rc if C, rc) T,
c=

0 otherwise

clearly defines a feasible solution for problem (CP), with objective function value equal
to W. Thus we are done in this case.

Unfortunately, the expression given by (4.8) is usually not a bi-form. Indeed, the
same pair of variables may appear both in a positive and in a negative bi-term of, thus
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contradicting our definition of a bi-form. With this in mind, we say that two edges el
and e2 of G, are in conflict if they have the same endpoints, but their signs are different;
i.e., el (uv + ) and e2 (fly + fly) for some literals u, v. Note that el + e2 1.
This identity will be used in what follows to eliminate all conflicting pairs of edges
from G.

More precisely, we explain how T, E, and W’ can be iteratively modified in such
a way that the number of conflicting pairs of edges decreases at each iteration, while the
following properties are preserved (,): (4.7) remains valid, W’>= W, the coefficients in
T and E are nonnegative, and the cycles in T with positive weight are odd.

Observe that if we can maintain (,) while eliminating all conflicting pairs of edges,
then the expression 4 in (4.8) will eventually be transformed into a bi-form, and the
theorem will follow as above.

We now explain the transformation of Gn. All properties (,) hold originally.
If there is a pair (Ci, ci C. T for 1, 2, 6c, >= 15c2 in which exactly one pair of

edges ei C, 1, 2 are in conflict, let D (C1 tO C2)\ { el, e2 }. Then there is an odd
cycle Ca D. Let H D\ C3 and apply the identity

iSc,(-l+ e)+ic2(-l+ e)
ee Cl ee C2

eCl eeD

eeCl eeH

Thus, by replacing C, 6c by C, 6c c:) and C2, 6c) by C3, 6c) in T, and adding
(e, 6c) to E for e H, all the properties (,) hold.

If there is a pair (Ci, 6c), T for 1, 2, 6c, >= 6c, with k > conflicting pairs
of edges, say, elje C and ezje C2 are in conflict for j--1, ..-, k, then let H
(C tO C2)\ tO= el, e2 } and apply the equation

eeC eeC eeH

Thus, by replacing (C, 6cl by (C, 6c 6c2) and deleting (C2, 6c2) from T, adding the
pairs (e, 6c) to E for e e H, and modifying W’ by W’ W’ + (k 2)6c, we can
simplify Gn, still maintaining properties (,).

If there is a pair (a, 6a) e E and (C, 6c) T, 6a >= 6c such that a is in conflict with
b e C, then we have

’aa+6c(-l+ e)=(6a -6c)a+6c e.
eC eC\{b}

In this case, we delete (C, 6c) from T, replace (a, 6a) by (a, 6a 6c), and add (e,
to E for e 6 C\ { a }. If 6c >= 6 in a similar case, then

6aa+t3c(--l+ e)=6a e+(6C--6a)(--l+ece);
eeC eeC\ {b}
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thus we delete the pair (a, a) from E, replace (C, 6c) by (C, 6c 6a) in T, and add
(e, 6c 6a) to E for e 6 C\ { a }. It is easy to check that properties (.) still hold.

Finally, if(a, 6a) E and (b, 6b) E, such that a and b are in conflict, 6a 6b, then

6aa + 6bb 6b + 6a-- 6b)a,

hence deleting (b, 6b) from E, replacing (a, 6a) by (a, a b) in E, and modifying W’
by W’ W’ + 6b, (*) is still satisfied.

In each of the above steps, we delete also those pairs from E and T, which have
weight 0.

It is straightforward to verify that repeating these steps we can arrive to a form in
which there are no more conflicts, thus proving the theorem. []

Let us remark that the first half of the statement, the inequality C3 >= cf / v(CP),
also follows from the fact that the odd cycle inequalities are linear consequences of the
triangle inequalities, shown in [6 ], [25 ]. This linear dependency is implied by identity
(3.3), or by Lemma 3.1, which were used in our proof.

5. Consequences for the max-cut problem. An immediate and useful consequence
ofTheorems 2.2 and 4.2 is that a compact linear programming formulation can be given
for certain combinatorial problems, which are originally described by a (possibly) ex-
ponentially large set of inequalities.

One such problem is to find a maximum weight cut in a weakly bipartite graph.
More generally, given a graph G (V, E), let PB(G) denote the convex hull of

the incidence vectors of those subsets of edges that form bipartite subgraphs of G.
Given nonnegative weights ae (6’ E E) on the edges, the max-cut problem for G is
max eE OeYe subject to y 6 PB(G). (See 7 ], 17 ].)

A cycle of G is odd if it contains an odd number of edges (this is consistent with
the definition given in 4, if we consider G as a signed graph with negative edges only).
Let c be the collection of odd cycles of G. The following relaxation of the max-cut
problem was introduced in 7 ]:

(5.1) max aeYe,
eE

Ye<= CI vc ,
(5.2) eC

0 <= ye<= Ve6E.

It was shown in 17 that the separation problem for the system of inequalities (5.2)
can be solved in polynomial time. Hence, the LP (5.1)-(5.2) is polynomially solvable
by the ellipsoid method. Those graphs for which P(G) is exactly described by the con-
straints (5.2) are called weakly bipartite. It was proved in [14 that the graphs not con-
tractible to K5 are weakly bipartite.

We obtain now, as a corollary of Theorem 4.2, the following theorem.
THEOREM 5.1. The problem (5.1)-(5.2) is equivalent to a linear programming

problem involving n + variables and4 + 4 ’ constraints with 1, O, + coefficients,
where n IV[ 1.

Proof. To see this, let us switch to the variables Ze Ye (e E) in 5.1 )-(5.2),

min aeZe,
eE

(5.3) ., Ze " VC cg,
e6C

0 Ze VeE.
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Let v (respectively, I)2 denote the optimal value of 5.1 )-(5.2) (respectively, 5.3 )).
Clearly, v eE Ce V2. Let V { 0, 1, n ) and make G a signed graph by
assuming that all its edges are negative. Then problem (5.3) is just the linear programming
dual of problem (CP) corresponding to G. Hence, by Theorem 4.2, 1)2 C3 for the
corresponding pseudo-Boolean function f fG defined by

f(,x,, ,x,)= Z ,eX + "e(XX +XX).
(O,i)e E,i4=O (i,j)e E,i,j4O

(c,a 0, with the above definition). Thus, Theorem 2.3 implies the desired result. []

We remark that the above proof uses only the first half of Theorem 4.2. A similar
result to Theorem 5.1 has been proved in 6 (see also 25 ]).
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MINIMUM TIME BROADCAST NETWORKS TOLERATING A
LOGARITHMIC NUMBER OF FAULTS*

LUISA GARGANO" AND UGO VACCARO’

Abstract. Consider a network in which n processors are connected by communication lines and are allowed
to communicate with at most one other processor at a time. Broadcast is the task of transmitting a message
originated at one node to all other nodes in the network. Presented in this paper is a broadcasting scheme that
can tolerate up to k _-< [log nJ line failures; that is, it assures that each node in the network will receive the
message from the originator when up to k _-< [log n lines are faulty. The time required by the broadcast protocol
is minimum, except in some cases that might require one unit of time more than the minimum. Moreover, an
algorithm for constructing networks supporting the broadcast scheme and having approximately the minimum
possible number of lines is given.

Key words, communication networks, broadcasting, fault-tolerant communication

AMS(MOS) subject classifications. 05C38, 94C 15

1. Introduction. Consider a communication network consisting of processors that
communicate by exchanging messages through bidirectional channels. Broadcasting is
the process of delivering a message from a processor to all other processors in the network.
We represent the network by a connected undirected graph G (V, E), where the set
ofnodes Vrepresents the set ofprocessors ofthe network and the set ofedges E corresponds
to the communication lines between processors. Nodes connected by a line are called
neighbors. The processor that has a message to be delivered to all other processors is
called the originator. The model we consider in this paper assumes that the communi-
cation lines are bidirectional and obeys the following constraints:

each call requires one unit of time;
(2) any processor may participate in at most one call per time unit;
(3) any processor may only call a neighbor.
The broadcast problem and this model in particular seem to be of natural interest

in the design of distributed networks and parallel computing systems and have been
studied by several authors 2 9 ], ]- 15 ].

Consider a network G (V, E) and let the originator be the node u e V. The
broadcast time t(u, G) is the minimum number of time units necessary to broadcast
from u on G. The broadcast time ofthe network G, denoted by t(G), is the maximum
broadcast time from any node u of G. Let T(n) be the minimum of t(G) over all networks
with n nodes. Since the number of nodes that may have received the message from the
originator can at most double after each time instant, it is clear that T(n) >_- [log nq .1
The problem of constructing sparse communication networks having broadcast time
exactly equal to [log n] was first investigated by Farley 5 ], and several algorithms have
been subsequently given to improve on Farley’s results [2 ], [3 ], [8 ]. A recent result by
Grigni and Peleg [9] shows that the minimum number of communication lines of a
network having broadcast time [log n belongs to O(L(n )n), where L(n) is the
number of consecutive leading ones in the binary representation of n.
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Liestman 12 first introduced the important issue of fault-tolerant broadcasting.
Consider a network G (V, E) and let E’ c E be any set of edges, [E’[ =< k. The set of
edges E’ represents faulty communication lines and the subgraph G’ (V, E- E’)
represents the functioning part of the network. A k fault-tolerant broadcasting scheme
is a broadcast protocol that assures that any node in the network will receive the message
from the originator in presence of up to k line failures, i.e., when any set E’ of size
E’[ =< k is faulty. It is important to point out that in this model the sequence ofmessage

transmissions (calls) is fixed and cannot be changed when faults are detected.
In analogy with the fault-free case, we denote by tk(u, G) the minimum time needed

for a k fault-tolerant broadcast from the vertex u to all the other nodes in G. Moreover,
we define the k fault-tolerant broadcast time of the network G, tk(G), as the maximum
of t(u, G) over all nodes u in G and denote by T(n) the minimum of tg(G) over all
networks with n nodes. The study of the function T(n) was initiated by Liestman [12
who provided the following lower bound:

Tk(n)>flogn]+k forn-2>=k=>1.

Moreover, Liestman proved that

and

T(n) [log n]+

{logn]+2 ifn>-5, n4=2 i-1
T2(n)

flog n] + 3 if n >= 7, n 2 1.

The problem ofestablishing general upper bounds on T(n) was considered by Peleg
and Schiffer [15] and by Maddaluno [13 ], who showed that T(n) =< [log n] + 2k + 4.
Moreover, Peleg and Schiffer provided an alternative k fault-tolerant broadcast scheme
that has a better performance when k )) log n.

The above papers left open the problem of determining the exact value of T(n)
for k >= 3, that is, the problem of designing k >= 3 fault-tolerant broadcasting schemes
which require minimum time. This is the problem we consider in the first part of the
work. In particular, in 2 we present a broadcasting scheme on an even number ofnodes
that can tolerate up to k -< [log n/line failures and that can be completed in {log n] + k
(i.e., minimum) time units. In 3 we modify the broadcast scheme of 2 so that it can
be applied to an odd number of nodes. We show that the number oftime units required
to complete the process is at most one more than the lower bound. These results allow
us to determine the values of T(n), n >= 8, as shown below:

{ log n] + k for n even and k =</log n/or

n odd and k _-< [log (2rlg nl--n + )J;

[log (n- )] + k + for n odd and k satisfying the two inequalities

Tk(n) k>=2lgnl-n- +{log (2lgm- n + )3,

k_-</log (n- )1;

[log n] + k or [log (n- )] + k +
for n odd and the remaining k llog (n- )/.

In the second part of the paper we consider the problem of constructing sparse
broadcast networks supporting minimum time k fault-tolerant broadcasting schemes.
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This problem has been studied in [4] and [12] in the case where k 1, 2. In 4 we give
an algorithm to construct broadcast networks having O(n(k + [log n])/2) edges that
support the k fault-tolerant broadcast protocols presented in 2 and 3. This implies
that the number of edges of such networks differs from the minimum possible number
of edges of any broadcast network tolerating a logarithmic number of faults in at most
a constant factor. In particular, for each k =</log n], they have the minimum possible
number of edges when n is a power of 2.

2. Fault-tolerant broadcast--an even number of nodes. In this section we provide
an algorithm to perform k fault-tolerant broadcast on n processors in minimum time,
that is, in [log n] + k time units, for any n even and k -</log n ]. In this and the next
section we will assume that the network is represented by a complete graph.

For the sake of simplicity, let the n processors (hereafter simply referred to as nodes)
be labeled by the integers { 0, 1, n }, n >= 8. Let us first describe the general
strategy of the broadcast. We recall that the goal of the k fault-tolerant broadcasting
process is to create k + edge-disjoint calling paths from the originator to each node in
the network. Moreover, we want to ensure that the message sent by the originator reaches
each node within [log n] + k time units.

We proceed in two steps. In the first step each node receives the message
exactly once. During the second step the remaining k paths from the originator to each
node are created. The task of the first step is accomplished in the following way: At
time unit 1, the node set is divided into two subsets of consecutive numbered nodes,
{ O, n/2 1} and { n/2, n 1}. The originator calls a node in the subset it
does not belong to. In this way there are two equally sized subsets of nodes and in each
one there is an informed node. The node that has been called by the originator will
broadcast on its subset, while the originator continues broadcasting on the other half of
nodes. In general after time unit each informed node has to broadcast on a set of
consecutive numbered nodes. This set is divided into two subsets of consecutive num-
bered nodes such that either they have equal size or the one the informed node belongs
to has one element more than the other. The informed node calls a node in the other
subset, which will broadcast on it, while it continues broadcasting on its subset. The
process continues for [log n] time units at the end of which there is a calling path
from the originator to each node in the network. During the second step the nodes in
{0,..., n/2-1} exchange calls, for k consecutive time units, with nodes in
{ n/2, n }. The second step creates the remaining k paths from the originator
to each node in the network.

Let 0 be the originator and the number n of nodes be even. In order to formally
describe the first step, consider the following partition of the node set 0, n }
into sets A1, Arlog na + defined by

(1)
+ 1,

2_
for t= 1, ,flog nl

Arog m + 0 }.

Note that the sizes of the sets At satisfy the following relations:

(2) [At[ e.{[n/2tq,[n/2t] 1}

and

(3) [n/2t-I=n , IAil.
i=1
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Consider then the following broadcast scheme from 0 to { 0, n }.
Time unit 1. 0 calls the node n e A1 that, during the following [log n] time

units, broadcasts to the n/ 2 =< 2 log nl nodes in A 1;

Time unit (2 =< =< [log n]). 0 calls the node [n/2tq eAt that, during the following
[log n] time units, broadcasts to the ]At] =< 2rlgnl -t nodes in At.

The broadcast from the informed node in At to the other nodes in At can be performed
in [log n] time units according to the protocol previously outlined. We should point
out, however, that any of the known algorithms (e.g., 3 ], 5 ], 8 ], 9 can be applied,
since At --< 2tlg m t. Therefore the above broadcasting scheme, in absence ofline failures,
informs each node in the network in [log n] time units.

Example 1. Let the node set be { 0, 9 }. One has A1 { 5, 6, 7, 8, 9 }, A2
{3, 4},A3 {2},A4 (1}, andA5 {0}. A calling tree on the node set {0, ..., 9},
constructed according to the above rules, is given in Fig. 1.

To obtain a k fault-tolerant broadcast protocol it is necessary to introduce some
redundancy into the above scheme. To achieve this, we introduce a second series of calls
referred to as the second step. It consists of calls exchanged between nodes in the set
{ 0, n/2 } and nodes in { n/2, n }, for k consecutive time units. As we
analyze the second step, time unit will denote the tth time unit of the second step,
unless otherwise specified.

During the second step each node (if informed) calls according to the follow-
ing rule.

Time unit =< _-< k _-</log nJ). Each node x { 0, n } (if informed)
calls node f}n)(x) defined as

(4)
,- + x@

f}")(x)
ifx<n/2,

ifx>=n/2

where @ and @ denote, respectively, the subtraction and the addition modulo n2.

9 2 1

6 7 8 4

FIG. 1. Broadcast treefor n 10 nodes.
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Note that f}n)(f}n)(x)) x, that is,

(5) f}")(x) y if and only iff})(y) x,

and that

(6) f})(x)q=fn)(x) for each s and such that <=s<t_-</log nJ.

Since the even integer n can be arbitrary but it is fixed, for sake of simplicity we will
writer(x) for f}")(x) throughout the rest of this section.

We will show that the calls of the first step followed by the calls of the first k time
units of the second step give a k fault-tolerant broadcast protocol; that is, each node
receives the message along k + edge disjoint paths, within the kth time instant of the
second step.

An informer of a node x at time is any node a from which x receives the message
(in the absence of failures) during the first time units ofthe second step. More precisely,
a is an informer of x at time if either a x or the calls of the first time units of the
second step form a path

(a,f,(a) a)(al,f2(al) a2)’" "(ar-1,fr(ar-1)--- X),

for some integers il, i2, ir, <= r <= t, such that <= i < < ir <= t. We denote
by inf (x, t) the set of informers of x at time t. Formally, inf (x, 0) { x } and for each

_-< [log n] we have inf (x, t) x tO a there exist integers _-< i < < ir <- such
that fr(’" "(fl (a))) x }. From the definition of inf (x, t) and from (4) and 5 we get

inf (x,t) inf (x,t- )tO { al exist =< il <’’" < is<= t- withf(fs(...(fl(a))))= x}

=inf(x,t-1)tO{a[ existl<=il<...<is<=t-1

withf-s(...(fl(a)))=f(x) } tO {f(x)

and, therefore,

(7) inf (x,t)=inf (x,t- )Uinf (f(x),t- ).

Example 2. For n 10 and x 3 we have

inf(3,0)= {3},inf(3, 1)= {3,8},inf(3,2)= {1,3,6,8},
inf(3,3)= {0, 1,2,3,5,6,7,8}.

The paths to node 3 from its informers are shown in Fig. 2; their edges are represented
by solid lines. Dashed lines represent the edges used during the first step.

The following properties of the sets inf (x, t) will be useful to prove the correct-
ness of the proposed broadcast scheme. Let St be the set formed by 0 and the 2 t-

possible sums of elements in [A2[, [At }, e.g., S1 { 0 }, $2 { 0, [A2[ }, $3
{0, [Az[, [A31, [Az[ / [A31}, and so on.

Property 1. For each node x and time instant t, <= t <=/log n/,

inf(x,t)={{x@zlz6St}tO{n/2+(x@z)lz6St} ifx<n/2,

{xozlzeS,}tC{n/2+(xz)lzeS,} ifx>=n/2.

Property 2. For each node x and time instant t, _-< _-< llog n], the set of inform-
ers of x at time t, inf(x, t), is equal to a set {al, a:zt} with a < a2 < <
a2t satisfying

(8) n+(al-a2t),ai-ai_16{[n/2tq,[n/2t] 1}, i=2, ,2 t.
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/

/

f2(6)=3

0

3 2 1

8

fl (8)=3fl (7i=2 fl (1!)=6(7)=5 f2(2)=5 f2 (1)=3
21

fl (0)=5

(5)=3 (7)=3 (2)=3 (0)=3
3 321 32 31

FIG. 2. Broadcast for n 10: Paths to node 3 from its informers are represented by solid edges; dashed
edges represent those used during thefirst step.

Property 3. For each node x and time instant t, _-</log n/,

inf(x, t- )Ainf(f(x),t- )- .
The proofs of Properties 1-3 are given in Appendix 1.

A t-path to a node x is any calling path from the originator to x formed by calls of
the first step and of the first time units of the second step.

Given a t-path Pro a node x, there exists exactly one node I(P) inf (x, t) such that
P RQ where

R is a path, created by the calls of the first step, from the originator to I(P);
Q is a path from I(P) to x which is created by the calls of the first time units
of the second step; that is, Q (I(P), f,(I(P)) al)(al, f_(al) a2)’"
(air-1, fir(air--1) X) for some integers l, i2, ir such that =< < <
ir <- t; Q is empty if I(P) x.

As an example, consider the calling tree of Example 3 given in Fig. 2: the 3-path P1
(0, )( 1, 6)(6, 3) from 0 to 3 has R (0, 1) (dashed line), Q1 1, 6)(6, 3) (solid
lines), and I(P1) 1; the 3-path P2 (0, 2)(2, 5)(5, 3) has R2 (0, 2), Q2
(2, 5)(5, 3), and I(P2) 2.

LEMMA 1. Let P RQ be a )-path from the originator to node x and P’
R’Q’ be a (t )-path from the originator to f(x). The paths P and P’(f(x), x) are
edge disjoint ifand only ill(P) and I(P’) do not belong to the same set Ai, for any
{ ], -.., flog n] }.

Proof. Necessity. Since the first step creates a tree in which the subtrees of the
originator have node sets A, Arlogna, if I(P) and I(P’) belong to the same Ai for
some then the paths R and R’ share the first edge, that is, the edge from 0 to some node
in A;.

Sufficiency. Suppose that I(P) and I(P’) do not belong to the same subtree (i.e.,
to some set Ai ). Since the calls of the first step create a tree with subtrees having node
sets A1, Arlognl, it follows that the paths formed by the first step R and R’ are edge-
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disjoint. Moreover, since the edges used during the first and the second step are different,
there cannot be common edges between the paths R and Q’(f(x), x), or the paths R’
and Q. It remains to show that the paths Q and Q’(f(x), x) are edge-disjoint. Suppose
first that Q and Q’ share an edge (a, fr(a)), for some _-< r =< 1. We can write

Q=(a,fr(a))’y and Q’=i3’(a,fr(a))7’ or Q’=’(fr(a),a)’y’.

This implies that a e inf(x, and a e inf(f(x), 1), which contradicts
Property 3. Finally, since Q a(f(x), x) for some s _-< 1, from (6) we get that the
edge (f(x), x) does not appear in Q and the paths Q and Q’(f(x), x) are edge dis-
joint. [2]

We are now able to prove the desired result.
THEOREM 1. The sequence of[log n] calls performed in the first step followed by

the calls of the first k <= [log n] time units of the second step gives a k fault-tolerant
broadcast protocol.

Proof. We show that the calls of the first step followed by those of the first k time
units of the second step create k + edge disjoint paths from the originator of the
broadcast to each other node. The proof is by induction on k. For k 0 the above
assertion is true since each node receives the information during the first step. Suppose
the theorem is true for k 1; we prove it for k, k -_< [log nl.

Given a node x, by the inductive hypothesis after the first (k time units of the
second step there exist k edge disjoint paths, P0, Pk-1, from the originator to x.
Write them as P; RiQi and let

I(Pi)eAre fori=0,.’.,k-1.

Moreover, let P R’oQ’o, P’l R’l Q’l, be all the (k )-paths toil(x).
We show that there exists aj such that P0, Pk- l, P(J(x), x) are edge disjoint.

The proof is by contradiction. Therefore we suppose that for each j the paths P0,
Pk- l, P}(fk(X), X) are not edge disjoint. By Lemma 1, this implies that for each j there
exists an i, 0 _-< =< k 1, such that I(P) Are. Since by the inductive hypothesis k of
the paths P’ from 0 toil(x) are edge-disjoint, by Lemma we obtain that for each r
1, [log n]

(9) there exists an such that I(Pi )eAr: there exists aj such that I(P)eAr.
We distinguish two cases.
Case 1. There is at least one index r; such that ri >= k + 1, for some 0 =< =< k 1.

Using and (2), we get Are <= Ak + <= n / 2 k + 1]. From (9), it follows that there
exist two informers ofx at time k, namely I(Pi and some I(P) inf (J(x), k
inf (x, k), which both belong to Are. Therefore denoting the absolute value with ]1.
we get

III(e)-I(ej)ll IAril- =<In/2+ ]-1 <[n/2] 1,

contradicting Property 2 which states I(Pi I(P)) n / 2 k 1.
Case 2. All indices r;, for 0 =< =< k 1, are less than or equal to k. Consider the

following two subcases.
(a) inf(x, k- 1) c U= Ag

Relation (9) implies that also inf (J(x), k -c uik= A; In fact, by definition
of informer, for each I inf (J(x), k we can find a (k )-path P’ to
J(x) with I I(P’). Therefore we get that inf(x, k) f) (V- u,-k= iAi) .
It follows that there exist n Y/= Ail consecutive numbered nodes, none
of which is an informer ofx at time k. From this we get that writing inf (x, k)
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as {a, a2k) with a < < a2k either n + (a a2) or al- al+, for
some assumes a value not less than n Z= Ail + Using(3)weget
that n = Ai + >- n/2 k ] + 1, contradicting Property 2.

(b) There exists a node I such that I inf (x, k fq Ar for some r > k.
Let P RQ be the (k )-path to x such that I(P) I. First we show that
there exist k paths among P0 RoQo, Pk- R_Q_ which are
edge disjoint with P. Since I(Pi) Ari 4 Ar for 0, k 1, the paths R
and Ri, formed by calls of the first step, are edge disjoint. If the path Q shares
an edge with at most one path Qi, for some -< k 1, the above assertion is
trivially true. Suppose on the contrary that Q shares edges with two paths Qi
and Qj, for some i, j =< k 1. There must exist r, s, with =< r < s =< k
such that

and

Q A(a,fr(a))B(b,f(b))C

Qi=Ai(a,fr(a))Bi or Qi=Ai(fr(a),a)Bi, and

Q=B(b,f(b))C or Q=B(f.(b),b)C

with (b, fs(b)), (f(b), b) q Bi, since Qi and Qj are edge disjoint. As illustrated
in Fig. 3, it follows that from the node a there are two different paths to x,
which implies that for some time instant t, with s =< -< k 1, a appears twice
as informer ofx at time t. Hence for some time unit < k and node y we have
a 6 inf(y, t) fq inf(f + (y), t) contradicting Property 3. Therefore we have
that for some index i, 0 =< =< k 1, the paths Po, Pi- , Pi + 1, Pk- l,

P are edge disjoint. On the other hand, I(P) Ar, with r > k + 1; i.e., the paths
Po, Pi-, Pi +, P-l, P satisfy Case 1, and we can again derive a
contradiction (ifwe suppose that none ofthe paths P(fk(X), X) is edge-disjoint
from each of the paths Po, Pi- 1, Pi / , P- , P).

B

fs!b)

.,_f..J fr (a)

".k.
Bi

m

ft (y) /

FIG. 3. Illustration ofCase 2(b) ofLemma 1.
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Therefore there exist k + edge-disjoint paths from the originator to x at time k, and
the theorem is proved.

3. Fault-tolerant broadcast--an odd number of nodes. Let the number n of nodes
in the network be odd. In this section we prove that it is always possible to perform a k
fault-tolerant broadcast in [log n] / k / time units, for each k =< log (n )/.
We show that if k is greater than a certain value, depending on n, it is not possible to per-
form a broadcast in time less than [log n] + k + 1. Finally, we show that for some k =<
[log (n )1 it is possible to perform a k fault-tolerant broadcast in optimal time
[log n] + k.

First we give an upper bound that holds for all k =< llog (n )1.
THEOREM 2. For each odd integer n, it is possible to perform kfault-tolerant broad-

cast in time log (n )] + k + for each k =</log (n )j.
Proof. Let the node set be 0, n } with n odd, and the originator be the

node n 1. The idea is to apply the broadcast scheme of 2 to the even-sized set of
nodes { 0, n 2 } with the following modifications: In the first step ofthe broadcast
the calls that should be made by 0 are now performed by n 1, which will also call 0 at
time flog (n )3 + 1; the second step consists of calls exchanged for k consecutive time
units among nodes in {0, n 2 according to rule (4). Note that (4) can be
consistently applied since the size of 0, n 2 is even.

More formally, partition the set {0, n- 2 } into sets A1, Arlog(n-1)1 +l as
described in ); that is,

1, ,flog (n- )], Arlog(n -1)1+ { 0 }.

Consider the following scheme:
First step. Time unit 1. The node n calls the node n 2 6 A1 that, during the

following Flog (n ] time units, broadcasts to A 1;

Time unit t, (2 _-< <- Flog (n )). The node n calls the node [(n )/2 ]

At that, during the following Flog (n )] time units broadcasts to At;
Time unit Flog (n )] + 1. The node n calls the node 0.
Second step. The nodes numbered from 0 to n 2 exchange calls for k consecutive

time units according to the previous rule (4); that is, at time unit t, =< _-< k, each node
xe {0,..., n- 2} calls node

n-1

f}’-(x)
+ x@

2t
ifx<(n- 1)/2

ifx>_- (n )/2,

where @ and @ denote, respectively, the subtraction and the addition modulo (n )/
2; the originator does not make any call in the second step.

The calls of the flog (n )] + time units of the first step followed by the calls of
the first k time units ofthe second step produce a k fault-tolerant broadcast. This follows
from Theorem applied to nodes 0, , n 2. In fact, let us first note that the originator
n does not need to be called. Moreover, for each node x 4 n the following two
relations hold:
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(i) whenever the k fault-tolerant broadcast from 0 to 0, n 2 } (defined
in 2) creates a path to x of the type P (0, [(n )/2tq)P’, -< =< flog (n )]
the above broadcast from n-1 to {0,-.-,n-1 } creates the path (n-1,
[(n )/2tq)e’;

(ii) if the k fault-tolerant broadcast from 0 to { 0, n 2 } (defined in 2)
creates the path to x of the type Q (0, f(n-1)(O))Q’, for some =< s -< k, the above
broadcast from n to 0, n 1} creates the path (n 1, 0)(0, fn-1)(0))Q’.
Since Theorem tells us that there exist k + edge disjoint paths from 0 to x--ofwhich
at most one can be of the type in (ii); otherwise, 0 appears twice as an originator of x
contradicting Property 3--it is easy to see that also in this case there are k + edge
disjoint paths from n to x. Noting that in Theorem we do not distinguish node 0,
that is, 0 also receives the message along a new disjoint path at each time unit of the
second step, the theorem is proved. Vq

Example 3. Consider n 11 and k 2. Fig. 4 shows the calling tree resulting from
applying the above scheme. In the figure only the three edge disjoint paths to each node
are represented.

Note that in case n 2rlgn 1, it holds that Flog (n )q + k + Flog n] + k.
The following result is a generalization of the lower bound for k 2 presented in

[12]. An equivalent result is also reported in [15].
THEOREM 3. Let n be an odd integer. For each k > 2rlg n r/ +/log (2rlg nl

n + )J it is not possible to perform k fault-tolerant broadcast to n nodes in less than
Flog n] + k + time units.

Theorem 2 gives an upper bound on the k fault-tolerant broadcast time for all k _-<
llog (n )J. We now show that for some small k it is possible to perform a k fault-
tolerant broadcast protocol in time Flog n] + k.

THEOREM 4. Let n be an odd integer. For each k <= Flog (2rlg nq n + )3 it is
possible to perform kfault-tolerant broadcast to n nodes in Flog n] + k time units.

Proof. Again we modify the method used in case of an even number of mem-
bers. Suppose that the originator is the node n 1. Let k be an integer such that

10

9 3

6 7 8 4

5 2 3 0 4 3 2

0

FIG. 4. 2 fault-tolerant broadcast according to Theorem 2 for n 11 nodes.
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[(n / 2 k ] + --_< 2 log nl k Consider the partition of { 0, n 2 } into sets A 1,

Ar og (n- 1)1 + as defined in ), that is,

2t
+1,..., 2t_

=1, ,[log(n-I)], Arlog(n-1)l+={0},

and partition the set { 0, n ) into k + subsets C1, Ck +, with Ci Ai,
flog(n-1)l+l mi U {n- 1} {0, n- 1)for 1, .-., k, and Ck+ Ui=+

U= Ai. Note that by (3) and the definition of k, we have C +11 [(n )/2 g ] +
<- 2 log nl .

Consider the following calling scheme:
First Step. Time unit 1. The originator n calls the node n 2 e C A1 that,

during the following [log (n )] time units, broadcasts to C;
Time unit _-< k. n calls the node [(n )/2t ] e Ct At that, during the

following [log (n )] time units, broadcasts to Ct;
Time unit k + 1. n begins the broadcast to the (n )/2 k + ] =< 2 og,1 g

nodes in the set C + ; the broadcast will be completed within time [log n].
Second step. The nodes numbered from 0 to n 2 exchange calls for k consec-

utive time units according to rule (4); that is, at time unit t, =< _-< k, each node x
{ 0, n 2 } calls node f 1)(x); the originator n is inactive.

Since relations (2) and (3) hold on nodes 0, n 2 for each time unit less or
equal to k, Properties 1-3 hold. The proofs ofLemma and Theorem can be repeated
to show that the calls of the [log n] time units of the first step followed by the ones of
the first k time units of the second step produce a k fault-tolerant broadcast (note that
for each time unit -< k the node set Ct At of the subtree, rooted in the originator,
formed by the calls of the first step from time instant to time instant k is the same as
that considered in Theorem ).

It remains to find the maximum value of the integer k for which the above scheme
works, that is, the maximum k satisfying [(n- )/2 ] + <- 2rlg nl -k. Solving the above

10

9

6 7 8 4

5 2 3

3

4 8 6

9 7 0

2

7 5

6 9 4

0 3

FIG. 5.2 fault-tolerant broadcast according to Theorem 4 for n 11 nodes.
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inequality we obtain that the given scheme allows a k fault-tolerant broadcast in time
[log n] + k if k -< Llog (2rlgm n + )J.

Example 4. Consider n 11 and k 2. We have C A { 6, 7, 8 }, C2 A2
{ 3, 4 }, Ca { 0, 1, 2, l0 }. The calls of the first step and those ofthe first two time units
of the second step are represented in Fig. 5.

4. On the number of edges of fault-tolerant broadcast networks. We have assumed
to this point that the network is a complete graph, with nodes labeled from 0 to n
and that the originator of the broadcast is node 0. In this section we study the number
of edges needed to construct sparse fault-tolerant broadcast networks supporting our
broadcasting scheme, when any node can be the originator.

We first derive a lower bound on the degree of each node in a network with k fault-
tolerant broadcast time [log nq + k. Consider the originator of the broadcast. Since the
first k calls from the originator can use faulty edges, the calls from time k + to k +
[log nq must give a broadcast. Let at be the node the originator calls at time k + t. Within
time [log n] + k at most 2lgn- nodes can be reached from at. Therefore ifthe originator
calls r times after time unit k it must hold that

2 log nl 2 log nl 2 log n] n 1.
t=l

From this we get that the degree of the originator cannot be less than k + log n]
Llog (2rlg n /7 -I- )J. This gives a lower bound of

n
(10) -(k+[logn]-[log(2rlg-n+ 1)J)

on the number of edges in a network with k fault-tolerant broadcast time equal to
[log n] + k.

We now consider the number of edges needed to construct a network supporting
the broadcast scheme introduced in 2. Moreover, we require that any node could act
as originator.

Ifthe originator is a node a g= 0, we can consider for the first step a different partition
of the node set depending on . Let us first consider the case n even. Consider the sets

Ai () obtained in the following way: A0(a) V { 0, n } for each -< [log n],
ifV-U}-A(a)= {a,a+ 1,...,a+b- 1}wedefine

f {a+[b/2], ,a+ b-1} ifa<a+b/2],

(ll) [_{a...,a+kb/2J-1} ifa>-_a+[b/2?;

/rlogn]+ (Or) { O }

Consider then the following broadcast scheme.
First step. Time unit 1. If a < n/2 then a calls (n/2) + (a @ ), while if a >-_

n/2 then a calls (a @ ). In the following time units the newly informed node broad-
casts to A (a).

Time unit t, < <= [log n]. a calls a node in the set At(or) that will broadcast to
At(a) while a continues broadcasting to V- A (a) At(

Any other informed node y calls with a similar rule, that is, let { c, c + d }
the set to which y has to broadcast: If y >_- c / [d/2] then y calls a node in the set
{ c, c + [d2 j that will broadcast to this set and y continues broadcasting to
the remaining nodes; if y < c + [d/2] then y calls a node in the set { c + [d/2],
c / d } that will broadcast to this set and y continues broadcasting to the other nodes.
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Second step. At time unit t, _-< =< k, each node x e { 0, n } calls node
f}")(x) as defined in (4).

Example 5. For n 10, originator a 3 and k 2 the calling tree is shown in
Fig. 6.

In the first step of the above scheme each informed node partitions the subset to
which it has to broadcast into two subsets whose sizes differ at most by one, and informs
a node in the subset it does not belong to. Therefore after each time unit t, each informed
node has to broadcast to at most n/ 2 ] __< 2 log ,1 nodes. Hence (in absence of faults)
any node is informed within the [log n] time units of the first step.

In order to prove that broadcast scheme is k fault-tolerant for any k _-< [log n J, we
make the following remarks:

R1. For each a and the sets V- A (a) At-l(a) and At(a) V-
A1 (a) At- (a) are formed by consecutive numbered nodes in V (as in the
special case a 0).

R2. For each a and

[At(a)[ In-E-]2 ]Ai(a)[]= [At(O)[=[At[ (A as defined in (1)),

and therefore we obtain the analogous of relations (2) and (3); that is,

IA()l e{[n/2,[n/2’] -1} and [n/2]=n , IA(c)l.
i=1

R3. Since, from R2, [At(a)[ [At[ and the definition of the informers does not
depend on the particular originator a, Properties 1-3 hold.

R4. Lemma holds for any originator a, if we substitute At with At(a). Therefore
we can use Properties 1-3, Lemma 1, and R1 and R2 to repeat the proof of Theorem
for any originator a.

We now construct a graph that supports the first step ofthe above described broadcast
scheme where each node can be the originator. Given two integers a and b, define the

/
9 3 0

3

2 4 8 6

7 5 9 7 0

0

5 8

6 9 2 4

4 3

FIG. 6.2 fault-tolerant broadcast treefor n 10 nodes when the originator is the node 3.
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graph({a,a+ 1,...,a+b- 1},E(a,b))withnodeset{a,a+ 1,...,a+b- 1}
(where a is the smallest node and b represents the size of the node set), and edge set
E(a, b) obtained in the following way:

if b-

i,5+i i=a, ,a+- -1 U a+-- l,a+
tOE a, tJE a+, ifb>liseven

a+l 1_ 1}
E(a b)=

{(i,[]+

UE a+ ifb>lisodd.

Let E E(0, n/2) U E(n/2, n/2) U {(i, n/2 + 0 0 < n/2 }. Finally, define
the graph G ({ 0, n }, E).

LEMMA 2. The graph Gn ({0, n 1}, E) supports the first step of the
broadcast schemefrom any originator, according to the above-described method.

Proof. The proof is given in Appendix 2.
Example 6. The graphs with edge sets E(0, 5 and E(6, 6) are shown in Fig. 7.
We then have the following result.
THEOREM 5. For each n even and k N [log n J, the graph G, V, E,), with

V= {0,...,n- 1}andE,=EU{(x,f}(x)) 0NxNn- landl NtNk},

0 ---1 2 3 4

(a)

6 ------7 8910 11

(b)

FIG. 7. (a) Graph ({ 0, ..., 5 }, E(0, 5))" (b) Graph ({ 6, ..., 11 }, E(6, 6)).
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has kfault-tolerant broadcast time equal to [log n] + k and number ofedges upper bounded
by ([log n] + k + 5) [log n] 8.

Proof. By Lemma 2, the edges in the set E support the calls of the first step of the
broadcast scheme. Noting that the calls ofthe second step use the same set ofkn/2 edges
{ (x, f}")(x))]0 _-< x =< n and _-< _-< k}, regardless of the originator, we get the
first part of the theorem. We now give an upper bound on the number of edges used for
the first step, that is, on the size of the set E. Let e(b) be the number of edges in the
graph ({ a, a + 1, a + b }, E(a, b)) (it is independent of the actual value of
node a). By definition, e(b) [b/2] + + 2e([b/2]), with e(2) 1. Solving the above
recurrence relation we get

e(b) 2i 2flog b]-

i=0 2i +1 +

Since 2i[ b/2 i+ l] _< b/2 + 2 i- , we obtain
rlgb- 2

( b 1) 2
b-1

e(b)<= i=0 +2i+-- + gba- =([1og b]- 1)+ 3(2rgb-)-2"2
Therefore from the definition of En, we get

levi =2e(n/2)+ i,-+iO 0_-<i<

--<2( n-24 ([logn] 2)+3(2rlem-) 2)+.
Noting that 2 g ’ _-< n / 2 we get

E -_< ([log nq + 5 log n] 8.

Since En,k[ lEvi / kn/2, we obtain the desired bound on En,k. l-q

Note that the upper bound given in Theorem 5 on the number of edges of
the [log n/ fault-tolerant broadcast network supporting our broadcast scheme is of
the same order of magnitude as the lower bound given in (10). Also, note that if n
is a power of 2, n 2 m, the first step can be performed on a graph having the struc-
ture of two (m- )-dimensional cubes connected by the one-to-one matching
(i, n/2 + (3 0 _-< < n/2 }. In this case the scheme of the first step is: At time

the originator calls its neighbor in the other (rn )-cube; at time each informed vertex
calls its neighbor along the tth dimension, for some ordering of the rn dimensions
in the cubes. From this and from (10), one gets the following result.

COOIAY 1. For n 2 andfor each k <= m, the graph that supports the above-
described kfault-tolerant broadcast scheme has the minimum possible number ofedges
among all kfault-tolerant broadcast networks.

Let us assume now that the number of network members is odd. Consider the
scheme introduced in Theorem 2 and a graph on {0, n whose edges are
(n 1, i), 0, n 2, plus those in the graph G,_ , obtained for the nodes in
the set { 0, n 2 }. If the originator is n the scheme is described in Theorem
2. In case the originator is a node c < n 1, it is easy to see that such a scheme can be
modified as follows:

First step. The calls of the first step of the broadcast follow the same scheme as in
case ofthe broadcast from c to 0, n 2 }, during the first log (n )] time units.
At time [log (n )] + the originator c calls n 1.
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Second step. At time unit t, < _-< k, each node x e { 0, ..., n 2 } calls node
f}n-)(x) as defined in (4) except that the originator a (which is inactive) is replaced
by n 1, that is, at each time unit t the node f}n-)(a) calls n and n calls
f"-’)(a).

The number of edges needed to complete the above scheme from any node are not
more than

E.-,,I + I((i,n- 1)1i=0, ,n-2}[

n-1
(Flog (n- 1)]+k+5)-[log (n- 1)]-8+n-

_n
([log (n- 1)]+k+ 7)-(3[log (n- 1)3+k+23).

Finally, consider the scheme described in Theorem 4. If the originator is n 1, the
broadcast scheme is the one in Theorem 4. Let k =/log (2tlg n] n -1- )/. Ifthe originator
is a node a < n 1, partition the set { 0, n into subsets Cl (a), Glog n] + (O),
where Ct(a)= At(a), for 1,-.., k, is obtained by applying (11) to Ao(a)=
{ 0, n 2 }, while Ct(a), for >= k + 1, are defined as in 11 but considering also
node n 1; that is, if {0,..., n 1} U-] Cs(a) {a, a + 1,..., a + b 2} U
{ n ), define

a+ - ,...,a+b-2 U{n-1} ifi<a+

C(c)

a,-..,a+ -1 if/>_-a+ -Ci- log n] + (o/) ( o}
The broadcast scheme is the following.
First step. At each time unit t, _-< -< Flog hi, calls a node in Ct(c) that, during

the following Flog n] time units, broadcasts to Ct(a).
Second step. At time unit t, -< =< k, each node x e { 0, n 2 } calls node

f-)(x) as defined in (4) except that if the originator is a 4 n 1, node (which is
inactive) is replaced by n 1, that is, at each time unit the node f-)() calls n
and n calls f l)().

Example 7. Consider n 11, 6 and k [log 6/= 2. One has

C(6) =Al(6)= {0, 1,2, 3,4 }, C(6) =A(6) { 8,9 },

c(6)= {J, 0}, c(6)= (5}.
The calls of the first step and of the two time units of the second step are represented in
Fig. 8.

Consider the graph with node set {0,..., n-1} and edge set E,-1 U
{ (j, m )lJ 0, n 2 }. Following th lines of Lemma 2 and considering the
fact that node n is connected to any other node, it is possible to show that this graph
allows the first step from any originator. Therefore the following result holds.

THEOREM 6. For ny odd n nd k Llog (n )j and kfault-tolerant broadcast
network Gg,k ({0, n 1}, Eg,) with node set {0, n 1} nd edge set
Eg, E, U { (i, n )1i 0, -.., n 2 satisfies

nE,I ({]og (- )+ k+ )-(3{]og (- )+ k+ 23)
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FIG. 8.2 fault-tolerant broadcast treefor n 11 nodes when the originator is the node 6.

and has kfault-tolerant broadcast time not greater than flog n] + k ifk <= Llog 2rlgnl

n + ], flog n] + k + otherwise.

5. Conclusions anti open lroblems. We have given a method to construct minimum
time, or almost minimum time, k fault-tolerant broadcast networks, for each value of
k <- flog n/, n being the number of processors in the network. The broadcast primitive
seems to be important in communication networks and parallel computing. Our con-
struction shows that it is possible to obtain llog n fault-tolerant broadcast networks with
optimal broadcast time and optimal order of magnitude of edges.

Several open problems remain in the area. We list the most important ofthem here.
We have shown that Tk(n) { [ log n] + k, flog n] + k + for n odd and k
such that Llog (2 log n] n + ] < k < min { 2 log n] n + Llog (2 log n]

n + )3, Llog (n )3 }. What is the true value of Tk(n) in this range?
(2) Can the upper bounds on the number of edges given in Theorems 5 and 6 be

improved? For k and 2, better upper bounds are obtained by using ad hoc
designs 4 ].

(3) We have shown that if one asks that the broadcast time from each node takes
flog n] + k time units the degree of the originator cannot be less than k +
flog n] Llog 2rlgn7 n + 1J. Since it must hold k + flog n] Llog 2rlgm

n + 1J _-< n 1, it follows k _-< n flog n] Llog 2rlgm n + 13. If n is
odd one has also k _-< 2rlg nl n Llog 2rg n3 n + 13. The best known
result for k > flog n] shows that the broadcast can be done in O(log n + k)
13 ], 15 ]. Then a question naturally arises: Is it possible to perform a k fault-

tolerant broadcast protocol on n nodes in time flog n] + k for each k satisfying
the above inequalities?

Aeknowletigments. The authors wish to express their sincere gratitude to Moti Young
and the anonymous referees whose advice has greatly improved the presentation of
the paper.

Appendix 1. Proof of Property 1. Let x < n/2. From the definition of inf (x, t),
we have that a e inf (x, t) {x if and only if there exists _-< i < < ir <= such
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thatx f’r(f-,(""" fl(a))), or equivalently from (5), a f(f2(’" "fr(x))) Applying
the definition off/. (x) given in (4), we get

a= fl(f2("" fr-l(n/2 +x@[n/2iq)))

fl(f2"" "fir-z(X[rl/2ir]e[lT/2ir-]))

f, (f2" "fr- 2(X@ (In 2 iq n / 2 ir_ ,]))).

By iterating the reasoning, we obtain

/ 2 ;r-I 2- 1- if ris even,X

a

We note now that (3) tells us that n/2q n A [; therefore, for any > j it
holds n/ 2 ] n / 29] + As [. By using these two relations we get

(AI.1)
[ ir ir i2

x As As IAI) ifriseven,
S=ir-+ S=ir-3+ s=i+l

El [ ir ir i3 il

)it- + it-3+ i2+

if r is odd.

The set inf (x, t) is then formed by all the elements satisfying the relation (A1.1)
for any choice ofi, ir with r => and =< i < < ir -< t. Varying i, ir
with r even we obtain all the 2 t- nonzero elements in St. In case r is odd,
noting that the addition of A n/ 2 modulo n/ 2 does not affect the sums in (A 1.1 ),
varying the ij.’s we obtain each element in St. Hence inf(x, t) {x zlz St} tO
{n/2+(x@z)[zSt}. In the same way, if x>=n/2 we can get inf (x, t)
{x@ z[z St} tO {n/Z + (x@ z)]z St}.

Proof of Property 2. The proof is by induction on t. For property is obvious,
since inf(x, 1) is equal to {x, f(x) x + n/2} if x < n/2, and to {x, f(x)
x- n/2 } if x >= n/2. Let inf (x, 1) satisfy (8). From Property we can write
inf(x, t)= {a, "", a2t-2) tO {n/2 + a, ..., n/2 + a2,-2}, with a < <
a2 =< n / 2. Let x < n / 2, from Property one has

inf (x,t)=inf (x,t-1)tO { a, @ IAt], ,a2,-2

U{n/2+(a@ [Atl), ,n/2+(a2,-2@ IAtl)).
Suppose first a >= ]At[. We prove that

a-IAI <a<... <ai-<ai-IAt[ <ai< ..-<a2-2<n/2+a-[At[

<n/2 + a < <n/2 + a_ <n/2 + a- IAI <n/2 + a
< <n/2 + a2-2

and that (8) holds. The differences

(A1.2) ai-(ai-lAtl) and n/2+a-(n/2+a- for i= 1, ,2 t-2



196 L. GARGANO AND U. VACCARO

are all equal to At > 0. Moreover, by (2), At : n / 2 ], [ n/ 2 ] } and (8) holds
in these cases. Consider now the remaining differences, that is, (ag I&l) ai- 1, for

2, ..-, 2 t-2, (n/2 + al IAI) a2/-2, and n + (al (n/2 + a2,-2)). They can
be written all as the difference between two consecutive informers in inf (x, (e.g.,
ag ai-l, 2, ..., 2 t-2 and n + al (n/2 + a2,-2)) minus IAI. Therefore, by
the inductive hypothesis they can assume only the two possible values [ n/2t- q A,
and [n/2t-q IAI 1. Since (3) tells us that [n/2t-l-I n Z,fi-] Ihl, we have
[ n / 2 ] At n j Aj [n / 2 q > 0. Hence all differences are >0 and (8)
holds. Suppose now that a < [A,I. We prove that

a<a2- IAI < <ai-l<ai- IAI <ai<’" <a,-<a3 IAI
n n n n n<-q- al <’’" <-+ ai-1 <+ ai- IAtl <+ ai <’’" <q- a2t-2

n
<+(al G IAtl)

and that 8 holds.
Note first that for > and _-< [log n, by the inductive hypothesis we get ag >

a2 >- al + [rt/2 t- 1] [n/2t-[ >= [At[, that is, ai [At[ >= O, for >_- 2. The differences

a-(a- [At]), (n/2+a)-(n/2+ai- [At[) fori=2,...,2’-2,
(A.3)

n+[a-(n/2+(a@ IA, I))], and (n/2+al)-(a@

are all equal to At f n / 2 ], n / 2 ] } and (8) holds for them. Moreover, as in
the previous case, we get that all the remaining differences can be written as the dif-
ference (modulo n) between two consecutive informers in inf (x, minus A, I.
Therefore (8) holds in any case for x < n2. For x >= n/2 it is possible to make a sim-
ilar proof, noting that from Property 1, inf(x, t) inf(x, 1) U { a @ [At[,
a2,- [At[} U {n/2 +(at @ IAI), ,n/2 + (a2/-2 ( IAtl)}.

Proof of Property 3. It is immediate from Property 2. In fact it tells us that
inf(x, t- 1) {a, ..., a2,-} for some a < a2 < < a2t-; inf(f(x), 1)
{b,-.. ,b2,-} for some b < b: < < b2,-,. Moreover, inr(x, t)= {a,-..,
a2,- } U { bl, b2t-l } 1, c2 t} with cl < c2 < < c2,. Hence ai =/= bj for

<= i,j <= 2 t-. []

Allendix 2. Proof of Lemma 3. First note that calls at time use edges
in the set { (i, n/2 + (i @ )) 0, n/2 ). It remains to show that the edges
in E(0, n/2) U E(n/2, n/2) support the calls from time 2 to [log nq, i.e., the internal
broadcast to 0, n/2 } and n/2, n }, according to the given scheme.

We will show the following more general fact.
FACT 1. The set of edges E(a, b) allows the broadcast in time [log bq according to

the given scheme on each of the three sets

{a,...,a+b-1}, {a+l,...,a+b-1}, {a,...,a+b-2}.
This is obvious for b and b 2. We show now that if

E(a,b/2) and E(a+b/2,b/2) if b is even,

E(a,[b/2]) and E(a+[b/21,[b/2]) ifbisodd

satisfies Fact then also E(a, b) satisfies Fact 1. Let x be the node that has to perform
the broadcast.
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Case 1: Broadcast on { a, a + b }. Suppose that b is even. The node x
that has to broadcast calls along the edge (i, + b/2) E(a, b) with either x or x
+ b/2. At successive time units and + b/2 can broadcast to ( a, a + b/2 )

and {a + b/2, ..., a + b 1} using the edges in E(a, b/2) and E(a + b/2, b/2),
respectively. The time needed is + [log b/2] <= [log b].

Suppose that b is odd. A node x <- a + [b/23 calls the node x + [b/2]
{ a + [b/2], ..., a + b 1}. The node x a + [b/23 calls x + a + [b/2].
By the inductive hypothesis, at successive time units x can broadcast to the set
{ a, ..., a + [b/23 ) with edges in E(a, b/ 2]) and the other informed node can broadcast
to {a + [b/23 + 1, ..., a + b 1} with edges in E(a + [b/21, [b/2]).

A node x >_- a + [b/2] calls the node x [b/2] { a, a +/b/23 }. By the
inductive hypothesis, at successive time units x can broadcast to { a + [b/23, a +
b } with edges in E(a + [b/2J, [b/2]) and the other informed node to { a, a+
[b/2] 2 } with edges in E(a, [b/2]).

The time needed is + [log [b/2]] -< [log b].
Case 2: Broadcast on(a+ 1,...,a+b- 1). In this casea+ =<x_-<a+b-

1. Suppose that b is even. The node x < a + b/2 calls x + b/2 { a + b/2 + 1,
a +b-1 ). By the inductive hypothesis x can continue broadcasting to{a + 1, ...,
a + b/2 1} with edges in E(a, b/2), and x + b/2 to {a + b/2, ,a + b
with edges in E(a + b/ 2, b/ 2 ).

A node x >= a + b/2 + calls x b/2 { a + 1, ..., a + b/2 ). The node
x a + b/2 calls x a + b/2 1. By the inductive hypothesis x can continue
broadcasting to { a + b/2, ..., a + b ) with edges in E(a + b/2, b/2) and the other
informed node to { a + 1, a + b/2 ) with edges in E(a, b/2). Again the time
needed is + [log b/2] <= [log b].

Suppose that b is odd. A node x <= a + [b/23 (respectively, x a +/b/23)
calls the node x + fb/2] (respectively, a + [b/23 + in { a + fb/2], a + b ).
By the inductive hypothesis, at successive time units x can broadcast to { a + 1, ...,
a + [b/23} with edges in E(a, [b/2]) and the other informed node to ( a + [b/2],
a + b 1) with edges in E(a + [b/23, [b/2]).

Consider now x > a + b/23. The node x a + [b/2] calls a + [ b/23. A node
x>=a+[b/2]+ calls the nodex-[b/2] (a+ 1,...,a+[b/23- 1).Bythe
inductive hypothesis, at successive time units x can broadcast to { a + b2], ..., a +
b ) with edges in E(a + 1b/23, fb/2]) and the other informed node to { a + 1,
a + [b/23} with edges in E(a, [b/2]).

The time needed is + [log b/2] -< [log b].
Case 3: Broadcast on {a,...,a+b-2}. In this casea+ _-<x <a+b-

can be easily proved using the same arguments as Case 2. ff]
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HAMILTON PATHS IN GRAPHS OF LINEAR EXTENSIONS
FOR UNIONS OF POSETS*

GRZEGORZ STACHOWIAKf

Abstract. This paper proves that if a poset Q has an even number of linear extensions and these extensions
can be generated by adjacent transpositions, then linear extensions of union of poset Q and an arbitrary poset
P can also be generated by adjacent transpositions. This result is then applied to posets P and Q, which are
sums of disjoint chains.

Key words, linear extension, Hamilton path, Gray code

AMS(MOS) subject classification. 05C45

1. Introduction. Let P be a partially ordered set (poset) and f’(P) denote the set
of all its linear extensions. For two posets P and Q, we define their parallel P Q and
series PQ compositions. The poset P Q is the union of P and Q, and the poset PQ is
constructed from P[ Q by adding the relations that state that each element ofP is greater
than each element of Q. Let denote a chain of n elements labeled with i; denotes
the empty chain.

A linear extension L2 6 .o(p) can be obtained from another linear extension
L1 6 &t’ (p) by an elementary transformation if L1 and L2 differ by the order of exactly
two adjacent elements. We define the graph GE(P) of all linear extensions ofP with the
elements of &t’ (p) as its vertices and two vertices form an edge in GE(P) if the corre-
sponding linear extensions differ by a single interchange of adjacent elements. Note that
a Hamilton path in GE(P) implies the existence of an algorithm that generates all linear
extensions ofPby a sequence ofelementary transformations. In general, we may consider
an arbitrary family of combinatorial objects and ask for such an algorithm, which is
called the Gray code of these objects. For two posers P and Q on the same ground
set, the graph of GE(P, Q) is defined analogously. The vertex set of GE(P[Q) is
9(P) t.) qO(Q), and two vertices are adjacent if they differ by an elementary transfor-
mation (i.e., by transposition of two adjacent elements in linear extensions).

In some cases, the problem of generating some combinatorial objects can be trans-
formed to generating linear extensions of a properly defined poser. A motivation for this
paper is the following problem: how do we generate all strings containing precisely
n l’s, n (2) 2’s, n (k) k’s? The existence of Gray code for such strings is
equivalent to the existence of a Hamilton path in the graph H GE( nl)[2n(2)
kn<k)). This problem was considered by Ko and Ruskey [6].

It is well known that the graph G GE(P) is bipartite and connected for any poset
P. Let VI t_J V2 be a bipartition of V(G) and d(G) V11 Vzll. There is no Hamilton
path in GE(P) if d(G)exceeds 1. Ko and Ruskey gave the formula for d(H), and they
posed the following conjecture.

CONJECTURE. Graph H has a Hamilton path ifand only ifd(H) is 0 or 1.
This conjecture has been proved by Ruskey 8 for transpositions of not necessarily

adjacent elements as well as for adjacent transpositions in some special cases. We show
it for all graphs H.
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It was shown in 6 that d(H) is if k or k 2 and either n( or n(2) is equal
to and the remaining one is even. It is not difficult to prove the conjecture in this case.
The value d(H) is zero if and only if for some and j (i 4 j), n(i) and n(j) are both
odd; without loss of generality, we can assume that and j 2. It is well known that
GE( (1)12n()) has a Hamilton path for n( and n(2) odd; see [2], [3], and [7]. For
k greater than 2, the conjecture follows from our main result.

THEOnZM. Iffor a poset Q the graph GE(Q) has an even number ofvertices and
contains a Hamilton path, then the graph GE(QIP) has a Hamilton path for every
poser P.

If Q n(1) 2 (2), where n( and n (2) are odd, and P 3 "(3) kn(k), then
the conditions of the theorem are fulfilled (see [2]); therefore, the conjecture is true.

In what follows, we will make frequent use of the operation of gluing two edges.
Edges el [a, b] and e2 [c, d] of a graph G are parallel if G contains edges
fl [a, c] and fe [b, d]. Let us assume that there exist two vertex-disjoint cycles C
and C_ in G such that C1 contains el and C_ contains e2. The gluing of edges e and e
consists ofexchanging e and ee forf andf2. This operation produces one cycle containing
all the vertices of cycles C1 and C2.

2. The theorem for Q consisting of two isolated elements. In this section we prove
the theorem for Q 112. An edge in GE(QIIp) is called an i-edge if both its end vertices
correspond to linear extensions of Q llp in which the ith and (i + )th elements of p are
adjacent. A set consisting of/-edges ei <= < p) such that ei 4: e for 4: j is called a
full set ofi-edges. We first formulate an obvious lemma.

LEMMA 1. If a vertex x G of degree 2 belongs to a cycle in G, then the cycle
contains both ofthe edges incident to x.

Now we prove some properties of graph GE((112)[/P) that will be useful later.
LEMMA 2. The graph G GE(( [2)[/p) has thefollowing properties:
1. Ifp is odd, then G contains a Hamilton cycle containing a full set ofi-edges.
2. Ifp is even, then G contains two cycles. Each ofthese cycles contains all but two

vertices ofG. The omitted vertices are either
2.1. 12lp and 21lp (see Fig. or
2.2. p 2 and lp21.

Moreover, ifp 4:2 then both cycles have the samefull set ofi-edges.
Proof. The graph G has p + vertex-disjoint paths di (0 <= <= p) of the form

di llp- i21i, llp-i- 21i, lp- il21i, lp- i211i, 2lp- illi],

and these paths cover all the vertices of G. Let ai denote the last edge of di, 0 <= <= p.
Connecting the ends of do and dl, d2 and d3, we obtain I(P + )/2 J disjoint cycles
in G and ifp is even, there exists one additional path dp, which is the edge [12/p, 2 llP].
Then, by gluing al and a2, a3 and a4, and so on, we obtain a Hamilton cycle ifp is odd,
and we obtain a cycle omitting only two vertices 12lp and 21 p ifp is even.

We obtain case 2.2 in Lemma 2 if the above construction is repeated for paths d}
(0 _-< _-< p) defined as

d} li2lp l, li2lp- i- 11 l, li211p- 2lp- illp i2

It remains only to exhibit/-edges in the constructed cycles. Each cycle contains edges
ki [lil2lp-i, li21lp-i] for < p. As a full set of/-edges, we take e kp_ and
ei ki-for < i. Vq

The graph GE(QIP) for two arbitrary posets P and Q consists of the subgraphs
GE(QIL) (L e (P)) connected to each other. All these subgraphs are isomorphic to
GE(QIIP), where p Iel. We can therefore consider /-edges in GE(QIL) as those
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FIG. 1. A long cycle defined in Lemma 2, case 2.1, for p 6.

having ith and (i + )th places of L adjacent. We can define analogously a full set of
/-edges in GE(QIL).

We now prove a lemma similar to the result of Batagelj and Pisanski [1].
LEMMA 3. Let a graph G GE( QIP) contain afamily cg ofcycles such that each

GE(Q L as a subgraph ofG contains exactly one cycle of c. Ifeach ofthese cycles has
a full set of i-edges corresponding to a fixed full set in GE( Q IlP), cycles in c can be
combined into one cycle containing all their vertices.

Proof. The graph GE(P) is connected, so it contains a spanning tree, say T. To
each edge [L, L2] of Twe assign a number < p) such that L1 can be obtained
from L2 by an elementary transformation on the ith and the + )th elements. Thus,
the/-edges in the graphs GE(QIL and GE(QIL2) for a fixed are parallel. We glue all
such edges to obtain one cycle from the cycles of cg. These operations of gluing are
possible because there is at most one edge labeled by -< < p) adjacent to a given
vertex of GE(P). ff]

Now we are ready to formulate the first step in the proof of the theorem.
LEMMA 4. The graph G GE( ]21 P) contains a Hamilton cycle when PI is odd.
Proof. The graph G consists of subgraphs GE( [2[ L) (L 6 (P)) isomorphic to

GE(112J/P). Lemma 2, case gives us Hamilton cycles in GE( [2[ L) with full sets of
/-edges. Using Lemma 3, we can connect all these cycles obtaining Hamilton cycle in
GE( Z P). Vq

Rewriting the same proof for p even is complicated by the lack of a Hamilton cycle
(Lemma 12) in GE(ll 2[lP). We eliminate this difficulty by first using Lemma 3 to
connect cycles from Lemma 2 and next applying Lemma 5 to attach the remaining
vertices to the obtained cycle.

LEMMA 5. IfP is not a chain, then GE(P) can be split by removing some edges
into paths ofnumber ofvertices greater than one.

Proof. We proceed by induction on p [P]. Ifp =< 2, then Lemma 5 is obviously
true. Let us assume that it holds for all posers on (p )-elements, where p >_- 3 and let
Pbe a p-element poser. There are two possible cases: P either contains or does not contain
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a (p )-element chain. In the former case, GE(P) is a path of number of vertices at
least two. In the latter case, GE(P) does not have such a path. Let x P be a minimal
element in P and consider the poset R P x. By the inductive assumption, R can be
split into paths ofnumber ofvertices at least two. Hence the graph GE(P), which consists
of graphs GE(P x) for all minimal x P, can be split into such paths. [3

We can now prove the following lemma.
LEMMA 6. Let G GE(1]2]P) where p ]P] is even. IfP is a chain, then G

contains a Hamilton path, and ifP is not a chain, then G contains a Hamilton cycle.
Proof. If P p, then by case 2.1 of Lemma 2 we have in GE( 112 IIp) the edge

12lp, 2 llp and a cycle containing the remaining vertices. The vertex 2 llp from the edge
is a neighbor of the vertex 2l p- belonging to the cycle. So if we have given only this
edge and cycle, then by adding the edge [2 p, 2111p-I and removing one of the edges
adjacent to 2l p- from the cycle, we obtain a Hamilton path in G.

IfP is not a chain, then we consider two cases: p 2 and p > 2. For p 2, the only
poset to consider is 1121314. In this case, a Hamilton cycle can be easily obtained (by
the Steinhaus-Johnson-Trotter algorithm [5], [9], [10] or by applying Lemma 10 for
Q 11213 and P { 4 } ). Ifp > 2, then by Lemma 5, GE(P) can be split into a family
of paths of number of vertices at least two. Let D [Lz)(), Lz)(2), , Lz(s(z)))] .
Let Gz(g) denote the graph GE(II2ILz(i)). In Gz)(), considered as a subgraph of
GE(1121P), we take a cycle defined in the proof of Lemma 2 (case 2.2). In all other
subgraphs Gz)(i), we take the cycles defined in the proof of case 2.1 of Lemma 2. Note
that the cycle from case 2.1 must contain the edge [/P12, lP21] and the cycle from case
2.2 must contain the edge [12/p, 21/p] because of Lemma 1. We combine these cycles
into one cycle applying Lemma 3, and then we replace the edges [12Lz(), 21LD(1)] by
paths [12LDI), 12Lo(2), ’’’, 12Lz)sz))), 21Lzz)), "", 21L(])] and the edges
[LD2)12, LD2)21] by paths [L2)12, Lz)12, Lz)(1)21, L92)21] (see Fig. 2). This results
in a Hamilton cycle in G for p 4: 2. [--]

I D(s(D))

GD(2)

FIG. 2. The method ofconnecting to long cycles in Gz)(i) vertices, which are absent in these cycles, to obtain
a Hamilton cycle, as in Lemma 6.
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Lemmas 4 and 6 constitute a proof of the theorem for Q consisting of two iso-
lated elements. This result was proved for not necessarily adjacent transpositions by
G6bel 4 ].

3. The theorem for an arbitrary Q. We first provide another proof of a useful
lemma from 2 ].

LEMMA 7. The graph G GE(( 112 (kql p)) contains a Hamilton cycle for every
p,q>O.

Proof. We proceed by induction on p. Ifp 1, then the cycle is of the form 12kql,
12kq- Ilk, 12lkq, 2 lkq, 2 kql]. Let us assume that Lemma 7 holds for p
and split G into graphs Gi GE((1]2)kq-il(ki]lp-)) (0 <- -< q). By the inductive
hypothesis, each Gi for > 0 has a Hamilton cycle that contains the following edges:

ai 2 kq- ilkilp- i, 12kq- ilkilp- 1]
and

bi 12kq ilkilp 1, 12kq ilki lklp " ],

because vertex 12kq-qkqp- is of degree 2 in G. Then, replacing the edge a in G by
the path 21 kq lklp , 21 k’qp, 12kqlp, 12kq lklp we join Go to G. Finally, we glue
the edges b and bz, b3 and b4, and a and a3, a4 and a, to obtain a Hamilton
cycle in G.

Now we use Lemma 7 to prove the following lemma.
LEMMA 8. The graph G GE((( l2)kq)[lp) contains a Hamilton cycle for every

p,q>O.
Proof. We split G into subgraphs

Gi=GE((lllp-i)2(kqlli),(211p-i)l(kqlli)) (O<-i<=p)

each ofwhich will be shown to contain a Hamilton path with end vertices xi 11p i21ikq

and Y 2lp-illikq. In particular, Go contains the path

llP2ku, IIp- 2ku, lPl2kq, lP2 lkq, ,21Plkq].

For > 0 we again split Gi into subgraphs Gij (0 -< j <= p i) of the form

Gij=GE(12( ll)lp-i-z-2(lilkq)) forO<=j<(p-i)/2,

Gi=GE(lP-i( l2)(lilkq)) forj=(p-i)/2,

Gi=GE(lZp-i-J)+(ll2)li+zJ-P-l(lilkq)) for(p-i)/2<jp-i.

By Lemma 7, each Gij (as isomorphic to GE(( 112)(lilkq))) has a Hamilton cycle that
contains the edge [xi, yi], where

xij=lZJllp-i-Z2likq forO<-j<(p-i)/2,

xi lp-il2liku forj=(p -i)/2,

xij=12p-i-J)2li+ZJ-Pllikq for(p-i)/2<j<=p-i,

and

yij=12J+Illp-i-2J-21ikq forO<-j<(p-i)/2,

yij=lp-i21likq forj=(p-i)/2,

yij=lZ(p-i-J)-2li+ZJ-p+llikq for(p-i)/2<j<=p-i.
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By the same argument, Gio contains the edge ai [llp- i2likq, llp- i2li-lklkq-1]. We
remove edges [x/, Yo] from cycles in Gij and then we add edges [Yij, xi(j+ 1)] to obtain
the required Hamilton path in G/.. Finally, we connect x0 and x, x2 and x3, yo and
Y, Y2 and Y3, to obtain (p + )/2J cycles in G. Ifp is even, then there remains a
path in Gp and we connect its end vertices to obtain the last cycle. By gluing a and a2,

a3 and a4, we obtain a Hamilton cycle in G. See Fig. 3.
LEMMA 9. The graph G GE((kr( l2)kS)llP) contains a Hamilton cycle when

p,r+s>O.
Proof. If s 0, then the graph G is isomorphic to G GE((( 112)kr)llp) and

has a Hamilton cycle by Lemma 8. For s > 0 we proceed by induction on r. If r 0,
then our task can be reduced to Lemma 8. We divide G into subgraphs Gi
GE([p-ik((k (ll2)kS)lli)) for 0 <- -< p. By the inductive hypothesis, there exists a
Hamilton cycle Ci in every G for > 0. Each cycle Ci contains the edges

ai
p- iklik 12ks, p- iklik 2 lkS],

and, for r 1,

bi p ikli 2k, p ikli 1112kS],

forr> 1,

bi [lp-iklikr- 12kS, lp-ikli- klkr-212ks]

because vertex p- iklikr- 112k is of degree 2.
In the cycle C we exchange the edge a for the path [1p- lklkr-12ks, lPkrl2ks,

lPkr21ks, p- klk 21k] connecting Go to the cycle in G. Then we glue b with b2, b3
with b4, and so on, a2 with a3, an with as, and so on, and we obtain a Hamilton cycle
in G. ff]

LEMMA 10. Ifq Q > 2, Q is even and GE(Q contains a Hamilton path
andp > 0 then GE( QI p) has a Hamilton cycle.

Xo

FIG. 3. A Hamilton cycle defined in Lemma 8 for even p.
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Proof. Let [K1, K2, K2n] be a Hamilton path in GE(Q). We split GE(Q[Ip)
into n subgraphs G; GE(K2i-1 IIp, gillP); <= <= n. Gi is isomorphic to
GE((kr( [2)kS)llp) for some r and s. Thus Gi has a Hamilton cycle Ci by Lemma 9.
Let K kjlkj2 kjq, and denote the edges

and

Since deg(lPkl kq) deg(kl kqlp) 2, by Lemma the edges a2i-1, a2i,

b2i-1, b2i belong to Ci for =< =< n. If K and K +1 do not differ in the first pair of
elements, then b and b /1 are parallel. In the other case, a and aj. /1 are parallel. We
then glue parallel edges aj. and aj +1 or b and b/ of G and G / for j 2i -< < n)
obtaining a Hamilton cycle in GE(QIIP). See Fig. 4.

LEMMA 1. Ifq [QI > 2, p PI > 0 and GE(Q) has an even number ofvertices
and contains a Hamiton path then GE( QI P) has a Hamilton cycle.

Proof. We use Lemma 3 to build a Hamilton cycle in GE(QIP) from Hamilton
cycles in GE(QIL) (L ’(P)). These cycles exist by Lemma 10, because GE(QIL)
are isomorphic to GE(QIIP). There remains to find a full set of/-edges in GE(QIlP).
Let K klk."kq be a linear extension of Q. The vertex xi likl kqlp-i(2 <= <= p)
is a linear extension of Q and has two neighbors in a Hamilton cycle in GE(Q[ lP). At
most one of these neighbors can be obtained from xi by transposition of the ith and
(i + )th elements. Moreover, there exists an edge incident to xi in GE( Q[Ip) not equiv-
alent to this transposition, and we take it as the (i )-edge ei- 1. This way, we obtain
/-edges for =< =< p 1.

Proofofthe theorem. For P 4: the theorem is obvious. For [QI 2, it follows
from Lemmas 4 and 6, and for QI > 2, it follows from Lemma 11.

b
0"3 C2
Q

Q5

bzn

FIG. 4. A Hamilton cycle constructed in proofofLemma 10.
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Note that in some cases the lemmas give us more information than the theorem
requires. Namely, a graph oftype GE(QIP), where GE(Q) has a Hamilton path and an
even number of vertices, contains in many cases not only a Hamilton path, but also a
Hamilton cycle. The only exceptions are graphs GE(Q) and GE((ll2)IIp) where p is
even. For the latter case, we prove the following result, which was originally proved by
Ruskey 8 ].

LEMMA 12. The graph G GE(( 2) p), where p is even, has no Hamilton cycle.
Proof. We can decompose G into two subgraphs G1 GE( 12[lp) and G2

GE( 21 lP).
These parts are isomorphic to each other. The graph G (i 1, 2) is bipartite, and

we can show that d(Gi) is equal to p/2 + 1. We proceed by induction on p. Ifp is equal
to 0, then Gi has only one linear extension and d(G) 1. If for p 2, d(Gi) p/2,
then we can split G for p into three parts (analogous consideration can be carried out
for G2): H GE((12[lp-2)12), which is isomorphic to G for p 2; I
GE((I[lP-)(2[I)) such that d(I) 0; J GE(/Pl2), which adds to the result for
p- 2 finishing our inductive consideration.

As we know, d(G) 0. It follows from that fact that each bipartition of G consists
of the greater set in the bipartition of one Gi and the smaller one ofthe second Gi. There
are p + edges a/- [lil21p-i, li21lp-i] between G and G2 in G. If C is a Hamilton
cycle in G, then C can be split into at most p maximal paths such that each of them is
contained in one G; because every two successive paths must be joined by an edge a for
some 0 =< j =< p and there are p + such edges. Moreover, only p of these edges can be
used by C since a cycle must contain an even number of ai’s.

Thus, there are at most p/2 paths in each Gi that cover all their vertices. This is,
however, impossible because d(Gi) p/2 + (i 1, 2) and at least this number of
paths is necessary to cover Gi for 1, 2.

Acknowledgments. The author thanks Professor Maciej M. SysIo for helpful advice
and for great patience in reading successive versions ofthis paper. The author also thanks
the referees for remarks that improved the presentation.
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ON THE NONMULTIPLICATIVITY OF ORIENTED CYCLES*

HUISHAN ZHOU?

Abstract. Graph homomorphism is an edge-preserving mapping from the vertex set of a graph to the
vertex set ofanother graph, which is the generalization ofgraph coloring. A graph is multiplicative ifthe product
of two graphs cannot be homomorphically mapped to it whenever the two factor graphs also cannot. The
research of multiplicativity can be traced back to the mid-1960s, and has become active again in the past five
years. There are some partial results about the multiplicativity of oriented cycles. The so-called even-deleting
operation is now explored to prove that after implementing an even-deleting operation to a core-oriented cycle,
both the resulting cycle and the original cycle are nonmultiplicative if the resulting cycle is not a special type
of basic cycle. Finally, this paper proves that almost all oriented cycles are nonmultiplicative.

Key words. (non)multiplicative, oriented cycle, basic path, even-deleting operation

AMS(MOS) subject classification. 05C

1. Introduction. Hedetniemi conjectured in 1966 8 that X(G H) min (x(G),
X(H)), where is the chromatic number and G H is the categorical product. This
conjecture was verified only in a very few special cases. The cases min (X(G), X(H))
1, 2, and 3 are easy 8 ]. The proof for min (X(G), X(H)) 4 was a major breakthrough
2 ]. To gain insights relevant for eventually solving Hedetniemi’s conjecture, Haggkvist,

Hell, Miller, and Lara [6] proposed the concept of multiplicativity and proved that
undirected odd cycles, transitive tournaments, directed paths, and prime-power directed
cycles are multiplicative. As a consequence, they also derived the multiplicativity of a
large class of undirected graphs defined by Gerards (cf. 5 ], 6 for the exact definition
of this class). We continue this task and obtain more classes of graphs and digraphs,
some of which are multiplicative [17] and some of which are nonmultiplicative [18 ].
We now go further to prove that a large class of oriented cycles are nonmultiplicative.

For the definitions not given here, see [7]. In particular, all graphs considered here
are simple and finite. Furthermore, graphs G, H, etc., could be graphs or diagraphs;
similarly, the edge gg’, could mean the undirected edge g, g’} or the directed arc gg’.
The vertex set of G is denoted by V(G) and the edge (arc) set of G is denoted by E(G).
The product G H (also known as the categorical product [9], [13], conjunction [7],
cardinal product, Kronecker product [3], [16], or weak direct product) has the ve.rtex
set V(G) V(H) and the edges (g, h)(g’, h’), where gg’ E(G) and hh’ E(H).

An n-colouring p of G is a map of V(G) to 1, 2, n such that gg’ E(G)
implies o(g) 4: p(g’). We say that G is n-chromatic and write x(G) n if n is the
minimum k for which there is a k-colouring of G. A homomorphism f: G - H is a
mapping f: V(G) - V(H) for which f(g)f(g’) E(H) whenever gg’ E(G). The
existence, respectively, nonexistence, of a homomorphism f: G --,- H will be denoted by
G -- H, respectively, G 7 H. Note that there is an n-colouring of G just if G -- K,,
where K is a complete undirected graph of n vertices. Two graphs G and H are homo-
morphically equivalent if both G -- H and H- G. A core is a graph H with H 7 G for
any proper subgraph G of H; i.e., a graph H in which each homomorphism H - H is
an isomorphism (see 17 ). Cores were studied in 4 ], 10 ], 17 ].

A directed (respectively, undirected) connected graph W is multiplicative 6 if
G 7 Wand H 7 Wimply G H 7 Wfor all directed (respectively, undirected) graphs
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G and H. It is important to note here that the graphs G and H are taken to be undirected
graphs if W is undirected, and directed graphs if W is directed.

Let Kn denote the complete undirected graph with n vertices. A complete digraph
with n vertices, denoted by Kn, is a digraph with n vertices and an arc between every
ordered pair of vertices. Thus each Kn has n(n arcs.

The directed path P, has a sequence of different vertices v0, Vl, vn and arcs
VoV, v v2, v v. The directed walk P has a sequence of vertices, v0, v l, v
and arcs vOVl, VlV2, , v_ v, where both vertices and arcs may not be different. An
oriented path (walk) P[xo, Xl,"’, x] in a digraph G is a sequence of distinct (not
necessarily distinct) vertices x0, x, xn and arcs (x0, x ), (Xl, x2), (xn l, x,),
where (xi, xi + l) denotes either xix + or xi + xi. The directed cycle C, has a sequence
of different vertices v0, v, ..., vn- and arcs vovl, vv2, "", vn- 21)n- 1, l)n- l)0 An
oriented cycle is a digraph obtained from a simple undirected cycle by choosing one
direction for each edge.

Given a graph G, a colouring o of G, and any graph H, there is a natural induced
colouring o’ ofG H, namely, o’(g, h) o(g). Thus we see that x(G H) _-< min (X(G),
X(H)). Hedetniemi [8] conjectured that equality holds for all graphs G and H. An
equivalent formulation of this conjecture is the following ], 6 ]"

(i) For all positive integers n + 1, x(G) X(H) n + implies that x(G H)
n + for all graphs G and H.
Or, using the general terminology introduced above,

(ii) K is multiplicative.
There are quite a few attacks on the original Hedetniemi problem [1], [2], [6] and

also some research on the generalized version ofHedetniemi’s problemmmultiplicativity
[61, [11], [12], [171, [18], [19].

In the literature there are several examples of (undirected or directed) graphs that
are not multiplicative. However, in most instances, they were constructed by taking two
connected graphs G and H with G 7 H, H 7 G, and by taking W G H. (For
instance, Cpq Cp Cq is nonmultiplicative for this reason when p and q are relatively
prime 6 ], 14 ].) The core K is the first known example 15 ], where a nonmultiplicative
graph W K is not constructed to be (homomorphically equivalent to) some W
G H, i.e., by the method explained above. Other examples are provided in 18 ].

We have already completely characterized the oriented paths with respect to mul-
tiplicativity. Thus, we have completely characterized the noncore oriented cycles, since
noncore oriented cycles are homomorphically equivalent to some oriented subpath, and
two homomorphically equivalent graphs have the same multiplicative or nonmultipli-
cative property 18 ]" Any oriented path and oriented cycle that is homomorphically
equivalent to a directed path is multiplicative [6 ], [18]; any oriented path and oriented
cycle that is not homomorphically equivalent to a directed path but is homomorphically
equivalent to an oriented path is nonmultiplicative [17 ], 18]; any directed cycle with
length of prime power is multiplicative [6], [11]; any directed cycle with length being
not prime power is nonmultiplicative 6 ], 14 ].

For core oriented cycles we have also obtained some nonmultiplicative exam-
ples 18 ].

Now we apply the concept of basic b-path and the operation of even-deleting, to
explore by the method of construction that many core oriented cycles are nonmultipli-
cative, which is the Main Theorem in 3. Thus we have "almost" characterized all
oriented cycles with respect to multiplicativity, with very few exceptions remaining open.
We also prove in 5 that almost all oriented cycles are nonmultiplicative. In an upcoming
work 11 ], the only remaining exceptions of this paper will be characterized as multi-
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plicative. Therefore we have completely characterized the oriented cycles with respect to
multiplicativity. There are still many problems of characterizing other classes of graphs
that remain open.

2. Preliminaries. The level of a vertex x in an oriented path P with respect to a
chosen vertex a ofP, denoted by L,a(X), or simply L(x) with L(a) 0 if no confusion
results, is the difference between the number of edges directed forward and the number
ofedges directed backward on the subgraph from the chosen vertex a to x. The net length
of an oriented path (cycle), denoted by nl, is the absolute value ofthe difference between
the number of edges directed forward, and the number of edges directed backward along
the path (cycle).

For the oriented cycle C P[x0, x, x2, x0] in Fig. 2.1, we have nl(C) 1.
Let x0, Xl, "’, xn be the vertices of an oriented path P in a fixed traversal order

or P. Then P[x;, x; + , xj], or, briefly, P[x,., xj] is an interval ofP consisting of the
subgraph induced by the vertices x;, xi + , x. If all edges in the interval P[x;, x]
are going in one direction (forward, backward), we call P[x, x] a one-directional (for-
ward, backward, respectively) interval of P. Furthermore, if the one-directional interval
P[x, x] cannot be extended to a larger one-directional interval of P, then we call
P[x, xj] a maximal one-directional (forward, backward, respectively) interval. Let P
and P2 be two oriented paths with the specified orders oftraversal. Then the concatenation
ofP and P2, denoted by P P2, is the oriented path obtained by identifying the last vertex
ofP and the first vertex ofP2. Sometimes we write I)lPll)zP21)3P3v4 for P PzP3 to specify
that the first vertex ofP is v, the last vertex of P3 is v4, the identified vertex ofP and
P2 is v2, and the identified vertex of P2 and P3 is v3. Furthermore, if P is a maximal
forward interval of length a, P2 is a maximal backward interval of length b, and P3
is a maximal forward interval of length c, then we write VlPll)2P21)3P31)4 as
VPaVzPbV3PcV4, or simply PaPbPc.

Let b, a, a, an, m, m2, mn- be positive integers where n >_- 2 and all
a; > b for 1, 2, n. A basic forward b-path with parameters (a, 2m 1; 6/2,

2m2 1; an 2mn 1; an) is an oriented path consisting of a Pa, followed by
Pb, Pb, Pb (2m repetitions), Pa2, then Pb, P6, P (2m2 repetitions),
etc., and ending with._ a, (_cf. Fig. 2.2). When we write S i"" j" ", we always
assume that each P; (and P) is a maximal backward (and forward, respectively) interval
in S unless otherwise stated. We also use the terms "(a, a2, am) basic forward b-
path," if the exact numbers of the repetitions of 6, 6 need not be specified, or just
"basic forward b-path" if the parameters need not be specified. Basic backward b-paths
are defined similarly. A basic b-path is a basic forward or backward b-path. In the fol-
lowing, we allow n in the definition of basic b-path. In fact, a basic b-path for n
becomes a directed path.

A (b + 1, 2m )n basic b-path is a basic b-path with parameters (a, 2m
1;.-. ;an_,2mn_-l;an),wherea an=b+landm mn-=m.

x o x I
x

FIG. 2.1

2
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FIG. 2.2. (3, 4, 3, 5 basic (forward) 2-path or (3, 3; 4, 5; 3, 1" 5 basic (forward) 2-path.

A degenerate (b + 1, 2m )n basic b-path is defined exactly the same way, except
that a b or an b (or both).

We give examples for these definitions in Figs. 2.2-2.3.
A basic b-cycle in a graph G is an oriented cycle as follows:

VPaPbPb" Pbv or VPaPbP" PWPbPb" PbV,

where W is a basic forward b-path and a > b; in this notation, v is the first vertex of Pa
as well as the last vertex of the last P.

The digraph given in Fig. 2.1 is a basic 1-cycle xoP2P Xo.
The following three lemmas, whose proofs are given in 18 ], are important to obtain

the Main Theorem.
LEMMA 2.1. Let P2[Yo, Y, Yk] be a directed path of length k (k > 1), and

P [Xo, x, xt] a (b + 1, 2m )n basicforward b-path. Then any component C of
P P2 is isomorphic to a subpath ofP with net length between 0 and k.

For readers not familiar with [18 ], we provide the details of various components
in the product graph as follows:

C is an isolated vertex located in (x, Yo)" x P1 or (x, yk)" x P }
(2) C is a directed path P, _-< b’ _-< b) either starting at some (x0, y) (y P2)

and ending at some (x, y) (v s P ), or starting at some (x, Yo) (x P and ending at
some (xt, y)(YP2);

(3) C is Pb,P, <= b’ <- b) starting at some (x, yo) and ending at some (x’, Yo)
(x, x’ P );

(4) C is Pb’Pb’ <= b’ <- b) starting at some (x, y) and ending at some (x’, y)
(x, x’ P); or

(5) C is a (b + 1, 2m- 1) n’ basic or degenerate basic b-path for some n (2 =<
n _-< n) starting at some (x, Yo) (x 6 P) and ending at some (x’, y) (x’ 6 P), or starting

(2,3)3 basic (forward) 1-path (2,3)3 degenerate

basic (forward)1-path

FIG. 2.3. (Degenerate) basic b-path.
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at some (x0, y) (y6 P2) and ending at some (x, Yk) (X P1), or starting at some (x, Y0)
(x P1 and ending at some (xt, y) (y P2).

LEMMA 2.2. Let G be a b + 1, 2m )n basic b-path and W any oriented path.
Then there exists a homomorphism from G onto W if and only if W is a basic b-path
with parameters (al, 2ml 1; at- l, 2mr_ 1; at), where <= <= n, all mi <= m,
and nl(W) nl(G).

LEMMA 2.3. Let G be a b + 1, 2m )n basic or degenerate basic b-path and W
a directed path or a (al, 2m 1; at- 1, 2mr_ 1; at) basic b-path with rn >= mi
for 1, 1. Assume that nl( G) < nl(W). Then

(1) G-- W;
(2) We can map the vertex ofG with smallest (or greatest) level to the vertex ofW

with smallest (or greatest) level in the homomorphic mapping ofG to W; and
3 Ifnl(G) nl(W), then the two end vertices ofG will be mapped to the two end

vertices of W in the homomorphic mapping ofG to W.

3. Even-deleting operations and Main Theorem. Let C be a core oriented cycle.
Let bo be the minimum length of any maximal one-directional intervals in C. A bo-run
is a subpath of C consisting of alternating consecutive P0 and Pbo (i.e., PboPboPboPbo .,
or ’bo’bobof’bo "’’), where each o and bo is maximal in C, as we recall from the
comments on the notation. A maximal bo-run is a bo-run not included in a larger bo-
run. Any maximal bo-run must be preceded and followed by a one-directional interval
of length greater than bo from the minimality of bo and the fact that C is a core. If there
exists a maximal bo-run that has an odd number of maximal one-directional intervals,
then we stop; i.e., we do not need to do any operation on C. Now suppose that all
maximal bo-runs have an even number of maximal one-directional intervals. Let I be
one such maximal bo-run.

Write C vAlxlyA2v. We can perform an I-deleting operation on the interval
[x, y] of C to obtain an oriented cycle A VAlxA2v(i.e., delete I and identify x and
y). Conversely, we can perform an I-squeezing operation at x ofA to return to C. If we
only want to specify the parameter bo, but do not wish to specify I, we call these two opera-
tions a bo-even-deleting operation and a bo-even-squeezing operation. Let C be the ori-
ented path obtained from C after performing bo-even-deleting operations on all maxi-
mal bo-runs.

Let b be the minimum length of all maximal one-directional intervals in C1. Clearly,
bl > bo. Let I be one of the deleted intervals of C during the bo-even-deleting operation.
Then I has the following three properties:

(i) nl(I) 0;
(ii) the level ofany vertex ofI is between the levels ofthe two end vertices ofeither

one of the neighboring maximal one-directional intervals in C (for any fixed
level function on C); and

(iii) any subpath of I has net length smaller than bl. (In fact, any subpath of I has
net length not greater than b0.)

Now it is easy to see that C -- C by a homomorphism that maps the deleted
interval to either one of its neighboring maximal one-directional intervals.

If in C there exists a maximal bl-run that has an odd number of maximal one-
directional intervals, then we stop; i.e., we do not need to do any even-deleting operation
of C. Now suppose that all maximal bl-runs have an even number of maximal one-
directional intervals. We again do all the bl-even-deleting operations on C. Continuing
this process, let the oriented cycle Ck be obtained from Ck- by doing all the
b,_ 1-even-deleting operations, provided all maximal b_ 1-runs have an even number of
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FIG. 3.1

maximal one-directional intervals in Ck-I where bk-1 is the minimum length of all
maximal one-directional intervals of Ck- Furthermore, let I be one of the intervals
that was removed from C in the process of constructing C and I the corresponding
interval of C- (each maximal one-directional interval of I has length b and let bk
the minimum length of all maximal one-directional intervals of C. We can prove by
induction on k that I has the following three properties (see Fig. 3.1 for an illustration):

(iv) nl(Ik) 0;
(v) the level of any vertex of I is between the levels of two end vertices of either

one of the neighboring maximal one-directional intervals in C (for any fixed
level function of C); and

(vi) any subpath of Ik has net length smaller than b.
Let C be the first oriented cycle obtained in this process in which there is a maximal

b-run I with an odd number of maximal one-directional intervals of length b, where
bk is the minimum length of all the maximal one-directional intervals of C. Therefore
C contains a basic b-path.

Let I be any one of the intervals that was removed from C to construct Ck. We
have known that I satisfies (iv)-(vi). It is easy to see that C -- C by a homomorphism
that maps each deleted interval to either one of its two neighboring maximal one-direc-
tional intervals.

Now we can propose the Main Theorem.
MAIN THEOREM. Let C be a core oriented cycle. Let C be the oriented cycle

obtained by doing the above even-deleting operations. If C 4 Vob+ b’’"bVo,
then C (as well as C) is nonmultiplicative.

COROLLARY. Let C be a core oriented cycle and b, a positive integer. IfC is not a
basic b-cycle and C contains a basic b-path, then C is nonmultiplicative.

We use this corollary in the next section.
By a totally different and quite complicated technique, we have proved in 11 that

if C )Obk+ lbkbk bkl)O, then C is multiplicative. Therefore we have completely
characterized the oriented cycles with respect to multiplicativity.

We prove the Main Theorem according to the following two cases in 4.
Case 1. C contains a basic b-path, but C itself is not a basic bk-cycle.
Case 2. C is a basic b-cycle and C 4 VOPb+ lbkbk bkl)O"

4. Proof of the Main Theorem.
Case 1. C contains a basic bk-path, but C itself is not a basic b-cycle.
Let C vkoUkVl Wvo and C voUv WVo, where W is a (bk + 1, 2m 1;

b + basic b-path, and U and W are obtained from U and W, respectively, by
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even-deleting operations. If we need to delete a copy of some I neighboring to v0 or v,
then the copy of I is assumed to be in U. Let

b* max { nI(S)’S is a basic bk-path of Ck }.
(Note: we regard a directed path as a basic bk-path if the length of this directed path is
at least bk.)

We now construct G and H as follows: G is a (b + 1, 2m )b* + 1-bk basic b-
path, and H doUdkPbk/ 2dk0, where H is obtained from C by replacing W by
b/ 2, but now the two end vertices of U are denoted by d0 and d for our con-
venience.

If we write

and

wk bebk+ + 17

where wi (i 1, 2, 2m) denotes the end vertex of the corresponding b, then Gk

can be written as

G =--’Pbk/l wklbk + Wkl wklbk / (there are (b* bk-k- 1)b/
Now we can construct G and H as follows. (See Fig. 4.1 for illustration.)
Suppose that the interval I of C was removed in the process of constructing C. If

the vertex ofC where this occurred is in U, then we insert a copy ofI in the corresponding
vertex ofH. If the vertex was some wi (i 1, 2m), then we insert a copy of I at
the corresponding vertex wi of each copy of W in Gk. Note that there are b* bk
copies of W in G.

In this way we obtain graphs G and H. Pb/ 2 is a subpath of H. We write H
doUdbk+ 2d0, where U corresponds to U.

FIG. 4.1. Illustration ofthe lemma.
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Claim 1. H - C.
Assume on the contrary that H -- C. Since we have Ck -- Hk, because U -- Uand W -- Pbk + 2, and we have inserted the same copies of/at the corresponding vertices

of C and Hk, we have C -- H. The mapping from H to C is not onto since H has fewer
vertices than C. Thus the composition of C -- H -- C is a homomorphism of C onto
a proper subgraph, contradicting the fact that C is a core.

Claim 2. G - C.
Assume on the contrary that f: G -- C is a homomorphism. If we write

then

G PsI1Ps212 and C Pt, J1P2J2"",

where the intervals Ii, Ji (i 1, 2, ...) satisfy (iv)-(vi) of 3 and contain only one-
directional paths oflengths smaller than all si (ti). The homomorphism f must therefore
map each Ps to some Pt.. Moreover, the images under fof the endpoints of any L are
the endpoints of some Jm. This ensures that f can be used to define (in the natural way)
a homomorphism f: G -- Ck. Since G is a (b + 1, 2m )b*+ 1-bk basic bk-path,
then the homomorphic image of G must be a basic bk-walk of net length nl(G)
b* + by Lemma 2.2. This is impossible.

Claim 3. G H -- C.
The product G H has two parts as follows:

Q G doUd and Q2 G x dlb + 2d0.

Recall that

H= doUdPb + 2do and C I)0UI)1WI)0,

Let

X0 {(x, do)’xG} and X {(X, dl)’XeG}.

The projection r defined by r(x, y) y is a homomorphism of G H onto H,
which maps Q to U and Q2 to Pa+ 2, with the set Xi mapped to vi (i 0, ). Like
Lemma 2.1, we have the following lemma 8 to classify the possible components of
Q2. Then we can modify r to a homomorphism G H -- C by noting that each
component A of Q2 may be homomorphically mapped to W so that the image of Xi 71
A are vi (i 0, by Lemma 2.3.

Remark. The proof for the multiplicativity of Ck is exactly the same as the proof
for the multiplicativity of C, but instead of using G, H, and the following lemma, we
use the simpler form G, H, and Lemma 2.1. Similarly, in Case 2, we only give the
proof for the multiplicativity of C.

LEMMA. Let Pz[Y0, Yl, Ybk+2] be a directed path of length b + 2, and
P1 [xo, x] be the graph G constructed as above. Then any component C ofP P2
is isomorphic to a subpath ofP with net length between 0 and k.

As in Lemma 2.1, for readers not familiar with [1 8], we provide the detail of vari-
ous components in the product graph as follows. We also provide the illustrations in
Fig. 4.2.

C is an isolated vertex located in P Yo } or P1 X { Yb -]- 2 }
(2) C is a directed path a _-< a _-< b) starting at (x0, y;) (i > and ending at

(x, Yk+2) (x P), or starting at (x, Y0) (x P) and ending at (xt, yj) (j <-_ bk);
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FIG. 4.2. Illustration ofCase 1.

(3) C is PaliPa (0 <= a < bk) or its subpath for some with both end vertices at
P, x

(4) C is P,,IiP,, (0 <= a < bk) or its subpath for some with both end vertices at
P, X {Yb,+2};

(5) C is Pbk+lI1Pb,I2Pb,’’’I2mPb, starting at (x0, Yl) and ending at (x, Ybk+2)
(x6 P1);

(6) C is P,IPbI2’’" IzmPa+ starting at (x, Y0) (x P) and ending at
xt y+ ); or

(7 C_ is PsIP2Iz...Ps,, starting at (x, Y0) and ending at (x’, Ybk+2) (X, X’ P1),
where Ps,Ps2"" Ps,, is a basic or degenerate basic b-path with net length b + 2 and
si=borb+ fori= 1,2,...,m.

In (3)-(7) I, I2, are oriented paths satisfying properties (iv)-(vi) in 3.
Case 2. C is a basic b-cycle.
Since C :/: VO’ak+PbkPbk "bkVO, then C must be in the following two

subcases.
Case 2.1. C Yoga’b’b" ’bVO a >= bk + 2).
Case 2.2. C Voa’bb" Wa’, ,Vo, where a > b and W is a no-

nempty basic forward bk-path.
First we prove Case 2.1, below.
ProofofCase 2.1. We may write

Ck-- l)O:aVlblcl)ZbkV3"’’VZn lb/V0 (a>= bk + 2)

Then

Vo’,H Vo, whereH VbVzbV3"" "V2,- bVo.

C vPaIPt,,I2Pt,,I3"" "Izn- lPbI01) (a>= b + 2)

V’aH’V, whereH I,’I2’,I3" "Izn- ’,Io,
where C is the original cycle, and C (as well as H can also be obtained by squeezing Ii
at vertices vg of C (and Hk, respectively) for 0, 1, ..., 2n 1. Construct oriented
paths G and H as follows:

G=.a + 1, H=,H’’,,+,H’’,.
See Fig. 4.3 for illustration.

Claim. G - C, H - C, and G X H C.
It is obvious that G -ff C since the length of the directed path G is greater than the

length of any maximal one-directional interval of C.
Suppose that H -- C. Then the first Pa ofH must be mapped to the unique Pa of

C, and the next H of H must be mapped onto the H of C, otherwise the next +
could not be homomorphically mapped to C (cf. above). Then the last vertex of the
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FIG. 4.3. Illustration ofCase 2.1.

path bk +1 in H must be mapped to some inner vertex of the a in C, and so must the
last vertex of the following H in H. Therefore the last a in H cannot be properly
mapped.

Now we show that G H -- C. It is easy to see that nl(H) > a + 1, any proper
subpath ofH admits a homomorphism to C and nl(G’) =< a + for any directed subpath
G’ of G. Let 7r and 71"2 be the projections G H -- G and G H -- H, respectively.
For any component A of G H, it is easy to see that r (A) is a directed subpath of G
and nl( 7rz(A nl(r (A)) is at most nl(G) a + 1. Therefore r2(A is a proper subpath
ofHwith net length at most a + and so admits a homomorphism to C. By composition,
A C. Therefore G H -- C.

ProofofCase 2.2. Ck YogabkPb’’" Wk’ Vo, where a > b and W
is a nonempty basic forward b-path with parameters (a, 2m 1; a2, 2m2 1;
an 1, 2mn 1; an). Without loss of generality, let a >= max { ai" 1, 2, n }.

We may write

Ck l)oPaVlb l)2Pbl)3 "l)2m- 1Pbl)2mW PbPb"

VokaI-I
where H vbv2’v3. "V2m- V2m. NOW we can construct the directed path G
and the basic bk-cycle Hk as follows:

G Pa + and H V2mP + V2m.

Suppose that we can obtain C from C by squeezing I; at vi for 0, 1, 2m,
etc. Then we can construct H and H from Hk and H by squeezing Ii at vi for 0,
1, 2rn as follows:

Hl= IbklzPbI3 "Izm-PbI:zm and H= hoPb+ Hho.
See Fig. 4.4 for illustration.

Claim. G - C, H -/ C, and G H -- C.
The reason for G - C and H- C are obvious. The main component of G H is

the oriented path isomorphic to

A HPb/ H Pbk / H’’"HP/ H, there are a bk + Pb / 1,

which is obtained by squeezing Ii at vi, for 1, 2, 2m, of each copy H of the
following degenerate (b + 1, 2m )a-b / basic b-path

H there are (a- b+ )b+1Hl "’HklPbkHklbk +HkIPbk + +
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Fl3.4.4. Illustration ofCase 2.2.

Obviously, A can be homomorphically mapped to

VoPallPbkI2PbkI3" "I2m 1PbkI:zmPb + 1,

which is isomorphic to a subpath of C. Other components of G H are Pj, PjlP, and
j.I or their subpath for 0 < j < b and I is some Ii for 1, 2, ..., 2m, which can
also be homomorphically mapped to C.

5. Almost all oriented cycles are nonmultiplicative. Let Cn be the undirected
cycle with n vertices. We say that almost all oriented cycles have property P, if

limn- (pn/v,) 1, where pn is the number of orientations ofC that have property P,
and v is the total number of orientations of C.

LEMMA 5.1. Almost all oriented cycles are cores.
Proof. If an oriented cycle is not a core, then it has net length zero since it has a

homomorphically equivalent oriented subpath. The number of arcs directed forward is
the same as the number of arcs directed backward in an oriented cycle with net length
zero. If n is odd, then each oriented cycle of n vertices is a core since it has net length
greater than zero. If n 2m is even, then the proportion of orientations of C with net
length zero is (2mm)/2 2m, which goes to zero when rn goes to infinity. Therefore almost
all oriented cycles are cores.

LEMMA 5.2. Almost all oriented cycles contain 212 (Note" Here we specify that
tWO 2 are not necessarily maximal in the cycle.

Proof. Consider all orientations of some Cn, and consider q I n/6 edge-disjoint
subintervals 11, I2, Iq of C,, each being an undirected path of length five. The
proportion of orientations of C,, which have I oriented to be 212 is 1/25 1/32.
Therefore the proportion of all orientations ofC that have none of the Ij oriented to be

212 is (31 / 32)q -- 0 as n -- c. Hence the proportion of all orientations of C that
contain P2P1P somewhere tends to 1, as n --THEOREM 5.3. Almost all oriented cycles are nonmultiplicative.

Proof. Apply the corollary ofthe Main Theorem, Lemmas 5.1 and 5.2, and observe
that the proportion of orientations of C, that are basic 1-cycles goes to zero. (By an
argument analogous to the one above, almost all orientations contain PzPzP2 and hence
cannot be simple basic 1-cycles.)
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NORMAL LIMITING DISTRIBUTIONS FOR PROJECTION AND
SEMIJOIN SIZES*

DANIlLE GARDYt

Abstract. This paper presents classes of bivariate generating functions associated with the
probability distributions of parameters on sets of points (sizes of derived relations in a relational
data base) that correspond to asymptotically normal distributions. These results are extended to
give some conditions under which the numbers an,k defined by n,k an,kxkyn (x, y)d follow a

Gaussian limiting distribution.
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1. Introduction. The aim of this paper is to study some parameters that can be
defined on sets of points obtained by random sampling without replacement from an
initial domain A. We examine the probability distribution of these parameters, under
the hypothesis that the size of the domain A and the sample size grow to infinity.
More precisely, we assume that we know the probability distribution on A, and we
want to show that, for a large class of these distributions, the probability distributions
of the parameters that we consider are asymptotically normal.

Our tools for proving this convergence are the multivariate generating function of
the parameter under study and the size(s) of the set(s) of points, and classical results
on analytic functions and the Laplace transform. Bivariate generating functions for
which the convergence toward a normal distribution holds are studied, for example,
in [2], [4], [8]. Our approach differs from these works mostly in that the generating
functions considered here depend on d, one of the parameters that grow to infinity.
We consider probability or counting generating functions, which are themselves of the
form "dth power of a function."

The plan of the paper is as follows: We present the parameters that we intend
to study in 2. There we give several interpretations of these parameters, both prob-
abilistic and related to data bases in computer science. We formally introduce our
modelization and notations in 3. We next give our results in 4 and 5 and prove
them in 6.

2. Sets of points, relations, and sums of random variables.

2.1. Sets of points. We first define the set A of "legal" points. A point in
a two-dimensional space is an ordered pair (x, y). We assume that each coordinate
takes its value in a finite domain, denoted, respectively, by Dx and Dy, on which a
probability distribution is defined. Throughout the paper, dx represents the size of
the set Dx, and dy the size of the set Dy. We also assume that the values of a point
on its first and second coordinates are independent; i.e., the probability distribution
on A Dx x Dy is the product of the probability distributions on Dx and Dy.

We consider a random subset R of A built in one of the following ways:
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In the first case, we obtain R by drawing n independent random points with-
out replacement from A;
We may also draw n independent random samples without replacement from
Dx, then complete each pair by drawing independently the y-value from by.
In this case, each value of Dx appears at most once in a set R, but a given
value of Dy may be present in several pairs of R.

Of course, the symmetrical rule also exists: We can draw a sample without re-
placement from by, then complete it by sampling from Dx. We define on R a first
parameter f(R) "number of distinct x-values" (or "number of distinct y-values").
The second parameter g(R, S) in which we are interested is the size of the set of points
obtained by drawing two independent sets R and S, then suppressing from R all the
points (x, y) whose value x on the first coordinate does not appear in a pair of S. The
sets R and S may take their values in the same sample space Dx x Dy or in two
different spaces Dx Dy and Dx Du.

We want to investigate the relationship between the size of R (number of points
in R) and f(R), and between the sizes of R and S and g(R, S), for different probability
distributions on the domains Dx, by, and Du. More precisely, we are interested in
the conditional probability distribution of f(R) for a given size of R, and in that of
g(R, S) for given sizes of R and S. We study these distributions when the size of the
domain Dx and the numbers of samplings (sizes of the sets of points R and S) grow
to infinity, and we show that they become asymptotically normal in many cases.

2.2. Relational data bases and sizes of relations. Those who are familiar
with that part of computer science that deals with relational data bases may have
noticed that the sets of points R and S defined in 2.1 are instances of relations of a
particular type. The coordinates X and Y, or X and U, are the so-called attributes of
relations R and S, and the points are the tuples of the relations. The parameters f(R)
and g(R, S) are, respectively, the sizes of the projection of relation R on attribute X
(or attribute Y) and of the semijoin of relations R and S on attribute X. These sizes
are important parameters in query optimization, which aims at minimizing the cost
of executing a query on the data base. We refer to [18], [20] for general texts on
relational data base theory, to [15], [19] for surveys on query optimization and on the
evaluation of relation sizes, and to [9], [11], [12] for a complete presentation of the
problem of relation sizes and its modelization in terms of generating functions. We
mention in [12] that the probability distributions of the sizes of relations obtained by
a projection or a semijoin were (empirically) found to follow asymptotically normal
distributions. Here we make precise the conditions under which this convergence
holds and give the mathematical proofs. We also prove that complete knowledge
of the probability distributions on all attributes is not necessary to characterize the
asymptotic distribution of the derived size, and that it often suffices to know the
distribution on the domain of the attribute on which the projection or the semijoin
takes place.

The classical operations defined on relational data bases are the set operations
(intersection, .union, and symmetrical difference), the projection, and several types
of join, mostly the equijoin and the semijoin [18], [20]. We restrict this paper to
the projection and semijoin. The intersection is related to a special case of semijoin,
and the sizes of the union and difference are very easily computed from the sizes of
the intersection and of the initial relations. We do not consider the equijoin in this
paper. One justification is that query optimizers often use a sequence of semijoins
to reduce data before computing a "full" equijoin, and that an important part of
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the cost of the operation comes from the semijoin part. We must also admit that
the generating functions associated with the equijoins are less easy to study than the
functions associated with the semijoins, and we defer them to a forthcoming paper

We assume that the relations we consider have two (sets of) attribute(s): X and
Yor U. Throughout the paper, X denotes the join or projection attribute. We restrict
ourselves to the following three schemes of relations:

In the case of a free relation, there is total independence between the values
taken by the different tuples. This is the first case of 2.1;
We may also consider relations where attribute X is a key, i.e., in a given
instance of the relation the x-value of a tuple uniquely determines its y-value.
This is the second case of 2.1;
Finally, we consider the symmetrical case, where attribute Y is key of rela-
tion R.

Of course, there are many more possible schemes of relations. We give in [9], [12]
generating functions for several of them.

2.3. Sums. of random variables. It can be recognized that the parameters
f(R) and g(R, S) defined in 2.1 are instances of a common problem: We study the
limiting distribution of a sum of identically distributed dependent random variables
when the number of variables grows to infinity.

Given two sets R and S built as described in 2.1, we define two random variables
for each i in Dx: v and w are, respectively, the number of points of R or S whose
value on the first coordinate is i. These variables take their values in {0... dy}, and
the case where does not appear in a pair of, say, R corresponds to v 0. The sizes
of R and S can be expressed as

v and
l<i<dx l<i<dx

Wi.

The size of the projection of R on the first coordinate is

u, withu=lv>0.
l<i<dx

The size of the semijoin of relations R and S can also be written as

i
l<i<dx

with u -v. lw>0.

If we assume a uniform probability distribution on the domain Dx, then the random
variables u, 1 <_ <_ dx (or the u) follow an identical distribution. Our problem,
then, is to study the sum of the u, or the sum of the u, under the conditions that the
sums of the v and w are known and when the total number dz of variables grows
to infinity.

In the case of independent random variables u, the central limit theorem, or some
extensions of it when the variables are not uniformly distributed (see, for example,
[13]), allows us to prove that the distribution of the sum l<<n u is asymptoti-
cally normal for large n. We see here that, although the random variables are no
longer independent, the correlation between them is weak enough that the limiting
distribution is still Gaussian.
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3. Models and notations.

3.1. Probability distributions on attribute domains. We consider two
classes of distributions on a finite domain D of size d and denote by Pi,d the prob-
ability that the ith element of the domain is selected when choosing at random an
element of D. Hence we have that Pi,d 1. The subscript emphazises the fact
that the probability distribution depends on the number d of elements in the domain.
Without loss of generality, we can assume that the Pi,d are decreasing when grows,
for fixed d. The two classes are defined as follows:

(Z) l<i<dPi,d2
" 0 for d - +;(G) For each fixed i, P,d P for d - +, and the {p} define a probability

distribution.
Class (Z) is named after the Zipf distribution: P,d proportional to 1/iC for 1 <_

_< d and fixed d. The uniform probability distribution, the so-called "80%- 20%"
distributions and Zipf distributions for 0 < C _< 1 are members of this class. A
probability distribution on a domain of fixed size do (Pi,d Pi,do for <_ do and Pi,d 0
for > do), Zipf distributions for C > 1, and geometric distributions belong to class
(G). Intuitively, distributions of class (Z) are not too far from the equiprobable case,
and distributions of class (G) are those for which the probability of the "diagonal"
{(i, i)} has a nonnull limit.

Distributions of classes (Z) and (G) share the uniform convergence, for bounded t,
of the generating function/k(t) 1-Ii<<d(1 + p,dt) associated with the probabilities
of the sets of distinct items, toward a function (t). Probability distributions of
class (Z) are simply characterized by (t) et. Anticipating the results presented
below, we can see that the distributions on the attributes that do not participate in
the projection or in the join (attributes Y and U) matter only as long as they belong
either to class (Z) or to class (G). In particular, all distributions of class (Z) give
distributions for the projection or semijoin size that converge asymptotically to the
same normal distribution, uniquely characterized by its moments.

3.2. Probability distributions on relations. We recall the independence as-
sumptions of 2.1, translated in terms of the following relations:

(i) The two coordinates of a tuple (point) are independent;
(ii) The tuples (points) of a given relation (set) are independent, as far as this is

compatible with the constraints on the relation (free relation or relation with
a key);

(iii) When we consider two relations R and S, these two relations are independent.
Condition (i) ensures that the probability distribution on a domain A Dx Dy

is the product of the probability distributions on domains Dx and Dy, and condition
(iii) merely states that the probability distribution of a couple (R, S) is the product of
the probabilities of R and S. Condition (ii) was detailed in 2.1 and deserves further
explanation.

The underlying idea is that the probability distribution on a relation R is pro-
portional to the probability of each of its points: Prob(R) k. liter Prob(t). The
constant k is independent of R and is chosen to obtain a probability distribution on
relations; it varies according to the rule for building R, which may restrict the set of

The generating function that gives the probabilities of the finite sets of elements is actually
)0($) Hl<i<d ((1 + Pi,dt)/(1 -Pi,d)). It differs from the function A(t) that we use in the paper

by a constant multiplicative factor YIl<i<d(1 -}-Pi,d), which disappears when we study conditional

distributions; see 3.3.



NORMAL LIMITING DISTRIBUTIONS 223

admissible relation instances. For example, assume that the probability distribution
on attribute X is given by {qj, 1 <_ j <_ dx} and that the distribution on attribute Y
is given by {p, 1 <_ <_ dy}; in the case of a free relation (first case of 2.1), we have
that k 1/yi,j(1 / pqj); in the case of a relation with key X (second case of 2.1),
we have that k- 1/1-Ij(1 q-qj) [12].

3.3. Limiting distributions. We recall that we want to investigate the limiting
distribution of the size of a relation obtained either by the projection of a relation
of known size r or by the join of two relations of known sizes r and s. Thus the
problems presented in this paper can be cast into a common frame" given a doubly
indexed sequence of real positive numbers (hi,r),2 our goal is to study the limiting
distribution of the normalized sequence (bt,r at,r/(t at,r)) when r goes to infinity.
We assume that we know the function (I)(x, y) t,r at,rxlYr" The problem can
be reformulated using the probability distribution defined by the generating function
f(x) [yr](I)(x, y) /[yr]((1, y)" This is the conditional probability distribution of the
parameter "marked" by x in (I), knowing that the parameter "marked" by y in (I)

(usually the size of some structure) has value r. We study the limit of this conditional
distribution when r and d go to infinity.

For example, we define al,r as the number of relations of size r whose projection
is of size l, and we want to estimate the size of the projection of a relation of known
size r; d is the size of the domain on which we project the relation. We see in 4
that the generating function that appears in the study of the projection size has the
general form (I)(x, y) (1 x + xA(y))d.

In this form, it is obvious that, at least for uniform distributions on the underlying
domains, it does not matter if (I) is a probability or counting generating function in the
variable y: This corresponds to an extra factor in the term [yr]O(x, y), which cancels
in f(x). In our example, the generating function for the projection sizes might be a
probability generating function with respect to x, and a counting generating function
with respect to y. For the same reason, we may indifferently use an ordinary or
exponential function in y, according to the underlying structure (this holds even if
the distribution on the attribute domains are not uniform). Finally, we use probability
generating functions (b either for joint probabilities or for conditional probabilities (we
assume that we know the size of the parameter marked by y) as the need arises: The
generating function for the conditional probability satisfies [yr](b(1, y) 1, which
gives f(x) [yr](I)(x, y).

We give our theorems in the case where the probability distribution on the domain

Dx of the projection or join attribute X is uniform, and its size dz 3 is related in
a simple way to the sizes of the relevant relations. For example, in Corollary 1 the
size dz of Dx is of the order of the size r of relation R. We also assume that, when
the sizes dr and dv of the domains Dr and Du grow to infinity, they do so without
relation to dx. However, the exact relation between these parameters is not strict:
The proofs can be adapted in many cases to show the convergence toward normal
distributions with suitably modified moments.

3.4. Analytic functions with positive coefficients. For easy reference, we
introduce here a property relative to an analytic function that we need to prove

2 The numbers at,r actually depend on a third parameter d in such a way that the function

(I)(x, y) -/,r al,rxlyr is of the form (x, y)d. See 4 and 5.
3 This is the parameter d such that (I) cd.
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our results and which is satisfied in all the cases studied in this paper; we call it
Property P, shown below.

PROPERTY P. A function, say A(y), is entire and not aJfine, with positive coeffi-
cients, such that (0) 1, and such that there exists no entire function A and integer
m >_ 2 with (y) A(ym).

The last part of Property :P, A(y) A(ym), is introduced for technical reasons,
but is in no way a restriction: If A(y) A(ym), we just change the variable y into
ym for the greatest such m, and the function A satisfies Property P. It can be
reformulated as in [4]" The greatest common divisor of the {r. [yr]A 0} is 1.
Likewise, the important condition on (0) is simply (0) 0; requiring that (0) 1
merely simplifies some computations.

In Theorem 1 of 4 and in Theorems 3 and 4 of 5, we use an auxiliary function
g(y), obtained from the function (y) by g(y)= y’ (y)/(y).

LEMMA A. Let Property P be satisfied and define g(y) yA’ (y)/A(y). Then g is
increasing on the interval [0,

Proof of Lemma A. As function is entire with positive coefficients and A(0) 1,
has no zeros on [0, +c[, and the function g is well defined on this interval. Let us

define the function

)(2+

We have that g’ (y) D(y)/2 (y). The definition of D in terms of and its derivatives
can be used to get an expansion of D as a series with positive terms. This shows that
g is positive on the interval [0, +oc[ and that g is increasing on this interval.

When the function satisfies Property P, then, by Lemma A, the function g is
increasing; hence g(y) either has a finite limit or tends to infinity when y - +c.
Henceforth, we use the expression limy__.+ g(y) either for a finite or an infinite limit;
in the last case, the condition that the limit is greater than some positive number A
is trivially satisfied.

4. Asymptotic distributions for projection sizes. Given a relation R with
two attributes X and Y, we want to study the size of the projection of R on attribute
X. We recall that this projection is computed by suppressing the attribute Y, then
eliminating the redundant values of attribute X: We just keep one instance of each
x-value that appears in the initial relation. We assume that the domains Dx and Dy,
where X and Y take their values, are of finite sizes dz and dy and that the relation
has r elements, where r is of the order of dx. We are interested in the probability
distribution of the size of the projection of R, conditioned by the initial size r of R,
when the parameters r, dx, and dy grow to infinity.

To be consistent with the schemes of relations defined in 2.1, we study a relation
with a key on the attribute Y eliminated by the projection and a relation without a
key. The case of the projection of a relation R with a key on attribute X is without
any difficulty: Each pair of R has for X-component a distinct value; as a consequence,
the projection on attribute X is composed of all the values x that appear as the first
coordinate of a pair (x, y), counted once, and has exactly the same size as the initial
relation R.

4.1. R has Y as key. Define p(1/r) as the conditional probability that the
projection of R on attribute X is of size when the size of R is itself equal to r,
for a uniform probability distribution on attribute X and a general probability dis-
tribution on attribute Y given by {Pi,dy, 1 <_ i <_ dy}. To study the distribution
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of the projection size, it is convenient to use the following generating function, ex-
ponential in y: (x,y) ,rp(1/r)xlyr/r!. As an intermediate step, we use the

auxiliary bivariate generating function (x, y) ’z,r p(1, r)xZy. In both functions
and , the variable x marks the size of the projection on attribute X, and the

variable y the size of the initial relation; p(1, r) is the joint probability that relation
R is of size r and its projection on attribute X is of size l; it is related to p(1/r) by
p(1/r) p(1, r)/(Ykp(k, r)) [xyr](x, y)/[yr](1, y). We have [9], [11] that

dx

k=0

io(ky/dz) xk 1 X)dX-k

In this formula, )0(t) YIl<i<dr ((1 + pi,drt)/(1 + Pi,dr)) is the generating function
describing all sets of y-values, with their associated probability. By extracting the
coefficient of y in and computing the (exponential in y) generating function of the
conditional probabilities O(x, y)= yt,p(1/r)xtyr/r!, we get [11] that

(1) (I)(x, y) (1 + x(ey/dx 1))dx

Let us mention that there exists a closed-form expression for the conditional proba-
bilities: p(1/r)= l!(d{)dS(r, 1), with S(r, 1) a Stirling number of the second kind.4

Equation (1) shows that the evaluation of the projection size for a relation, with
a key on the attribute Y suppressed by the projection, is equivalent to the classical
occupancy problem in urn models [16]. This problem can be summarized as follows:
Given d urns and r balls, the balls are thrown independently and at random into
the urns, and we study the number of empty urns, or, equivalently, the number of
urns containing at least one ball. The appropriate generating function in this case
is a counting generating function, exponential in the number of balls (marked by the
variable y) and ordinary in the number of urns with at least one ball (marked by x).
Let us denote by Nt, the number of ways of throwing r balls into urns, with each
urn containing at least one ball; then [16] it follows that

,xZy/r! (1 x + xeY)d

It is obvious from the expression of O(x, y) in (1) (but not from that of ) that the
probability distribution on attribute Y does not matter. Moreover, a whole spectrum
of limiting results is known for urn models (see [16], [17] for surveys) and can be
directly applied to the projection of a relation with a key.

4.2. //is a free relation. The bivariate generating function (x, y) of the joint
probabilities p(1, r), where x marks the size of the projection on attribute X and y the
size of the initial relation, is [9], [11]

O(x, y) p(1, r)xZy (1 x + xA(y))dx
l,r

4 As the notation for Stirling numbers is not standardized, we use here the notation of Comtet
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R

YX

(1 x + xA(y))dx

(1 X + xey/dx )dx

Asymptotic result

4.2, Cor. 1

[16], [17] or 4.2, Thm. 1

FIG. 1. Generating function for the size of the projection rx(R) of R on attribute X" rx(R)
{1" (, ) R}.

with

A(Y)= H (I+p,dYY)’5
l<_<_dy

In this formula, as in 4.1, Pi,dy denotes the probability of the ith value of domain
Dy, which depends on the type of distribution and on the size of the domain.

Figure 1 sums up the generating function and the asymptotic results, either previ-
ously known or proved in this paper, for the two types of relations: a free relation and
a relation with a key. Here and in Fig. 2 in 5.1, "X Y" means that neither attribute
X nor attribute Y is key of R (free relation), Y - X means that the attribute Y is
key of R, and X Y (in Fig. 2) means that X is key of R.

We first give a general theorem (Theorem 1) pertaining to functions that have
the general form (1 x + xA(y))d. We then deduce from it a corollary dealing with
the case of a free relation. Theorem 1 can also be used to get the classical result on
urn models, or, equivalently, the result pertaining to a relation where attribute Y is
key: This is simply the case where the function A(y) is equal to ey or to ey/dx

THEOREM 1.Let Property be satisfied. Define (I)(x, y) (1 x + X.(y))d. Let
d, r -- +oc in such a way that r Ad+o(d) for some positive constant A, and that
g(y) yA’ (y)/A(y) satisfies lim_+ g(y) > A. Then the probability distribution

defined by the generating function f(x) [yr]O(x, y)/[yr]O(1, y) is asymptotically
Gaussian when d --. +oc. The asymptotic values of the mean and variance are defined
in terms of the unique real positive solution p of the equation g(y) A as follows

/t=d 1- - -d
A(p) A2(p) g,(p))4(p)

COROLLARY 1. Let R[X, Y] be a free relation with a uniform probability distribu-
tion on the domain of attribute X Then the probability distribution of the size of the
projection of R on attribute X, conditioned by the size r Adz + o(dx) of relation R

5 Actually, O(x, y) is obtained from the function

0(t) (t)/(1)- I-I ((1 +p,d.y)/(1

by marking the tuples of R and their projection on X; this gives

(x,y) (1-x+x (l+pi,dyY))/ (l+pi,dy)
(1--x+xA(y))dx
()

As we are interested in f(x) [yr](x,y)/[yr]O(1, y), the multiplicative factor A(1)dx cancels in

f(x), and we can use the simpler expression given in the text.
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with A a positive constant is asymptotically normal when dx --* +oc. The asymptotic
mean and variance are given by # #0 di and a2 adx where #0 and a are
constants that depend on the probability distribution on attribute Y. We now assume
that dy - +cx) and is independent of dx.

If the distribution on ny satisfies hypothesis (Z), then #0 1- e-A and a
(eA 1 A)/e2A. If the distribution on Dy satisfies hypothesis (G), let (t)
1-Ii>1(1 + pit), where the {pi} define the limiting distribution on attribute Y, and

g(t) t ’ (t)/(t). Let p be the unique real positive solution of the equation g(t) A.
The constants #0 and a are

#0 1- 1/(p); a (p) g’(p)a(p)"

Moreover, #o satisfies 1- e-A

_
#o

_
1.

The proof of Theorem 1 and the derivation of Corollary I are postponed until 6.2.
As an application of Corollary 1, we deduce that the exact probability distribution
on attribute Y has no influence on the limiting distribution as long as it stays in class
(Z) and dv - +.Relation to some urn models. When the probability distribution on the domain
of attribute Y belongs to class (Z), i.e., when the function

A(Y)= II (l+pi,dyy)
lidy

has for limit ey for any fixed y and for dy -- +oo, the generating function (I)(x, y)
(1 x + x 1-I <i<dy (1 +Pi,du Y))dx converges pointwise toward the function (1 + x(ey

1))dx when dy grows to infinity and di is constant. This function is the generating
function i,j Ni,jxiyj/J! of the number of urns containing at least one ball when
we throw j balls independently in dx urns, and it has already appeared in the study
of a relation with a key (see 4.1). This can be explained intuitively as follows: For
large dy, the probability -i Pi,dr2 that we twice draw the same point in successive
trials with replacements is close to zero. Hence we may assume that the successive
trials that give the points of the relation are "asymptotically" independent, and we
get the classical urn model.

However, when the probability distribution on attribute Y belongs to class (G),
the successive trials giving the points of the relation are not independent: The prob-
ability of twice drawing the same point in random sampling with replacement is
definitely not null! (Asymptotically, it is close to Zi>l p2 > 0.) This is reflected in

the limiting generating function (1 + x((y) 1))dx which we obtain by letting dy
grow to infinity and by keeping dx constant.

Alternatively, the size of the projection on attribute X can be related to the
number of nonempty urns when we throw the balls in complexes. Again, we refer
to [17] for asymptotic results when complexes are of fixed size. In our approach, a
complex is the number of points (x0, y) in a given instance of a relation for a fixed
value x0 of attribute X, and its size is a random variable taking its values in {0... dy }.
Ammann [1] studies such a case when the size of a complex is bounded and for various
conditions on the numbers r of balls and d of urns: If r is of order -, the number of
empty urns asymptotically follows a compound Poisson distribution; for larger r, but
still with r o(d), the asymptotic distribution becomes Gaussian. In our framework,
this means that the size of domain Dy is fixed and that the order of the size of the
relation is either v/-x or o(dz).
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5. Asymptotic distributions for semijoin sizes. In this section, we consider
two initial relations R and S and their semijoin on a common attribute X. The values
taken by the two relations are assumed to be independent of each other. We consider
that R and S are each built on two attributes, respectively, R[X, Y] and SIX, U]. The
semijoin of R and S on attribute X is a subset of the relation R; it is computed by
keeping in relation R only those tuples whose value on X appears in the X-column of
relation S. This operation is not symmetrical: The semijoin of R and S is not equal to
the semijoin of S and R. We recall that we assume a uniform probability distribution
on the join attribute X.

5.1. Generating functions. We use the following notation: p(t, r, s) is the joint
probability that the relations R and S have respective sizes r and s and that their
semijoin is of size t; p(t, s/r) is the joint probability that the relation S is of size s,
and that the semijoin of R and S is of size t, conditioned by the fact that the relation
R is of size r, and so forth. These probabilities are trivially related to one another; for
example, p(t/r, s) p(t, r, s)/(-ip(i r, s)). We define two functions R and s as in

3.1. For example, AR is a generating function associated with the sets of elements of
R whose first value is fixed. If R is a free relation and if the probability distribution
on attribute Y is given by (Pi,d. }, then AR(Y) IIl<i<dy (1 + Pi,dyY). When X is
the key of R, then R(Y) 1 + y. Once again, we do not consider the probability
generating function, which only differs from R by a constant factor. Function As
describes in a similar way the legal sets of points in S.

Our aim is to study the conditional probability distribution p(t/r, s), which gives
the probability that the join has size t, knowing that the initial relations are, respec-
tively, of sizes r and s. As in 4.1, we often use as an intermediary step the generating
function of another, related distribution. We use whatever probability distribution has
a generating function of a kind convenient for asymptotic study, namely (x, y, z)d.
The rule of thumb is that, if an attribute Y or U is the key of the relation in which it
appears (R or b0, we should use a probability distribution conditioned by the size of
this relation; moreover, the generating function should be exponential in the variable
"marking" the relation. This is formalized in Theorem 2, below.

THEOREM 2. Let R and S be two independent relations. The generating function
(x, y, z) of the sizes of relations R and S, and of the semijoin of R and S, is given

by the table of Fig. 2, with the conventions that "X Y" or "X U" corresponds
to a free relation, Y -- X or U - X to a relation with key Y or U as applies, and
X - Y or X -- U means that X is key of R or S, and with the following definition

If each of the two relations R and S is either free or with a key X,

(x,y,z) EProba(t,r,s)xtyrzS;

If attribute Y is key of relation R, and relation S is either free or with key X,

yr
(I)(x, y, z) E Proba(t, s/r) x . z

t,,8

If relation R is free or has key X, and attribute U is key of relation S,

(I)(x, y, z) E Proba(t, r/s) xt. y z
t,r,8
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R s Asymptotic result

XtY
XY XU
X f Y U--- X
XY XU
X-Y XU
XY UX
YX X’U
YX XU
Y-* X U- X

[10]
5.4, Cor. 4

[10]
5.3, Cor. 2

5.4, Thm. 5

5.3, Cor. 3

[10]
5.4, Cor. 5

[10]

FIG. 2. Generating function for the size of the relations R, S, and their semijoin on attribute
x: {(, )1(, ) R; .(, ) S}.

If attributes Y and U are, respectively, keys of relations R and S,

Y__o z8

(x, y, z) E Proba(t/r, s) x

Proof of Theorem 2. The ordinary counting generating functions for the cases
when none of the attributes Y and U is key can be found in [12]. The computation
of the joint probability generating functions when neither attribute Y nor attribute U
is key of its relation is straightforward, and we do not detail it. We give below the
computation of (I)(x, y, z) when attribute Y is key of relation R and relation S is free.
The cases where relation S has for key either X or U can be dealt with in a similar
wty.

We first assume that the probability distributions on attributes Y and U are
uniform. It is simpler in this case, and it has no effect on function , to use the
counting generating function of the sets of elements on attribute X, that is, to take
As(y) (1 + z)dz instead of (1 + z/dz)dz. Let us denote by N(t, r, s) the number of
couples of relations (R, S) with given sizes r and s, whose semijoin has size t, and by
N(r) the number of relations R of size r. The ordinary counting generating function
V(x, , z) E,, g(t, , ) xvz is [1]

k

The conditional probability p(t, s/r) is equal to N(t, r, s)/N(r). We want to compute
(z,,z) 2,,tp(t,s/r) z /r. z 2t,,N(t,r,s)/N(r). z /r. z.

Substituting the value d)() for N(r) in the expression of p(t, s/r) gives

e) )
e[](e + l[l(as(l- 1.

k

Substituting this value into the definition of , we get that
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ek(x-1)y/d: (S(Z)- 1)k (ey/dX t_ exY/dx. [,s(Z

The computation when at least one of the probability distributions on attributes Y
or U is not uniform is in the same vein and presents no real difficulty.

As in Theorem 1, we ignore in Theorem 2 constant multiplicative factors of the
type A(1); we also ignore the coefficients 1/dz of variables y or z. These factors
might hide the global structure of Fig. 2, above, and do not serve any useful purpose:
From 3.3, we know that the asymptotic study concerns the probability distribution
generated by the function f(x) [yrzS](x,y,z)/[yrzB]O(1, y,z), and neither the
elimination of a multiplicative factor in nor the substitution of y for y/dz have
any effect on the function f. For example, the case detailed in the proof of Theo-
rem 2, starting from the probability generating function for a uniform distribution,
not from the counting generating function that we used, actually leads to the func-

tion O0(x, y,z) (ey/dx + exy/dx (/s(Z) 1)) dz "/S(1) -dx and the function given in
Fig. 2 is O(x,y,z) (ey +eXY(As(z)- 1)dx As(l)dx Oo(x, dxy, z). Both functions
lead to the same conditional probability distribution.

5.2. Limiting distributions. We can show that the semijoin size is asymptot-
ically normal in several cases and that, as in the case of a projection, the probability
distributions on attributes Y and U have almost no importance. There are three
cases for each relation: It is free, or it has attribute X for key, or the other attribute
is key (attribute Y for R, and attribute U for S). The choices for relations R and
S are independent. As we see in 6.1, our method for proving results of asymptotic
normality requires the evaluation of the coefficient [yrzB](x, y,z), and we classify
the different cases according to the ease with which either one of the intermediate
coefficients [y](x, y, z) or [z](x, y, z) can be computed. The possible cases for the
two relations are listed below.

1. None of relations R and S has X for key. There is no direct way to evaluate
[yz], and we must use twice Cauchy’s formula to compute it. We defer it
to a future paper [10].

2. R has Xfor key, but not S. The extraction of [y]O gives a function in x and z:

(dx) (1 x + Xis(Z))iS(z)dx-r. If, moreover, attribute U is key of relation
S, then As(z) is the exponential function ez. See Theorem 3 and Corollaries 2
and 3.

3. S has X for key, but not R. We compute the coefficient of z in the function
: [z] (ds))R(xy)8/R(y)dx-. If relation R has attribute Y for key,
then R(Y) eY. We then must study a bivariate function in x and y. This
is done in Theorem 4 and Corollaries 4 and 5.

4. R and S each have X for key. The generating function has the simple form
O(x, y, z) (1 + y + z + xyz)dx and either one of the coefficients [yr] and
[z]O is easily computed. In this case, the semijoin of R and S has exactly the
same number of elements as the intersection of relation R and the projection
of relation S on attribute X, which has the same size as S. Conversely, the
intersection of two relations can be seen as a semijoin of two relations with
no other attribute than the one that is used in the join. Here again, we have
a Gaussian limiting result (Theorem 5), which we state for the intersection
of two relations built on the same attributes. Theorem 5 is also valid for
the semijoin of two relations with a uniform probability distribution on the
join attribute and without restriction on the distributions on the domains of
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attributes Y and U.
The corollaries to the theorems below are valid for probability distributions in

classes (Z) or (G) on the attributes Y and U, as indicated. In Theorems 3-5 and
Corollaries 2-5, A and B are strictly positive constants. In the case of a probability
distribution on either attribute Y or attribute U belonging to class (G), the domain
sizes dy or dv grow large (they are assumed to do so independently of each other
and of dx), and 99R(t) or 99s(t) denotes the limiting function I]>1(1 + pt); p is

the unique real positive solution of the associated equation t’n(t)/n(t A or

ts(t)/s(t B. The existence and uniqueness of p results from Lemma A in 3.4.
The function g is defined by g(t) t99s(t)/s(t in 5.3 and g(t) tR(t)/99R(t in

 5.4.
5.3. X key of R. We first give the general result pertaining to generating func-

tions of the kind O(x,y,z)- (l+y+(l+xy)(iks(z)-l))d, then the corollaries dealing
with the different cases for relation S. The proofs of Theorem 3 and of Corollaries 2
and 3 are given in 6.3.

THEOREM 3. Let Property 7 be satisfied (see 3.4). Define (x, y, z) (1 + y +
(1 + xy)(A(z)- 1))d. Let d, r,s +c in such a way that r < d, d o(r3/2), and
s Bd + o(d) for some positive constant B, and that g(y) y)((y)/A(y) satisfies
limy_+o g(y) > B. Then the probability distribution defined by the generating func-
tion f(x) [yz]O(x, y,z)/[yz]((1, y,z) is asymptotically Gaussian. The asymp-
totic values of the mean and variance are defined below in terms of the solution p of
the equation g(y) B

#-r 1-
1

a2 =r
A2(p) dA4(p)g’(p)

COROLLARY 2. Let R[X, Y] be a relation with a key X, and SIX, U] a free rela-
tion. We assume that the probability distribution on Dx is uniform; the probability
distribution on Dy is arbitrary. The sizes r and s of the relations R and S are as-
sumed to satisfy r < dz, dz 0(r3/2), and s Bdx(1 + 0(1)). Then the probability
distribution of the size of the semijoin of R and S on attribute X, conditioned by the
sizes of R and S, is asymptotically normal.

If the distribution on Du satisfies hypothesis (Z), the mean and variance have for
asymptotic values # (1 -e-S)r and a2 r((es 1)/e2B -(rB)/dxe2B). If the
probability distribution on Du satisfies hypothesis (G), the asymptotic values of the
mean and variance are

#- #or- (1- 1/s(p))r, a2 -r (s(P)- 1 ,2)dz 994(p)g (p)

Moreover, the constant #o satisfies 1- e-B

_
ito

_
1.

COROLLARY 3. Let R[X, Y] be a relation with a key X, and SIX, U] a relation
with a key U. We assume that the probability distribution on Dx is uniform. The
probability distributions on Dy and Du are arbitrary. The sizes r and s of the relations
R and S are assumed to satisfy r < dz, dx 0(r3/2), and s Bdx(1 + 0(1)).
Then the probability distribution of the size of the semijoin of R and S on attribute X,
conditioned by the sizes of R and S, is asymptotically normal. The mean and variance
have for asymptotic values it (1 e-S)r and a2 r((es 1)/e2B rB/dxe2S).
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The comparison of Corollary 2 in the case of a distribution of class (Z) on attribute
U and of Corollary 3 shows that the two asymptotic distributions of the projection
size are the same. As in the case of a projection, the exact distribution of the values
of attribute U for a free relation, as long as it is not too far from uniform, or the
existence of a key on U, are of no importance with respect to the asymptotic size of
the semijoin when dx and dv go to infinity.

5.4. X key of S. This part deals with the cases where the generating function
is of the kind (x, y, z) (R(Y) + Z)l:t(xY))d. Here again, we first give the general
result (Theorem 4), then the applications to the semijoin size (Corollaries 4 and 5),
and we defer the proofs until 6.4.

THEOREM 4. Let Property P be satisfied (see 3.4). Define (x, y, z) (A(y) +
zik(xy))d. Let d,r,s + in such a way that s < d, d o(s3/2) and r
Ad + o(d), and that g(y) y (y)/A(y) satisfies limy_+ g(y) > A. Then the
probability distribution defined by the generating function f(x) [yrzS](x, y, z)/
[yrzS](1, y,z) is asymptotically Gaussian. The asymptotic value of the mean is

# rs/d. The asymptotic value of the variance is defined in terms of the solution p
of the equation g(y) A" a2 s(1 s/d)pg’ (p).

COROLLARY 4. Let R[X, Y] be a free relation, and SIX, U] a relation with a

key X. We assume that the probability distribution on Dx is uniform and that the
probability distribution on Dy is in class (Z) or (G); the probability distribution on

Du is arbitrary. The sizes r and s of the initial relations are assumed to satisfy
r Adx + o(dx), s < dx, and dx 0(s3/2). Then the probability distribution of
the size of the semijoin of R and S on attribute X, conditioned by the sizes r and s of
the initial relations, is asymptotically normal. The asymptotic mean is it rs/dx. If
the distribution on attribute Y belongs to class (Z), the asymptotic variance is equal
to a2 (1 s/dz)rs/dz. If the distribution on attribute Y belongs to class (G), the
a  m tot c a  on ta t

COROLLARY 5. Let R[X, Y] be a relation with key Y, and SIX, U] a relation with a

key X. We assume that the probability distribution on Dx is uniform. The probability
distributions on Dy and Du are arbitrary. The sizes r and s of the initial relations are
assumed to satisfy r Adz + o(dx), s < dx, and dx o(s3/2). Then the probability
distribution of the size of the semijoin of R and S on attribute X, conditioned by the
sizes r Adz (1 + o(1)) of R and s of S, is asymptotically normal. The asymptotic
mean and variance are given by # rs/dx and a2 (1 s/dx)rs/dz.

Once again, a comparison of Corollaries 4 and 5 shows that the existence of a
key, or a probability distribution of class (Z), on attribute Yhave no influence on the
asymptotic behaviour of the semijoin size.

In the case where both relations R and S have attribute X for key, we have the
following result, which is proved in 6.5.

THEOREM 5. Let R and S be two free relations, of sizes r and s. We assume
that the probability distribution on the set of size d of possible tuples is uniform. We
take r Ad(1 + o(1)) and s Bd(1 + o(1)), where A and B are constants in ]0, 1 [.
Then the probability distribution of the size of the intersection of R and S, conditioned
by the sizes r and s of the initial relations, is asymptotically normal. The mean and
variance are given by # rs/d and a2 rs/d(1 -r/d)(1- s/d); their asymptotic
values are, respectively, ABd and AB(1 A)(1 B)d.
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6. Proofs of theorems.

6.1. Sketch of the proofs. Theorems 1, 3-5 have a common flavor: We are
interested in a function (x, y) or (x, y, z), which defines a conditional probability
distribution, and we want to know if this distribution has a limit when some param-
eters r and s go to infinity. Moreover, the function is of the kind cd, where the
exponent d also grows to infinity. The generating function for the conditional distri-
bution is f(x) [y"](x,y)/[yr](1, y) or f(x) [y’zS](x,y,z)/[y’zS](1, y,z).

Let us sketch the method that we use to study the limit of the distribution defined
by f(x) when function is bivariate. When the initial function is O(x, y, z), we restrict
ourselves in this paper to cases where at least one of the coefficients lYriC(x, y,z)
or [zS]O(x, y, z) can be computed by the binomial formula, and the evaluation of a
limiting distribution defined by function f(x) proceeds in a similar way.

We first evaluate (x) [y"]O(x,y), for x real. By Cauchy’s formula for an
analytic function, (x) can be written as an integral on a closed contour around the
origin as follows:

1 J(x,y) dy
(2) )(X)- yr+l"

In all the cases that we consider in this paper, the function has no singularity, and
we use the saddlepoint method [3], [6], [14] to approximate this integral. We take for
integration path in (2) a circle y p(x)eio, centered at the origin, whose radius p(x)
is chosen in such a way that only a small part of the circle contributes to the integral
and that the integral on the rest of the circle just gives an error term. The point p(x)
is a saddlepoint; it is defined from the function h(x, y) log O(x, y) (r + 1)logy as
the solution of the equation (Oh/Oy)(x, y) O. The saddlepoint approximation then
gives the following approximate value of (x)"

eh(x,p(x))
(x) (1 + o(1)).

(x,

We next show the pointwise convergence of the Laplace transform
(1) of the normalized random variable associated with the probability generating
function f(x) (x)/(1), toward et/2, for suitably chosen values of # and a and
for any fixed t in the interval [0, +oo[. Classical results on the convergence of prob-
ability distributions (see, for example, [7, Chap. XIII, Thm. 2]) allow us to conclude
to the convergence of the probability distribution defined by f(x) toward a normal
distribution of mean # and variance cr2.

We give in some detail the proof of Theorem 1 and, more quickly, the proofs of
Theorems 3-5 and of the corollaries.

6.2. Proof of Theorem 1 for projections. We recall that the bivariate func-
tion we consider is O(x, y) (1 x + x)(y))d, with Property P of 3.4 satisfied: It
is entire and not affine, with positive coefficients, such that (0) 1, and such that
there exists no entire function A and integer m _> 2 with ,k(y) h(y’). Let us define

(3) h(x, y) dlog(1- x + xik(y)) (r + l) log y.

Equation (2) becomes

1 f eh(x,y)dy(x)
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6.2.1. Choice of the integration contour. The equation in y defining the
saddlepoint is Oh/Oy(x, y) O, which can be rewritten as

xy,’ (y) r + 1
(4)

1- x + x(y) d

The solution of this equation in y is a function of x, r, and d. We must take x equal
to 1, or near 1: x e-t/a, for fixed t and large a. We solve the equation for x 1,
then give an approximate solution for x close to and smaller than 1. For x 1, (4)
becomes

(5)
yA’ (y) r + 1

(y) d

We first show that (5) has a unique real positive solution P0.
Lemma A of 3.4 and the fact that g(0) 0 together show that P0 exists and

is unique if and only if limy_+o y)((y)/)(y) > (r + 1)/d, which can be simplified
into a condition independent of d and r, below (we recall that d, r - +cx and that
r Ad + o(d)):

YA’ (Y) > A.() im
-+ (y)

We henceforth assume that the condition (6) holds: For r and d large enough, (5)
has a unique real positive solution P0. We look for a solution of (4) under the form
p(x) (1 + u)po with u o(1), for x 1 + and o(1), with < 0.

Functions A and A’ can be expanded near the origin as follows:

A(Y) A(Po) + uA’ (Po)Po + O(u2),

’ () ’ (p0) + u’ (0)p0 + o().
We rewrite (4) as xy,k’ (y)/(1 x + x,(y)) g(Po) then plug the expansions of A and
A’ into it. In terms of the function

2
D(y) ,(y)(,’ (y) + yA (y)) yA’ (y),

this gives the following equation on u and s x- 1"

,k’ (Po)e + D(po)u + O(u2) + O(eu) O.

The coefficient of u in this equation is D(po) > 0, and we can compute the following
approximate value of u:

’ (po)
(7) p(x) (1 + u)p0; u -+ O(2).D(po)

6.2.2. Approximation of (). In this section, x is fixed and real near 1. As
we will need, in 6.2.3, to take x e-t/ for t > 0 and a > 0, we can restrict ourselves
to x _< 1. We also abbreviate 02h/Oy2 into h" in this section; this should cause no
ambiguity.

We choose for integration contour in the integral (2) a circle with radius p(x)"

1 J eh(x’y)dy(x) eh(,P())d(p(x)ei).
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We divide this integral in two parts: I1 is the part of the integral dealing with a
restricted piece of the path near point p(x) and will give the main term (11); the
complement I2 will give an exponentially smaller term (12). We first choose
(we see in the following the conditions that a must satisfy), then we formally define

I1 andI2 by

1 fo eh(:’P(:)’)d(p(x)ei)’11
2i7r e]-,,+[
1 eh(,o()O)d(p(x)eiO).I2

2it 101

We have that (x) I1 + I2, and our goal is to prove that we can find a value of
such that

eh(x,p(x))
(8) (x) (1 + o(1)).

2h" (x, p(x))

Evaluation of I. We can always assume that x varies near 1 in such a way that
p(x) belongs to a compact set near Po. Actually, po itself is a function of d and r but
can be restricted to a compact neighbourhood of g-I(A) (which is a constant). This
means that we can restrict p(x) to a compact interval around g-Z(A) independently
of r, d, and x. This will henceforth be used implicitly to prove that the error terms
that we consider are uniform with respect to r, d, and x. We abbreviate p(x) into p
for the evaluation of Iz; again, this should cause no confusion. The evaluation of
is similar to the corresponding ones in the proofs of Theorems 3 and 4. This leads us
to state the following lemma, which we use again in the next proofs.

LEMMA B. Let hd(x, y) be a function that depends on a parameter d, defined and
twice differentiable for (x, y) in a compact neighbourhood of the point (1, Po), where
po satisfies the equation Ohd/Oy(1, po) O. We assume furthermore that, as d varies,
po stays in a compact subset of ]0, +[. Define p as the solution (dependent on x and
d) of Ohd/Oy(x, p) O. Assume that

02hd/Oy2(1, Po) is of order exactly d;
for x near 1, 02hd/Oy2(x, p) 02hd/Oy2(1, po)(1 + o(1)) with an error term

uniform in x and independent of d;
the function 0 hd(x, pe) has a Taylor expansion near zero satisfying

p2 e 1)2O2hd/Oy2(x, P) + O(d03),hd(x, pe) hd(x, p) +

with the 0() term such that the implied constant can be chosen independently of x
and d.

Then there exist constants 0 > O, 0, and such that, for any ]0, ao[, and
with implied constants in the 0() terms independent of x and d,

2i el-,+[

(1 + + + o(e  ll.

The proof of Lemma B is given in Appendix A. We now check that its assumptions
are satisfied for the function h defined by (3). The function h(x, pei) can be expanded
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in the variable 0 around the origin as follows:

(9) h(x, pe) h(x, p) + p(e’ 1)Oh/Oy(x, p)
p2 ]h"’ (e+--(e’ 1)2h’’(x,p) + O([ II 1)=).

Define (x, y) 1 x + xA(y). Definition (3) gives h" (x, y) d. 02(log )/Oy2(x, y) +
(r+ 1)/y2. For x and y near 1 and Po, respectively, we have that 02(log )/Oy2(x, y)
02(log )/0y2(1, po) + O(x -,1,) + O(y _--,,po) and 1/y2 1/p + O(y po). This and
the fact that r O(d) give h (x,y) h (1,po)+d O(x,- 1)+d O(y- Po). We next
check that h" (1, po) has order exactly d: h" (1, Po) d g (Po)/Po. Hence we can factor
it out of the expression of h" (x, y), and we get that

(10) h" (x, y) h" (1, po)(1 + O(x 1) + O(y Po)).

The O() terms in this expansion are independent of r and d. We deduce from it that,
h" =h"for x close to 1 and y p(x) p, (x,p) (1 po)(1 4-0(1)) The error term in

this relation is uniform for x --. 1 and r, d --. 4-0c. A similar argument shows that the
term []h"’ ][ is actually O(d). We also have, by definition of p, that Oh/Oy(x, p) O.
Equation (9) then becomes

P2(e,O )2h" O(dO3)h(x, pe’) h(x, p)+ 1 (x, p)+

Lemma B finally gives the following approximation of I1:

(11) I1
eh(x,p)

/2rh" (x, p)
(1 + O(2X/’e-d")O(e-ld) + O(d3)).

Upper bound on I2. We recall that

I.
_<lol_<-

eh(x,P(x)e’) d(p(x)ei).

We extract from the integral the main term of I1: eh(x’P()); this gives

12---
P(x)eh(’P(z)) f e-i"k(O)ddO,

27r _<1o1<

with kz(O) (1- x + xA(p(x)e’))/(1- x + xA(p(x))). We now want an upper bound
on Ikx(0)[, for 101 e [a, r]. The term 1- x is o(1), of smaller order than the term
A(p(x)), and we get that

1 x +
1 x 4- xA(p(x))

Lemma C, below (proved in Appendix B), gives a bound on IA(p(x)e)], which, in
turn, gives an inequality on Ikx(O)l: Ikx(O)l _< 1-Via2, for a strictly positive constant
C, independent of r, d, x, and a. We finally get that

1121 p(x)eh(x’P(x))(1 Co2)d eh(x,p(x))O(e-Cdo),
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which gives

eh(m,p(x))
(12) I11- O(/e-c).

/h" (x, p(x))

LEMMA C. Let A be a function satisfying Property 7) of 3.4, and El0, r[. Let
y vary in a compact subset of ]0, +oo[. Then there exists a constant C > 0 such that,
for all t satisfying c < It?l < r, and for all y in the compact subset, the following
inequality holds:

I()1 < ()(- c).

Choice of a. We obtain the following approximation of (x)"
eh(x,p(x))

(x) 1+O(e-1da2 +O(x/-e-C’d +O(a2X/-e-d +O(da3) ).
v/"(x, (x)

Approximation (8) holds if we can choose a such that the error terms are negligible.
For d --, +oc, this is a consequence of

da2

-+-oo, da3 ---+ 0.
log d

For a (log d)/v/-, it is easy to check that da2/log d log d and da3 log3 d/
o(1), and we have that

(x)= (I + o(i)).
/"(x, (x)

6.2.3. Convergence of the normalized Laplace transform. We show here
that we can choose # and a in such a way that the function ett’/f(e-t/)
ett’/(e-t/)/(1) converges toward et/2 when d -- +cx) and for every t > 0. Taking
the logarithm, we must prove the convergence of ,=.(t) t#/a + log((e-t/)/(1))
toward t2/2.

Equation (8) shows that

lg ((x)) h(x’p(x)I(1) -h(

which gives

(13)

1, Po) log z-iiTo) + o(1),

() #1 + 6h(e-*l’, P(e-*l")) + o(1),

with

(14)
1 h"(x,y)

5h(x, y) h(x, y) h(1, p0) log
h" (1, p0)

We formerly proved in (10) that h" can be expanded near the point (1, p0)
h" (x, y) h" (1, p0)(1 + O(x 1) + O(y po)). This shows that, for x 1 / ,

()) o().log h’!’1, p0)
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Evaluation of h(x, p(x))- h(1, Po). The function h can be expanded near the
point (1, Po) as follows:

h(x, y) h(1, Po) + (x 1)
Oh

(1, po) + (y po)
Oh

(1, po)

1 Oh 1 02h
(x 1)202h (1, po) + (y po) 2 (1 Po)+ b- (1, o) + (x 1)( o)oo 5

+O(d(x 1)3) + O(d(y po)3).

For x- 1 e and y- Po upo, and substituting the values of the derivatives of h at
point (1, po), we get that

h(1 + s, (1 + u)po) h(1, Po) + d
A(p) 1 _d. (,(Po) 1)2

(Po) (01
,’ (Po) d g,+d
A(po)

eupo + - (po)u2po + O(d3).

2

We now use the value of u computed in (7)" u -s/’ (po)/D(po)+O(2), which gives

d
h(1 + , po(1 + u)) h(1, po) + dCl a2

2 + O(d3).

The coefficients c1 and a2 in this formula are defined by

1 A’2(po)po
O 1 OZ2 ---012,(Po ,k (po D(po

The values of h and h" in (14) are now replaced and we get that

(15)
d

6h(1 + , (1 + e)po) dCl c2
2 + O(de3) + O(e).

We next define x e-c/" 1 t/a + t2/2a2 + O(t3/a3), i.e., -t/a + t2/2a2 +
o(tn/a3). Equations (13) and (15)show that

Z(t) (# dall a- + d(al a2)a2 + O +0 +o(1).

Determination of the mean # and the variance a. Let us define # dal and
a2 d((l -a2). They can be written as

,k(po) 1 ,k’(po)Po )# dik(po) 1
a2 d,(Po) ,2 (Po) &2(po)D(po)

Here po is equal to g-l(r+ 1)/d and has for asymptotic value the solution of g(y) A.
Hence the mean and variance are asymptotically equal, respectively, to d#o and da,
for #0 and ao defined in function of p g-l(A) as follows:

#0
/(p) 1 /(p)- 1 p/’2(p)
/(p) a ,k2(p) A2(p)D(p).
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We now check that ao2 is strictly positive. In terms of the function,s gl (Y) YA’
1) and g(y) yAr(y)/A(y), we have that a (A(p)- 1)2g(p)/(A3(p)g (p)). By

an argument similar to that used in 3.4 to prove that g is an increasing function
(see Lemma A and its proof), we can show that the value g (p) is positive, which
in turn shows that a > 0. The error terms O(d/a3) and O(1/a) both become
O(1/ff-) o(1), and we finally have that (t) t2/2 + o(1), which ends the proof of
Theorem 1.

6.2.4. Proof of Corollary 1. Checking that the function Ady (Y) Hl<i<dy (1+
Pi,dy Y) satisfies Property P presents no difficulty. If the size dy of Dy is fixed, Corol-
lary 1 is a direct consequence of Theorem 1. If dy grows to infinity independently of
dz and r, we must adjust the proof as indicated below. We recall that we assume the
independence of dx and dy.

We work with a sequence of functions Adr (Y)- 1-[l<i<dy (1 + Pi,dyY). When the
probability distribution on attribute Y is in class (Z) or-((), this sequence converges
normally toward a function (y) for any y in a compact subset of the complex plane
and for dy --+ -o. The saddlepoint p0 for x 1 has a finite, nonnull limit p when
r, dx,dy - +cx. This limit p also satisfies the limiting equation t’ (t)/(t) A.
We solve the equation, giving the general saddlepoint p(x) exactly as in 6.2.1. The
solution now also depends on dy, and it is important to note that p(x) can be restricted
to a compact neighbourhood of p for x - 1 and r, dx, dy - +. The rest of the
proof is then the same as the corresponding part of the proof of Theorem 1, with
uniform error terms in our approximations.

When the distribution on attribute Y belongs to class (G), the inequality #0
1- e-A is equivalent to eA

_
(p) or (by g(p) A) to g(p) < log (p). As g(y)

y(log )’ (y) and log (y) i> log(1 +piy), we have that g(y) i> piy/(1 +PiY).
We can then rewrite the forme inequality as i>l (log(1 + pip)- pip(1 + pip)) >_ O.
The function t -. log(1 + t) t/(1 + t) is positive for all t El0, +cx[, and each of the
terms of the global inequality is positive, which proves the lower bound on #0.

6.3. Proof of Theorem 3 for semijoins: X key of R. Theorem 3 is an
extension of Theorem 1, when we multiply the function O(x, y) (1- x + xA(y))d by
a term (z) A(z)d-r. The proof of Theorem 3 is similar to that of Theorem 1, and
we mainly indicate the points where it differs.

The coefficient [y"]((x, y,z) is (d)(1 x + xA(z))’A(z)d-’. Let us define

with

(x) [yrzS](x, y, z)/ eh(x’z) dz,

h(x, z) r log(1 x + xA(z)) + (d r) log (z) (s + 1) log z.

6.3.1. Evaluation of the saddlepoint z(x). We have that h(1, z) dlog (z)-
(s + 1)logz. Define g(z) zA’(z)/A(z); the equation Oh/Oz(1, z) 0 becomes
g(z) (s + 1)/d. We assume that lims,d_+(s + 1)/d exists and is equal to B.
As function A satisfies Property P of 3.4, Lemma A of that section shows that
the equation g(z) (s + 1)/d has a unique real positive solution p0 if and only if
limz_.+ g(z) > B. We then solve the equation Oh/Oz(1, z) 0, for x 1 + s and
z (1 + u)po. We first rewrite it into

1 + d(1 z + xA(z)) ---"
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Using expansions of the functions A and g near p0, we get the approximate equation

(0) ,/ / o / o / 0.dA(p0
We solve it and get that

r’ (p0)
() -,(1 + O()), ,

d:(0)a’(0)"
We need the values of the derivatives of function h near point (1, p0) in 6.3.2

and 6.3.3, so we give them below: Oh/Oz(1, po) O, the derivatives of order 3 of h
are O(d), and

1 1) (0 A(p0) Ox2(1,po) -r 1
A(p0)

Oh
( o) ’() Oh ’ (o)

OxOz A2 (P0)’ Oz2 (1’ Po) d ’Po
6.3.2. Evaluation of (). In the formula (x) (1/2it) eh(,)dz, we take

for integration path a circle centered at the origin and with radius z(x) (1 + u)po,
with u defined by (16). We choose a G]0, r[ and divide the integral in two parts:
i (1/2i) 0l eh(’Z)dz and I2 (1/2it)f101 eh(’)dz" Lemma B of 6.2.2
gives an approximation of I1 follows:

eh(x,z(x))
1 (1 +o(-.o) + o(-.,) + O(d)).....( z(x))

Lemma C of 6.2.2 then gives an upper bound on [A(z(x)ei)[ for a ]0[ r; it is
easy to show from it that

eh(x,z(x)) o(-).
=(x,z(x))

By choosing a (log d)/, we obtain that

eh(x,z(x))
(x)

/h"
(1 + o(1)).

v =(,z(x))
6.3.3. Laplace transform and determination of moments. Always follow-

ing the same path as in the proof of Theorem 1, we now compute

1 Oh/Oz(,z(x))og (x) (x,z(z)) (1 ;0) og: + o(1).
(1)

It is easy to check that log(O2h/Oz2(x,z(x))/O2h/Oz2(1, po)) is O(x- 1). We then
expand the function h(x,z(x)) near the point (1, po) follows:

h(x,z(x)) h(1 o) + (x )
Oh Oh

( 1)Oh+ (() o) +
Oh 1

((x) o)h+(x- 1)((x)- p0)OzOz + Oz
+O(d(x 1)) + O(d(z() o)).
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The values of the derivatives of h in this expansion are taken at point (1, p0). For
x 1 + and z(x) (1 + u)po (see (16)), we get that

h(x, z(x))- h(1, P0) xx + \Ox2 2ap00xOz
h

+ cp Oz2 ] + O(d3).

Define # Oh/Ox and a2
# + 02h/Ox2- 2apoO2h/OxOz + a2poO2h/Oz2; the values

of the derivatives in # and a2 are taken at point (1, po). We have that

(x)
(1)

1
#(x 1) + x(a2 #)(x 1)2 + O(d(x 1)3) + O(x 1).

For s, dx - +oc, we have that # r#0(1 + o(1)) and a2 ra(1 + o(1)), with the
constants #0 and a0 defined in function of p g-1 (B) as follows:

1 ,(p) 1 r pA’2 (p)
#0 1- a(p)’ A2(p) d A4 (p)g (p)"

We again note that a is strictly positive:
and we proved in 6.2.3 that this term is strictly positive. We finally get that t#/a +
log(e-t/)/(1) t2/2 + O(d/r3/2) + O(1/r)+ o(1). The error term becomes o(1)
for r such that r - +o and r3/2/d -- +oo.

6.3.4. Proofs of Corollaries 2 and 3. The proof of Corollary 2 is adapted from
the proof of Theorem 3, as Corollary 1 was obtained from Theorem 1 in 6.2.4: Take a
sequence of functions Adz (t) and note that z(x) can be restricted to a compact subset
near g-I(B). Corollary 3 is simply Theorem 3 applied to the function/k(z) ez.

6.4. Proof of Theorem 4 for semijoins: X key of S. The generating func-
tion O(x, y, z) has the following general form:

(x, z) + z (xu))

We first extract the coefficient of zs in O(x, y, z) as follows:

[zS]O(x, y, z) () zk(xy)S/k(y)d-s.

Cauchy’s formula then gives the following coefficient of y:

1 1 J eh(x,y)dy,(x) z)

with

h(x, y) (d s) log A(y) + s log A(xy) (r + 1) log y.

Here again, we choose for integration path a circle centered at the origin and that has
for radius the root y(x) of equation Oh/Oy(x, y) O.
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6.4.1. Evaluation of the saddlepoint y(x). For x 1, y(x)is solution of
Oh/Oy(1, y) 0. We have that h(1, y) dlog A(y) (r + 1)log y. This gives

’() + 1
(17) YA(y) d

Define again g(y) yA’ (y)/A(y). Equation (17) can be written as g(y) (r + 1)/d.
As function A satisfies Property 7), the equation g(y) (r+ 1)/d has a unique solution

Po if and only if (cf. Lemma A in 3.4)

lim y (y)>A.
y--+x) -We then solve (17) for x 1 + e and y(x) (1 + u)po. They satisfy the equation

(18) (d- s)g(y) + s g(xy) (r + 1) 0.

Function g can be expanded near po, as follows:

() (0) + (U o)’ (o) + O(11" I1( o):)

The error term is simply O((y p0)2), and we have for y (1 + u)po that

g’() (o)+ (o)uo + O(u).

As xy (1 + e + u + eu)po, we get that

g’(x) (0) + (o)( + u)0 + o() + o(:).

Equation (18) can be simplified by using r + 1 dg(po), and we get the following
approximate equation between e and u"

du + se + O(du2) + O(s2) 0.

We have that s < d, and we can solve this equation in u. This gives the following
approximate value of the saddlepoint for x 1 + :

(1 + o()).(19) u(x) (1 + u)o, -We indicate below the values of derivatives of h that we need later: Oh/Oy(1, Po) 0,
the derivatives of order 3 of h near (1, p0) are O(d), and

Oh O:h ’ ),Ox (1, o) (0), Oz,(l, o) ( (o) (’(o)0 (o)),

02h 0 h
d
g’ (p)

OxO (1’ o =’(o), (1, o
Po

6.4.2. Approximation of (x). We take here x fixed, real, and smaller than 1.
The function (x) -[yz]O(x,y,z)/(d) can be written as an integral along a circle

8

of center the origin and radius y(x) (1 + u)po, below:

(x) 1 ] eh(,u dy 1 e[_,+] eh(,u()O) d(y(x)eiO).
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For a in ]0, r[, we define

1 fo eh(x’Y(X)c)d(y(x)ei)’I1
2irr e]-,+[

12
2i

Evaluation of I. We check that the assumptions of Lemma B of 6.2.2 are
satisfied: The conditions on the derivatives of h hold, and h(x, y) has the following
expansion for y near the saddlepoint y(x):

Oh Oeh
(x ()) + 1/ ( (x))(x,h(x, ) h(z, (x)) + ( (x))N y(x))

+O(l[h"’ II(Y Y(X))3)

This gives

h(x, y(x)e) h(x, y(x)) +

Lemma B then proves that

(20) I1
eh(x,y(x))

V/:: (x, (x)
(1 + O(oe2V/-e-’rda2) + O(e-’rlda’) + O(da3)).

eh(x,y(x))
(21) I2 O(v/-e-’d").

/27rhv (x, y(x)

then become o(1) for r, d -+ +oc. Hence

eh(x,y(x))
(x)

/2rh. (x, y(x)

We get that

((x)) ’-"
<_lot<_ (())

As a consequence,

the following inequalities hold:

I(U())l _< a((x))-"’,

(’()) f. (a((x)’))12
2irr <101< /(y(x))

d-8

( )s(xy(x)eiO) e-i(r+l)OdO"
(u(x))

Lemma C in 6.2.2 shows that there exists a suitable constant > 0 such that

I(x(x)’)l < (x(x))-’.

A(xy(x)ei) s dO < 2rre-d=
(V(x))

Choice ofa. As usual, we choose a (log d)/v/-; the error terms in (20) and (21)

(1 + o(1)).

(ei 1)2hu2 (x, y(x)) + O(d03).

Upper bound on I2. We have that
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6.4.3. Convergence of the Laplace transform. We show here that et/

(e-’/")/(1) converges toward e’/2 for d --, +cx) and for all fixed real positive t.
Its logarithm is .=.(t) t,/a + log((e-/a)/(1)). For x 1 + and y (1 + u)po,
and using the information on the order of the derivatives of h, we get that

Oh 1 02hOh
(1, Po) + (1, po)upo + (1 po)2h(x,y) h(1, po)+

02h 1 02h
+ OxOy (1, po)Upo + (1,pO)u2p + O(du3) + O(d3)

We substitute -s/d. (1 + 0()) for u (see (19)), and the values computed above for
the derivatives of h, and we get that

8 8 g,h(1 +,p0(1 +u))- h(1, p0) sg(po) + ((1 ) (Po)Po- g(Po)] 2 O(d).

We have, usual, that (02h/Oy2(x, po(x)))/(O2h/Oy2(1, P0)) 0(). For x e-t/,
we then substitute -t/a + t2/2a2 + O(1/a3) for x 1, and we obtain that

+ ( /d)’(o)o + O + O(t) (, (0))
Den () A /d nd (1 /d)’(), with -I(A). Th
conditions on s and d show that the error terms are o(1) and we have that

(t) eta/.
6.4.4. Proofs of Corollaries 4 and 5. The proof of Corollary 4 is adapted from

that of Theorem 4, indicated in 6.2.4 for Corollary 1 and Theorem 1. Corollary 5
is an instance of Theorem 4 in the ce when A(y) ey.

6.5. Proof of Theorem 5. Theorem 5 cannot be deduced from either The-
orem 3 or Theorem 4: The functions A(t) and As(t) are both equal to 1 + t.
However, the function O(x, y, z) is simple enough that it is possible to write a di-
rect proof. We can express [yz]O(x, y, z) as a sum of binomial coefficients: For
O(x, y, z) (1 + y + z + xyz)d, we have that

i+j=

We can then try a direct study based on properties of the binomial coecients. We
do not follow this idea, but rather indicate briefly how Theorem g can be proved by
our approach.

We compute [1, then apply Cauchy’s formula to get [z] as follows:

with h(z, z) (d r) log(1 + z) + r log(1 + z) (s + 1)log z.
The saddlepoint for 1 is P0 (s + 1)/(e- s- 1). We must sume that

s Bd + o(d) if we want O0 to stay in a compact subset of ]0, +[. or 1 + e,
the saddlepoint is z() p0(1 reid + O(re/d)).

As usual, the computation of the integral -,+1 eh(’()d(z()ei) is per-

formed in two parts. The computation of the main part, on interval [-, +], is
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straightforward, and we do not detail it. The upper bound on the remainder of the
integral once again relies on the bound on a function of 0, for ( _< 101 _< r. In the
present case, this function is simply (1 + z(x)eiO)d-r(1 + xz(x)ei)r/(1 + z(x))d, and
the desired inequality presents no difficulty. The evaluation of the normalized Laplace
transform and its convergence toward et12 are then easily proved.

Appendix A. Proof of Lemma B. We write h instead of hd, and h" instead
of 02hd/Oy2. Let a0 > 0 be such that the Taylor expansion of h is valid for [01 _< a0.
Then, for any a <_ a0, the assumptions on h show that

eh(,Pe d(pe) eh(x’P)2i fel<a e(P/2)(e’-l)h"(x’P)+(daa)d(pea)

eh(’P)2ir ll<a e(p2/2)(e’o-1)h"(’P)d(pe) (1 + O(da3)).

Let us define J fll<a e(P2/2)’(e’s-1) (x’P)d(pei)" The integration path 7 {101 <
c) is part of a circle of radius p. We replace it by the path 71 U 72 U 7’1 defined as
follows: 71- (Y p(1-v) -ip sin a), 71- (Y- p(1-v)/ipsina)forv E [0, 1-cosa],
and 72 (Y P + ipt), for t E [- sin , + sin a]. See the figure below:

Let J1, J, and J2 be the integrals on 71,71, and 72" J J1 + J2 + Ji. We first show,
below, that the integrals ,/1 and J[ can be neglected as follows:

--cos cz hHence }J1} _< P f2 e{PU/2"(v+isin(x)2 (l’P)(l+(1))}dv"

The former integral is o(flo -s ep2/2"(v2-sin2 )h"(l’p)dv), and

O

f
1-cos.

e(O’/2)(v2-sin o)h (1,0o)dv e-(o/2)h (1,0o)sin c e(o/2)vh (1,OO)dv.
JO

tl-cos(x /2.v2h"We also have that J0 eP2 (l’)dv <- (1- cosa)ep/2.h (1,po)(1-cosa) As
h" (1, Po) O(d), this gives for a suitable constant 70 > 0:J1 O((2e-7da2) The
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majoration of J is done in the same way. We now show that J2 gives the main term
of J, as follows:

J2 f e(1/2)(Y-P)2h"(x’P)dY

ipf e-(p/2)t2h" (x,p) dt
I_sin c

e-v/.dv.
v/h" (x, p) I_o/h" (x,o)sin(

This last integral is equal to

/-- lv -v/2e-V/2dv e dv x/ + O(e-(p2/2)h’’ (’P) sin2 c).
x) I>pv/h (x,p) sin

This gives g i2/h"(x,p)(1 + O(e-d"=) + O(2e-d"=)), with o and
strictly positive constants; in particular, they are independent of r and d. We then
plug the approximation of J into the expression of the integral to get Lemma B.

Appendix B. Proof of Lemma C. The main idea in proving Lemma C is
a classical one, namely, that the modulus of an analytical function with positive
coefficients on a circle of given radius y > 0 attains its maximum at point y and only
at that point, except when the function is actually a function of ym for some positive
integer m

(yeiO) n inO
Any nyn- (Y).

n>O n>O

We want to extend it to get a uniform upper bound A(yeie) A(y)(1- Ca2), for
a ] . We note that, if A(y) A(y2), for example, A(yeie)] would attain its
maximum at both points y and ye, and it would not be possible to get an inequality
A(yeie) A(y)(1 -Ca2) on most of the circle of radius y, excluding only an arc near

y. We first give the proof of Lemma C in a simple case, then the general argument.
Define n [yn]A(y) for n 0. om Property P of 3.4, we know that 0 1.

We first assume that A 0. We rewrite A(ye) as

(1 + +
The triangular inequality gives

We also have that )(ye) 1 )ye En>2 )nY’ein" As the coefficients An are
real and positive, we get that

(22) I)(yei) 1 Ayei <_ E )nyn /(y) --(1 + Ay).
n>2

We can also write

l1 -- )1ygiOI2 (1 + /ly)2 (1 2
ly \

(1 cos 0)}(1 + ,Xly) 2 /



NORMAL LIMITING DISTRIBUTIONS 247

This can be simplified by using the fact that v/1 t < 1 t/2 for t E [0, 1]; we get
that

yeie ( ,lY (1- cos0))I1 + A1 I_ (1 + Aly) 1-
(1 + iy)2

Now, for 10[ in the interval [a, ], we have that cos0

_
cos a; this gives the follow-

ing inequality valid on [a, ], for a strictly positive constant Co that can be chosen
independent of y and of a (remember that y varies in a compact subset of ]0, +x[):

(23) I1 + Ayeil < 1 + y- C0c2.

Combined with bound (22), this gives, in turn, the following bound on

IA(yei)l < A(y) Coo9 < A(y)(1 Cc2).
The term C in this last inequality is positive and can again be chosen so as to be
independent of y.

When the term A is equal to zero, inequality (23) does not hold, and the former
proof must be adapted as follows. By Property T, there exists a finite set of indices
K such that, for all k E K, k 0, and that GCD(klk K) 1. Hence there exist
relative numbers ak such that k k ak 1. Let us define c 1/(2 ’k lakl); we can
assume that ce is close enough to zero for the inequality ca < 7r to hold. Let
(the case where belongs to [-Tr,-c] is symmetrical). Then -k akkO, and we
can show that there is at least one indice k k(0) in K such that Ik0127r]l >_ ca.
Assume that it is not the case; then each of the r/k k0127r] satisfies Ikl < ca; hence
I01 -k acrll < -k [akkl < (k lakl)ca and 101 < a/2, which does not hold. We
now decompose A(yei) according to the indice k-- k(O) as follows:

A(yei) (,k(ye) 1 ,kkykeik) + (1 + ,kkykeiOk).

Hence

IA(ye)l <_/(y)- 1 Aky + I1 +
We have that

I1 + AkykeikO < (1 + Aky) (1- /kyk \
(1 COS kO)}(1 +/kyk)2 /

As k0[2r] is at a distance at least ca from 0, we can write

/kyk<- 1 + Akyk (1 --cos c).

To get a bound independent of 0, we must remove the dependency of the indice k
on 0. This can be done by noting that, as y belongs to a compact set of the reals,
the function a(y) min{/kyk k K} is bounded away from zero. This shows
the existence of a constant C, independent of 0, such that, for all relevant y and 0,
]A(ye)l < A(y)(1- Cc2).

We should point out that, although this is ruled out by our assumptions, there
is no difficulty in getting a bound similar to that of Lemma C when function A(t) is
affine, of the form A0 + A t, with positive coefficients A0 and A1. The key condition
of our proof is the positivity of the coefficients.
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TRIANGULATING 3-COLORED GRAPHS*

SAMPATH K. KANNANt AND TANDY J. WARNOW$

Abstract. The problem of determining whether a vertex-colored graph can be triangulated
without introducing edges between vertices of the same color is what is of interest here. This
problem is known to be polynomially equivalent to a fundamental problem in numerical taxonomy
called the perfect phylogeny problem, which is concerned with the inference of evolutionary history.
This problem is also related to the problem of recognizing partial k-trees, a class of graphs that has
received much attention recently. The problem in its general form is NP-complete and can be solved
in O(nk+l) time, where n is the number of vertices and k the number of colors. In this paper, a
linear time algorithm for the case of 3-colored graphs is presented.

Key words, graph colorings, chordal graphs, NP-complete, polynomial algorithms, partial
k-trees, numerical taxonomy

AMS(MOS) subject classifications. 05C05, 05C75, 05C15, 68C05, 92A10, 92A12

1. Introduction. The problem we consider in this paper is the following.
TRIANGULATING COLORED GRAPH PROBLEM (TCG). Given a graph G (V, W)

with a vertex coloring c: Y {1, 2,..., [Yl} determine whether we can triangulate it
without introducing edges between vertices of the same color. (A triangulated graph,
also known as a chordal graph, is a graph that has no induced cycles of length four or
greater [9].) If such a triangulation exists, we will refer to it as a c-triangulation and
say that G is c-triangulatable.

TCG is polynomially equivalent to a problem in evolutionary tree inference called
the perfect phylogeny problem (PP) [12]. An evolutionary tree (also called a phy-
logeny) for a set S of species is a rooted tree in which the leaves represent the species
in S, and internal nodes represent ancestral species. In this model, the species in S
are described by their values on a set of qualitative characters. A qualitative char-
acter, or character, is simply an equivalence relation on the species set, describing
a partition of the species set into the distinct equivalence classes, which are referred
to as character states. These characters can arise from morphological evidence (for
example, the binary character having two states vertebrate-invertebrate), from molec-
ular data (such as the character specifying the base appearing in the ith position of a
DNA sequence), or in some other way. Thus the species can be described by an n k
matrix M, where there are n species and and k characters, and Mij is the state of
the ith species for the jth character. Each species s in S is represented by an integer
k-vector vs. A proposed phylogeny for the set S is therefore a vertex-labelled tree,
in which the node corresponding to the ith species is labelled by the ith row of the
matrix M, and the remaining (internal) nodes are also labelled with k-vectors.

The desired phylogeny T (if it exists) will have the property that, for each state of
each character, the set of nodes in T having that state forms a connected component
(i.e., a subtree). Such a phylogeny is said to be perfect, and when a perfect phylogeny
exists, the characters are said to be perfectly compatible on the species set S. The
problem of whether a perfect phylogeny exists is called the perfect phylogeny problem.
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The complexity of PP (and hence of TCG) remained open for a long time (the
reduction of PP to TCG was proved by Buneman [3] in 1974, and PP has been
widely discussed since the 1960s). Essentially, the only progress on the two problems
was to show that many variations were NP-complete [4]-[6], [8], [10] and to solve
the special cases of binary character compatibility [11] and pairwise compatibility
[7]. Recently, Bodlaender, Fellows, and Warnow [2] showed TCG and PP to be NP-
complete. McMorris, Warow, and Wimer [13] found an O(nk+l) algorithm for TCG
(where n is the number of vertices, and k the number of colors). For 3-colored graphs,
this yields an O(n4) algorithm. A polynomial time algorithm for PP exists for the
case where the number of states per character is limited to four [12]. This algorithm
can be used to construct phylogenies from DNA sequences.

In the reduction from PP to TCG, the number of characters in the instance of
PP translates to the number of colors in the instance of TCG. Typical inputs to PP
involve many more than three characters. Hence the special case of TCG that we
solve--that of determining whether a 3-colored graph can be made chordal--has no
direct relevance to solving practical instances of PP. However, it provides biologists
with the ability to tell if a subset of three characters is mutually compatible. Biolo-
gists currently use a procedure for pairwise compatibility of characters to eliminate
characters that are incompatible with many other characters [7]. A test for 3-way
compatibility should further enhance this tool.

More interesting is the connection between TCG and the recognition of partial
k-trees. (For a definition of k-trees and partial k-trees, see Arnborg, Corneil, and
Proskurowski [1].) The connection between these two problems comes about because
of the observation that a (k + 1)-colored graph G can be c-triangulated if and only if G
can be c-triangulated into a k-tree. Thus, if G can be c-triangulated, it is a "colored
version" of a partial k-tree. Using this observation, McMorris, Warnow, and Wimer

[13] have produced an algorithm based upon the partial k-tree recognition algorithm
of [1], which permits us to determine whether a k-colored graph can be triangulated
in O(nk+) time. Note that this algorithm takes time O(n4) for 3-colored graphs.

In 2 we state definitions and results that we use in the remaining sections. In
3 we present our algorithm for the case of 3-colored graphs. The algorithm relies on
structural properties of 3-colored graphs that are c-triangulatable. Some care must be
taken in its implementation to achieve linear time. In 4 we discuss the other known
results and the remaining open problems.

2. Preliminary definitions and notations. A vertex coloring of the graph
G (V, E) with the property that no edge connects vertices of the same color is said
to be proper. A properly colored graph G- (V, E) with coloring c: V -- (1, 2,..., k}
is said to be c-triangulatable if there exists a chordal graph G (V, El), where
E C E and c is proper on G.

By a "coloring" of a graph G, we mean a proper vertex coloring. The neighbor
set of a vertex v is denoted by F(v).

A useful fact about chordal graphs is that every chordal graph has a perfect
elimination scheme. A perfect elimination scheme for a graph G (V, E) is an

ordering of the vertices of G, v < v2 < < vn such that, for each i, the neighbors
of vi that follow vi in the ordering form a clique. In other words, if we removed
vertices from G in the perfect elimination order, the neighbor set of each vertex at
the time of its removal is a clique.

If G is a c-triangulation of G, then G will have a perfect elimination scheme
P--v < v2 <-.. < vn.
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We can use the perfect elimination scheme for G to triangulate G by making a
clique out of the neighbors of v that follow v in the ordering P. We will therefore
refer to this ordering as an elimination scheme for G.

In this context, it is useful to define a sequence of graphs that arise when applying
the elimination scheme to G. Let Go G and let G be obtained from G-I by
removing vertex v and forming a clique out of its neighbors in G_I. If we define
the graph G" (V, E") to be the graph on vertex set Y with E"- un=oE(G), then
G C Gt C G, and G is a c-triangulated graph. We will call this graph Gt the filled
graph defined by the perfect elimination order P and graph G. We will also refer to
the sequence of graphs Go, G,..., Gn as the elimination sequence of G.

3. A linear time algorithm for 3-colored graphs. We assume that G
(V, E) is a graph with a proper 3-coloring. We present an algorithm that will deter-
mine whether G can be c-triangulated, and if so, will produce the triangulation.

We can assume that G is 2-connected, since G can be c-triangulated if and only
if all of its biconnected components can be c-triangulated. Let us define a simplicial
vertex to be a vertex v whose neighbor set is a clique. We can further simplify G
by removing simplicial vertices from V. Since G is 3-co!gred, a simplicial vertex has
degree at most 2. Any graph G with no simplicial vertices will be called a reduced
graph.

The algorithm works on each biconnected component and proceeds by repeatedly
finding cycles to triangulate in the graph, and then removing simplicial vertices. The
choice of cycle to triangulate is based upon the following observation.

We will call a cycle 7 a feasible cycle if (1) all but two of its vertices have degree
two, and (2) the remaining two vertices a and b have neighbors outside the cycle.
We will refer to the vertices with neighbors outside the cycle as port vertices. If the
graph can be c-triangulated, then the algorithm will triangulate this cycle 7 by first
introducing the edge between the port vertices a and b and then completing the c-
triangulation of by using the algorithm of Theorem 1 on each of the two new cycles
created by the addition of the edge (a, b).

Note that any 3-colored graph G that has a c-triangulation is also a partial 2-tree,
and thus the number of edges must be _< 2n 2, where n is the number of vertices.
Thus we can count the number of edges in the graph and reject it if the number
exceeds that bound.

We now describe how to determine whether a given 2-connected graph G has a
c-triangulation, where we have bounded the number of edges by 2n- 2.

Our algorithm proceeds as follows.
Algorithm.

begin
while V = do

Remove simplicial vertices until no simplicial vertices remain
If V then return Yes
if G is a cycle then
if all three colors are present then use the
algorithm of Theorem 1 to triangulate G and
return Yes

else return No
else
Find a feasible cycle 7 with port vertices a and b
if color(a) color(b) then introduce
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the edge (a, b) and complete (if possible) the triangulation
of 7 using the algorithm of Theorem 1

else return No
if V and no feasible cycle was found then return No

endwhile
end

One consequence of the algorithm is that if G has a c-triangulation, then a perfect
elimination scheme for the triangulation of G constructed by the algorithm will be
given by the order in which the vertices are removed.

3.1. Proof of correctness. The main results of this section are the following
two theorems.

THEOREM. Let G (V, E) be a 2-connected reduced graph with a proper 3-coloring
c, which can be c-triangulated. If G is not a cycle, then G contains a feasible cycle

THEOREM. Let G be a 2-connected reduced graph with a proper 3-coloring c and
let 7 be a feasible cycle with port vertices a and b. Then G can be c-triangulated if
and only if G t2 (a, b) can be c-triangulated.

The correctness of the algorithm follows from these two theorems, along with
the observation that every simple cycle with all three colors represented can be c-

triangulated.
THEOREM 1. Let G be a simple k-cycle with a proper coloring c. Then G can be

c-triangulated if and only if at least three colors are represented. In this case, we can
c-triangulate G in O(k) time.

Proof. (by induction on k). It is obvious that at least three colors must be present
in any cycle for the graph to be c-triangulated. We now show that every k-cycle with
all three colors represented can be c-triangulated in O(k) time. Beginning at any
vertex v in 7, go around the cycle counting the number of vertices of each color. If
there is only one vertex x of a given color in 7, insert all edges (x, y), for each vertex y
in 7. Otherwise, beginning at v, again go around the cycle clockwise until a vertex w
is found such that w’s neighbors are not the same color and w is not the only vertex
of its color. Delete w and connect its neighbors, then move counterclockwise to w’s
neighbor and begin again, each time updating the number of vertices of each color
remaining. It is not hard to see that in one additional pass through the cycle we will
have produced a c-triangulation. Thus G is c-triangulatable.

LEMMA 1. Let v be a simplicial vertex in V. Then G can be c-triangulated if and
only if G {v} can also be.

Proof. If G is a c-triangulation of G, then the induced subgraph of G on V- {v}
is a c-triangulation of G- {v}.

Conversely, suppose that G is a c-triangulation of G- {v}. G has a perfect
elimination scheme. Let G be obtained by adding back v to G and connecting it
to all its neighbors in G. Then a perfect elimination scheme for G is obtained by
following up v with the perfect elimination order for G. Hence G is chordal and is
a c-triangulation of G.

Now let G be a reduced graph that can be c-triangulated, and assume that G is
not a simple cycle. We now prove that a feasible cycle exists.

We now make some observations about the relationship between perfect elimina-
tion schemes and c-triangulatable graphs. We show that the effect of forming cliques
out of neighbor sets of vertices is to contract cycles, until they are reduced to a single
edge. Then, given a perfect elimination scheme :P for a 3-colored chordal graph G,



TRIANGULATING 3-COLORED GRAPHS 253

there will be a unique first cycle 9/in G which is contracted to an edge, (a, b). We call
that first cycle the "first eliminated cycle in P, with final vertices a and b." In any
cycle % the vertices that have neighbors outside of the cycle will be called the ports
of 9/.

OSSERVATON 1. Let G be a graph that can be c-triangulated, and with a proper
3-coloring c, and let 7 be an elimination scheme for . If 9/ is a chordless cycle in
G, then in the successive graphs G that occur in the elimination sequence of G (see
2), 9/is contracted one edge at a time, until only three vertices remain. These final
three vertices of 9/ in the perfect elimination scheme will constitute a 3-clique in G.

Proof. Consider a chordless cycle 9/in G. Let v be the vertex in 9/to appear
first in the ordering 7. When we remove v and connect its neighbors in G_, these
neighbors will perforce be in 9/, and hence the result will be a smaller cycle, containing
all of the vertices in 9/except v. This will repeatedly occur, until 9/is a 3-cycle. Thus
the three vertices of 9/that appear last in the perfect elimination scheme 7 must form
a 3-clique in Gp.

OBSERVATION 2. If G i8 a 3-colored graph that can be c-triangulated, then there
exists a chordal colored supergraph G of G such that for all vertices a,b, and c in
G, if {a, b, c} is a clique in G, then there is a simple cycle in G containing all three
vertices.

Proof. We prove this observation for reduced 2-connected 3-colored graphs and
leave the details for the general case to the reader.

Our proof proceeds by induction on n IVI. The observation is trivially true
for n 1, 2, or 3. Let G be a reduced 2-connected 3-colored graph that can be c-
triangulated, and P an elimination scheme for G, and assume that the observation is
true for all graphs with fewer than n vertices. Let Vl be the first vertex in P, with
neighbors a and b. We consider the chordal graph G derived from G and P.

Let {x, y, z} be a 3-clique in G’. If vl e {x, y, z}, then, clearly, {x, y, z}
{vl,a,b}. Furthermore, since G is 2-connected, there is a path from a to b not
including vl, and thus a, b, and vl are all in some simple cycle 9/in G. On the other
hand, if vl is not in {x, y, z}, then {x, y, z} is a 3-clique in the graph G" derived from
G* G- {vl} U {(a, b)} and P (restricted to Y {Vl}). Thus, inductively, {x,y,z}
is in a simple cycle 9/in G*. If 9/does not include the edge (a, b), or if (a, b) is an
edge in G, then 9/is a cycle in G as well. On the other hand, if 9/includes the edge
(a, b), and this edge is not in G, we can enlarge 9/by removing the edge (a, b), adding
vl, and attaching vl to a and b. Thus, in each case, {x, y, z} is in a simple cycle in
G.

In the next lemma, G is a 2-connected reduced graph with a proper vertex coloring
c V - {1, 2, 3}. Assume that G can be c-triangulated and that P vl < v2 < <
vn is an elimination scheme for G. Using terminology defined in 2, we will let G
denote the c-triangulation of G derived from :P, Fi(v) the neighbor set of vertex v in
graph Gi, and deg(v) the cardinality of Fi(v).

LEMMA 2. There exists a unique k-cycle 9/ that is the first eliminated cycle for
the elimination scheme P, and for some elimination scheme 7), the first k-2 vertices
in are vertices in 9/ of degree 2.

Proof. Since G is a 3-colored graph, degi_ (vi) is always at most 2. If two distinct
cycles 9/1 and 9/2 were both reduced to an edge by the deletion of a vertex vi, then, in
Gi-1, 9/1 and 9/2 would have each been reduced to a 3-cycle, each containing v. This
would imply that degi_ (vi) > 2, contradicting the above. Thus the cycles are each
reduced to an edge at a distinct time, and therefore there is a unique first eliminated
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cycle /in G for the elimination scheme P.
Let the number of vertices of 7 be k. We now show that we can reorder the

vertices to derive a (possibly) different elimination scheme P, in which the first k- 2
vertices are vertices in 7 of degree 2. This proof is done by induction on n IVI.

The basis case, where n 1, is obviously true. Now assume that for any graph
with n- 1 or fewer vertices, the lemma holds.

Let us suppose that the elimination scheme P is the ordering vl < v2 < < Vn,
and that the first vertex of /to appear in the elimination scheme is vi. We will show
that we can move vi to the first position in :P so that 7 remains the first eliminated
cycle, and the resultant ordering is still a perfect elimination scheme for G. This will
be possible, provided that v’s neighbors in G follow v in the ordering :P.

Within the cycle 7 (in the graph G), v has two neighbors a and b. Since v
precedes a and b, and deg_(v) <_ 2, clearly, F_(v) {a, b}.

Now suppose that v’s neighbors in G do not all follow vi in the ordering :P. Let
vr be the last neighbor of v in G to occur before v in the ordering. Now G is 2-
connected, so vr is in some cycle -P, and hence degr_l(v) 2, as 7P is not contracted
to an edge in G-I. Thus F_(v) {v, vl}, for some > r. When we remove vr
and connect its neighbors, the result is that vl E Fr(v). Unless vt is a or b, this would
contradict our choice of v. Hence we can assume (without loss of generality) that
Vl a.

Now F_l(v) {a, v}, and thus {a, v, vr} constitutes a 3-clique in G-I. Since
G_I is a subgraph of Gp, by Observation 2, we see that a, vi, and v were contained
in some cycle P in G. This cycle was eliminated before 7 was eliminated, however,
contradicting our hypothesis.

We have therefore proved that FG,(v) {a,b} and we can move v to the front
of the ordering. We have also shown that v has degree 2.

Now consider the graph that results when we remove v from G and connect its
two neighbors. The cycle -y is replaced by the cycle 5, containing k- 1 vertices.
This graph can also be c-triangulated, since it has an elimination scheme (simply,
take the elimination scheme P, remove v from it, and use the resultant ordering :PP:
vl < v2 <’" < v_ < V+l < < Vn). In this ordering, the first cycle to be
reduced to an edge is 5. By the inductive hypothesis, we can move all but two of the
vertices of to the front of the ordering PP. The lemma follows. D

As a corollary to this lemma, there must be a feasible cycle! Thus, our first main
result is now proved as a corollary.

COROLLARY 1. Let G be a reduced 2-connected graph with a proper 3-coloring
c, which is not a simple cycle. If G can be c-triangulated, then G contains a feasible
cycle, /.

Proof. Recall that a k-cycle 7 is a feasible cycle if it consists of k- 2 vertices of
degree 2 and two port vertices a and b. Now let G be a 2-connected reduced graph
with a proper 3-coloring c, which is not a simple cycle and can be c-triangulated.
By Lemma 2, there is an elimination scheme for G in which (for some r) the first r
vertices constitute all but two of the vertices in the first eliminated cycle, /, and these
r vertices all have degree 2 in G. Let us refer to the final two vertices in the cycle by
x and y. Since G is 2-connected and is not a simple cycle, at least two of the vertices
in " must be port vertices. These port vertices must be x and y, since the remaining
vertices are all of degree 2. [

The second main result of the section now follows.
THEOREM 2. Let G be a 2-connected reduced graph with a proper 3-coloring c.
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Let be a feasible cycle with port vertices x and y. Then G is c-triangulatable if and
only if G U (x, y) is c-triangulatable.

Proof. One direction is obvious. Now assume that G can be c-triangulated, that
G is one such c-triangulation, and that (x, y) are the port vertices in a feasible cycle
% For our discussion, we write /as the union of two paths P1 and P2. It is clear
that since G is 2-connected and the other vertices of 7 are of degree 2, x and y are
connected by a path P3 that does not intersect except at x and y, and which has
length > 1. Thus x and y are in at least two distinct simple cycles: 7, comprised of
the paths P1 and P2, and the cycle /, comprised of P1 and P3. At least one of these
cycles must be contracted to an edge before the other in the elimination sequence for
G. It is easy to see that whichever cycle is eliminated first will leave x and y as the
last two vertices in the cycle, and hence force x and y to be adjacent in G. Since G
was arbitrary, this also shows that these edges are contained in the intersection over
all chordal supergraphs of G.

The last comment in our proof of Theorem 2 yields the following theorem.
THEOREM 3. The algorithm for 3-colored graphs produces a minimum c-trian-

gulation if the graph can be c-triangulated.
Proof. Clearly, if the triangulation produced is minimum for each biconnected

components, then it will be minimum for the entire graph, since the algorithm never
introduces edges between vertices in different biconnected components. Therefore we
need only consider how the algorithm treats each biconnected component. Our proof
proceeds by induction on the number of vertices in G.

We will assume the graph G has some c-triangulation and that it is biconnected.
If G is a k-cycle, then it has three colors represented, and the algorithm produces
a c-triangulation of the k-cycle. It can easily be seen that the number of additional
edges required of any c-triangulation of a k-cycle is exactly k- 3, and, in fact, if a
k cycle has more than k- 3 edges added, it cannot be properly colored. Hence the
algorithm produces a minimum triangulation on k-cycles.

Now consider how the algorithm responds to a biconnected graph that is not a
k-cycle. It finds either a feasible cycle (in which case, it introduces an edge that must
exist in any c-triangulation of G, as shown in the proof of Theorem 5), or it finds
a simplicial vertex and removes it. Since the graph has a c-triangulation, eventually
the algorithm will find a simplicial vertex and remove it. Until that point, the only
edges it will have introduced will be edges that exist in all c-triangulations. After it
removes a vertex, the inductive hypothesis indicates that the c-triangulation of the
resultant graph is minimum, and thus the c-triangulation of G is minimum.

This is interesting because it is known that finding a minimum triangulation of
an uncolored graph is NP-complete [1].

3.2. The implementation and its running time. We now describe the de-
tails of the algorithm for determining if a 3-colored graph can be c-triangulated. We
assume that our input graph is a properly colored graph G with n vertices and m
edges, and with all three colors appearing. Furthermore, as we noted earlier, we can
make the assumption that m _< 2n- 2.

1. Using bucket sort, we sort all vertices by degree. This takes O(n) time.
2. We remove all vertices of degree 0 and 1 and all simplicial vertices of degree

2. Each removal of a vertex causes an update in the degrees of its neighbors
(if any). Thus new simplicial vertices may be created, which we also remove.
This step takes O(n) time. Since there is no fear of confusion, we will denote
the new graph obtained after this step also by G.
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3. We find the biconnected components of G using depth-first search. This takes
time O(m / n). We handle the biconnected components that are cycles with
the algorithm in Theorem 1.

4. We maintain an edge-labelled multigraph, which we term the path graph. In
each biconnected component of G, we must know which vertices of degree > 2
are connected to each other by paths consisting entirely of degree 2 vertices.
To obtain this graph from G, we begin with G, and with the empty label on
each edge. We repeatedly do the following: We find a degree 2 vertex v. If
u and w are the neighbors of v, we remove v and add the edge between u
and w. The label on the new edge will be (label(el), v, label(e2)), where el is
the edge between u and v, and e2 the edge between v and w. The resulting
multigraph will be called P(G). Our construction shows that P(G) can be
found in O(m) time.

When does a cycle , constitute a feasible cycle? It must contain exactly two port
vertices u and v, with the remaining vertices having degree 2. Since there must be at
least two paths consisting entirely of degree 2 vertices between u and v, the vertices u
and v must be connected by at least two edges in the P(G). We show that finding all
feasible cycles and updating the information in P(G) can be done in time O(m + n).

We preprocess P(G) for one more piece of information. We must know which
pairs of adjacent vertices in P(G) are connected to each other by at least two edges.
We do this by bucket sorting each pair of adjacent vertices into two buckets: one for
pairs of vertices that have exactly one edge between them, and the other for pairs of
vertices with two or more edges between them.

Finally, the remaining data structure we maintain is a queue of connectable pairs

of vertices Q. By a possible connectable pair, we mean a pair of vertices x and y that
are port vertices in a feasible cycle. The labels on the edges in P(G) between x and
y indicate the paths of degree 2 vertices connecting x and y.

5. We pull out a possible connectable pair from the top of the queue. Let this
pair be u, v. If u and v have the same color, we know the graph cannot be
c-triangulated, and we exit. Otherwise, we check if they are adjacent in G.
If they are not adjacent in G, we add the edge (u, v) to E, and we complete
the triangulation of the feasible cycles containing u and v (as indicated by
the labels on the edges in P(G)), using the algorithm of Theorem 1.
We do the following update steps:

In P(G) we remove all but one edge between u and v. If either u or v or
both become degree 2 vertices in P(G), we short-circuit them as we did
before in arriving at P(G). This might create at most one new possible
connectable pair;
It is also possible that at most one pair of vertices that were not adjacent
to each other in P(G) become adjacent. In this case, we put this pair in
the bucket of vertices connected by exactly one edge.

Note that all of these steps can be performed in constant time and that we
enqueue at most one pair, and that only in the case where we remove a vertex
from P(G). Thus, in the whole process, we enqueue at most n additional
pairs. P(G) contains at most m pairs at the start, since the number of edges
in P(G) is no more than the number of edges in G.

6. We terminate either when Q becomes empty or P(G) becomes empty. If
Q becomes empty, we say that G is not c-triangulatable. If P(G) becomes
empty, we say that G is c-triangulatable.
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FIG. 1. The graph.

a

FIG. 2. The graph triangulated.

Note that we processed at most m + n pairs and that each pair took O(1) steps to
process. Thus the overall running time is O(m + n). However, since m is bounded by
2n- 2, this is, in fact, O(n).

3.3. A counterexample to a conjecture. In an attempt to simplify the al-
gorithm, we might consider the following conjecture: let v be a vertex of degree 2,
with neighbors x and y, such that the subgraph of G induced by the colors of x and
y remains properly colored and acyclic by the addition of the edge (x, y). Then G is

c-triangulatable if and only if G U (x, y) is c-triangulatable. Figure 1 shows that this
is not true: The color classes are {al, a2}, {bl, b2, b3}, and {cl, c2, c3}. The vertex bl
satisfies the conditions of the conjecture, and yet there is no way to triangulate G if
we include the edge (al, Cl).

On the other hand, the graph can be triangulated, as Fig. 2 indicates.
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4. Conclusions. As we have mentioned, the triangulating colored graphs prob-
lem is NP-complete, in general, and can be solved [13] in O(nk+l) time, where n is
the number of vertices and k the number of colors. Is this the best possible?

One especially interesting subcase of the corresponding molecular biology problem
(the perfect phylogeny problem) is when the characters are restricted to having at
most r states, where r is a fixed constant. We conjecture that the techniques in [12]
may possibly be extended to that case, yielding an O(rr-2n2k) algorithm, where n is
the number of species and k is the number of characters.
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THREE-STAGE GENERALIZED CONNECTORS*

RICHARD M. KARPt

Abstract. An acyclic directed network with n sources and m sinks is called a generalized con-
nector if, for any request pattern in which each sink asks to be connected to some source, the required
configuration of noninterfering connecting paths can be set up. This paper presents new families of
two- and three-stage connection networks and gives a method of establishing that particular networks
in these families are generalized connectors. This method is based on the Erd6s probabilistic method
and consists of two steps:

1. First it is proven that a given network is a generalized connector provided that certain
events in a probability space are of sufficiently low probability.

2. Then it is shown that the probabilities of these events are indeed sufficiently small.
For the family of designs presented in Section 5, the second step is accomplished by explicitly cal-
culating the probabilities of the events in question, using dynamic programming; these calculations
provide rigorous proofs that the designs are correct. However, for the more economical designs of
Section 6, the probabilities of the events in question are not calculated exactly, but instead are es-
timated by drawing pseudo-random samples from the probability space . Thus, we have only a
"statistical proof" (albeit a very convincing one) of the correctness of these designs.

For certain choices of n and m the most efficient three-stage generalized connectors currently
known are obtained.

Key words, connection network, generalized connector, probabilistic method

AMS(MOS) subject classifications. 05C, 68R, 94C

1. Introduction. This paper is concerned with the design of connection net-
works capable of providing noninterfering connecting paths between specified pairs of
input and output ports. We model connection networks in terms of directed graphs.
Let G be an acyclic digraph with vertex set V. Let S (the sources) be the set of
vertices of in-degree zero and let T (the sinks) be the set of vertices of out-degree
zero. A request pattern is a partial function F T -- S; F(t) is the source requested
by sink t. A set of (directed) source-sink paths satisfies request pattern F if (i) for
every sink t such that F(t) is defined, contains a path from F(t) to t, and (ii) two
paths in have a vertex in common if and only if they have a source in common.

The depth of G is the maximum number of edges in a path of G. Let G have n
sources, rn sinks, and depth k. Then G is said to be a (n m)-generalized connector
of depth k if, for every request F, there is a set of paths satisfying F; G is said to
be a (n m)-connector of depth k if, for every one-to-one request F, there is a set
of paths satisfying F. Thus, in a generalized connector, each sink may select any
source, and the required set of noninterfering source-sink paths can be set up; in a
connector, the required paths can be set up provided that each source is selected by
at most one sink.

Our definitions correspond to what are generally called rearrangeable connectors
and generalized connectors. Also studied in the literature is the stronger property
that the connector or generalized connector be nonblocking; this means that when the
request pattern is altered by adding or deleting a request, the corresponding change
in , the satisfying set of paths, is simply to delete or add a single path without
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modifying any of the other paths in . Except for 8, we will not be concerned with
nonblocking networks.

This work was motivated by the efforts of DVA Ltd., a California-based research
and development partnership, to develop connection networks for applications in the
broadcast industry. In these applications, the inputs and outputs of the connection
network are audio and video signals that are very high-powered in comparison with the
weak signals usually occurring in digital computation. Consequently, the individual
switches are expensive devices, and their cost is the dominant factor in the overall
cost of the network. For this reason, we take the number of edges (where each edge
corresponds to a switch) as our measure of cost. Another feature of the application
is that power dissipation becomes a serious problem if the signals are passed through
more than about three stages. For these reasons, we concentrate on networks of very
low depth. Finally, the networks arising in our application have at most one hundred
or two hundred inputs and outputs; accordingly, we concentrate on designs that are
efficient in this restricted range, rather than asymptotically efficient designs.

This paper defines two new families of networks of depth three and gives a method
of establishing that particular networks in these families are generalized connectors.
This method is based on the ErdSs probabilistic method, and consists of two steps:

1. First it is proven that a given network is a generalized connector provided
that certain events in a probability space are of sufficiently low probability.

2. Then it is shown that the probabilities of these events are indeed sufficiently
small.

For the family of designs presented in 5, the second step is accomplished by explicitly
calculating the probabilities of the events in question, using dynamic programming;
these calculations provide rigorous proofs that the designs are correct. However, for
the more economical designs of Section 6, the probabilities of the events in question are
not calculated exactly, but instead are estimated by drawing pseudo-random samples
from the probability space Ft. Thus, we have only a "statistical proof" (albeit a very
convincing one) of the correctness of these designs.

For certain values of n and m, our networks have the fewest edges of any known
n m generalized connectors of depth three. Section 8 has a somewhat different
theme than the rest of the paper. Its main result is to exhibit an infinite family of
"almost nonblocking" generalized connectors of depth two.

2. Past work. In this section we give a survey of relevant past work on rear-
rangeable connectors and generalized connectors of small depth. We restrict ourselves
to explicitly constructed families of connection networks, rather than families proven
to exist by nonconstructive methods. Also, we consider only those cases in which the
design is accompanied by a polynomial-time routing algorithm, i.e., a polynomial-
time algorithm that, given a request pattern F, constructs a set of paths satisfying
F. Finally, since our interest is in networks with moderate numbers of sources and
sinks, we exclude certain constructions that are good asymptotically but useful only
when the number of sources and sinks is huge.

The above exclusions eliminate most of the literature on connectors and gener-
alized connectors. All the remaining designs involve the interconnection of crossbar
switches. An (n m)-crossbar is an (n m)-generalized connector of depth one, in
which there is an edge from each source to each sink for a total of nm edges. Because
of their regular structure, crossbars are particularly convenient to build. Among net-
works with a given number of switches, those built up from crossbars are preferred
because of their regular structure.
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A construction attributed in [2] to Slepian, Duguid, and Le Corre yields a family
of depth-three (n x n)-connectors composed of crossbars. Let n be of the form de.
Then the network has three stages. The first and third stages each contain e (d d)-
crossbars. The second stage contains d (e e)-crossbars. For i and k ranging from
1 to e, and j ranging from 1 to d, let A(i) denote the ith first-stage crossbar; B(j),
the jth second-stage crossbar; and C(k), the kth third-stage crossbar. The network
is obtained by identifying the jth sink of A(i) with the ith source of B(j), and the
kth sink of B(j) with the jth source of C(k), for all i, j, and k. In physical terms,
identifying two terminals simply means hard-wiring them together. The network
contains (2d2e + e2d) switches. When e- 2d, the number of switches in the network
is 2x/ n + O(n).

The construction of source-sink paths in the Slepian-Duguid-Le Corre network to
satisfy a given request pattern is based on the following theorem. Let G be a bipartite
multigraph in which each vertex has degree at most d; then each edge of G can be
assigned a "color" from the set 1, 2,.-., d in such a way that no two edges incident
with a common vertex receive the same color. To process a given request pattern,
let the bipartite graph have a vertex a(i) for each first-stage crossbar A(i), a vertex
c(k) for each third-stage crossbar C(k), and an edge from a(i) to c(k) for each sink in

C(k) that requests a source in A(i). If, in the coloring of the edges of this bipartite
graph, an edge from a(i) to c(k) receives the color j, then the corresponding request is
routed from A(i) to C(k) through B(j); specifically, the path includes the ith source
and kth sink of B(j). The required coloring can be obtained in time O(n log n) using
the ’edge coloring algorithm of Cole and Hopcroft [3].

The paper [4] exhibits a family of generalized connectors of depth four. The
construction is based on the concept of a generalizer. An (n m)-generalizer is an
acyclic digraph with n sources and m sinks, such that if each source u is assigned
a nonnegative integer a(u), such that a(u) <_ m, then it is possible to simul-
taneously construct for all sources u, a set of paths from u to a(u) distinct sinks,
such that no two paths have a vertex in common unless they emanate from the same
source. Clearly, we can build an (n m)-generalized connector from an (n m)-
generalizer A and an (m m)-connector B simply by identifying the sinks of A with
the sources of B, according to a one-to-one correspondence. In electrical terms, this
amounts to hard-wiring each sink of A to a source of B. The paper [4] gives the
following inductive construction of a depth-k (n m)-generalizer. For k 1, the
generalizer is simply an (n m)-crossbar. For the inductive construction, assume
that n dl d2 and m dl d3, where d, d2, and d3 are positive integers. The
first stage of the depth-k generalizer has n sources a0,a,...,an- and n output
nodes bo, b,..., bn-1. From each source ai there is an edge to each of the output
nodes bi rood n, b(i+l) rood n,’’’, b(i+dl-1) mod n" The remaining k 1 stages consist of
dl vertex-disjoint depth-(k 1) (d2 d3) generalizers. There is one of these general-
izers for each residue a mod dl; the generalizer corresponding to residue a has as its
sources the set of nodes bi such that _= a mod d. It is an interesting combinatorial
exercise to show that this inductive construction yields a depth-k (n m)-generalizer.

Let n m d2. We can obtain a depth-five (n n)-generalized connector
by composing together a depth-two (n n)-generalizer, constructed as above with

dl d2 x/-, with a depth-three n n-connector, produced by the Slepian-Duguid-
Le Corre construction with d e v/-. This construction can be improved upon by
noting that the second stage of the generalizer and the first stage of the connector can
be compressed together into a single stage. For, since the sinks of each (x/- x/-)-
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crossbar at the second stage of the generalizer are identified one-to-one with the
sources of some (v/- v/) first-stage crossbar of the connector, giving two crossbars
"in series," each such pair of crossbars can be replaced by a single (v/- v)-crossbar.
This simplification results in a depth-four (n n)-generalized connector with 4 n3/2

edges, where n is a perfect square.
We turn now to the construction of depth-three (n n)-generalized connectors.

The paper [6], improving upon earlier constructions [7], [8], exhibits families of such
connectors with O(n3/2 (log n) 1/2) edges. [5] improving on earlier bounds given in [9]
and [4], shows by a nonconstructive probabilistic argument that there exists a family
of depth-three (n n)-generalized connectors with O(n4/3 log2/3 n) edges; however,
the construction is not explicit and, moreover, no polynomial-time or randomized
polynomial-time routing algorithm is known for this family.

These results left open the question of the existence of an explicitly defined family
of depth-three (n n)-generalized connectors having O(n3/2) edges and a fast routing
algorithm. This question was answered affirmatively around 1985 by Pippenger and
Spencer. The Pippenger-Spencer [PSI construction will be presented in 4.

3. A general design strategy. In this section we describe a very general con-
struction that can be specialized in various ways to yield generalized connectors. Let
n, r, s, f, and g be positive integer parameters. Consider a three-stage network of
the following form:

(i) The network has n sources and m sinks, where m fg;
(ii) The first stage is a network (not necessarily of depth one) with n sources and

rs sinks;
(iii) The second stage consists of s (r f)-crossbars;
(iv) The third stage consists of f (s g)-crossbars;
(v) The rs first-stage sinks are in one-to-one correspondence with the rs second-

stage sources, and each corresponding source-sink pair is identified as a single
vertex (electrically, each such source-sink pair is hard-wired together);

(vi) For j 1, 2,..., s and k 1, 2,.-., f, the kth sink of the jth second-stage
crossbar is identified with (hard-wired to) the jth source of the kth third-stage
crossbar.

The above description does not specify the structure of the first stage. We derive
properties of the first-stage structure sufficient to ensure that the overall network is
a generalized connector. Let S be the set of first-stage sources and let D be the set
of first-stage sinks. Then ISI- n and IDI- rs. A request pattern for the first-stage
network is a function from D into S. Let us call such a request pattern K realizable if
it is possible to set up paths through the first stage which are vertex-disjoint except
if they originate from the same source, and which satisfy all the requests specified by
K.

For each realizable K, and each first-stage source x, let A be the subset of
1, 2,-.., s defined as follows: jeAK if there exists a first-stage sink y such that y
is hard-wired to a source of the jth second-stage crossbar and K(y) x. In other
words, jeA if K connects first-stage source x to some source of the jth second-stage
crossbar.

Let F be a request pattern, mapping each third-stage sink to a first-stage source.
Let K be a realizable function. For any third-stage crossbar C, let F(C) denote
{F(z)l z is a sink of C}. Let us say that a configuration of the network is consistent
with K if, in that configuration, the setting of the first-stage switches satisfies the
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first-stage request pattern K. Recall that a family of sets $1, $2,..., St is said to
have a system of distinct representatives (abbreviated SDR) if there exists a sequence
xl,x2,...,xt of distinct elements such that, for 1,2,...,t, xieSi. Element xi is
called the representative of set Si. Using a reduction to bipartite matching, there is
an algorithm to find an SDR for a given family of sets, or else determine that there
is none, in time O(egr), where e is the sum of the cardinalities of the sets, and v is
the number of sets plus the cardinality of the union of the sets.

THEOREM 3.1. The network has a configuration that satisfies F and is consistent
with g if and only if, for each third-stage crossbar C, the family of sets {AKI xeF(C)}
has an SDR.

Proof. Suppose that the required SDR exists. Let w be a sink of third-stage
crossbar C(k). Let x be an element of F(C(k)) and let j be the representative of A(.
Since jeAg, there is a first-stage sink y such that K(y) x and y is identified with
a source of second-stage crossbar B(j). Then the required configuration will include
the path from x to y that is conducting in the first-stage configuration satisfying K,
the edge [y, a] where a is both the kth sink of second-stage crossbar B(j) and the
jth source of C(k), and edges from a to each sink w of C(k) such that F(w) x.
If w’ is another sink, lying on third-stage crossbar C(k’), and F(w’) x’, then the
path from x to w is defined similarly. Let it run through the first stage from x
to y’, and then along the edges [y’, a’] and [a’, w’], where the definitions of y’ and a’
are analogous to those of a and y. We must show that if F(w) F(w’), then these
two paths are vertex-disjoint. Since F(w) F(w’) the first-stage paths from F(w)
to y and F(w) to y are vertex-disjoint; this follows from the assumption that the
first-stage configuration satisfies K. By definition, a is the kth sink of B(j), and a
is the kith sink of B(j); thus a can be equal to a only if j j and k k; but
this would imply that j is the representative of both A and AK, contradicting the
definition of an SDR. Thus the paths are vertex-disjoint, and the configuration we
have defined does satisfy F.

Now suppose that for some third-stage crossbar C, the required SDR does not
exist. By Hall’s theorem, there exists a "deficient" set of sources, i.e., a set S c_ F(C)
such that [.Jxs AI < ISI. This means that all the sources in S must be connected
to sinks in C through fewer than ISI second-stage crossbars; but this is impossible
since each second-stage crossbar is connected to only one source of C. 0

Let us define the predicate T(F, K, C) as follows: T(F,K, C) is true if {AKIXF(C)}
has an SDR. Then, to prove that a network of the type we have just defined is a gen-
eralized connector, we must prove that

(1) For all F, there exists K for all C T(F,K, C).
To prove such a statement, we use the Erdbs probabilistic method. Let be a

probability space whose points are realizable functions. Then it will suffice to prove
that
(2) For all F Pr [for all C T(F, K, C, )] > 0, or equivalently,
(3) For all F Pr [there exists C- T(F, K, C)] < 1,

where the probability is with respect to a K drawn from .
Since C can be chosen in only f ways, and since the probability of a union of

events is less than or equal to the sum of the probabilities of the individual events, it
suffices to prove that
(3) For all F for all C (Pr [-, T(F, K, C)] < 1/f).

Our approach in this paper will always be to prove (3). The remainder of the
paper will consist of the application of this approach to various particular designs.
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4. The Pippenger-Spencer design. In unpublished work done around 1985,
Pippenger and Spencer devised a family of three-stage (n n)-generalized connectors
with 9n3/2 switches. Their design, and the methodology used to prove its correct-
ness, provided the motivating example for the general approach developed in 3.
The Pippenger-Spencer construction resembles the three-stage connector of Slepian,
Duguid, and Le Corre. Let n d2, where d is a positive integer. The first stage of the
Pippenger-Spencer network contains d (d 3d)-crossbar switches; the second stage
contains 3d (d d)-crossbar switches; and the third stage contains d (3d d)-crossbar
switches. Let A(i) be the ith first-stage crossbar switch; B(j), the jth second-stage
crossbar switch; and C(k), the kth third-stage crossbar switch. The network is ob-
tained by connecting these crossbars together as follows: the jth sink of A(i) is
identified with the ith source of B(j), and the jth source of C(k) is identified with
the kth sink of B(j).

In terms of the general construction of 3, we have f g r d, s 3d,
and n m d2. The first stage has the set of sources S and the set of sinks D,
where IS d2 and IDI 3d2. h function K: D S is realizable if and only if, for
each xeD, x and K(x) lie on the same first-stage crossbar. The probability space 12
consists of those realizable functions with the additional property that each element
of S is the image of exactly three elements of D. All functions in are assigned the
same probability. Thus, to draw a K from the probability space , we partition the
3d sinks of each first-stage crossbar into d three-element sets, and randomly establish
a one-to-one correspondence between these d three-element sets and the d sources of
the same crossbar. Then K(x) y if and only if sink x is in the three-element set
associated with y.

As we discussed in the last section, we can prove that the (n n)-Pippenger-
Spencer network is a generalized connector by showing that, for each request pattern
F and each third-stage crossbar C, the probability that {AI xF(C)} fails to have
an SDR is less than lid when K is drawn from t. From the definition of t and
the fact that the sinks of any first-stage crossbar are connected one-to-one to the
second-stage crossbars, it follows that, for each xeF(C) the set A is a three-element
subset of 1,2,...,3d, that AK(Xl) and AK(X2) are disjoint whenever Xl and x2 are
sources of the same first-stage crossbar, and that all specifications of {A( xeF(C)}
satisfying these conditions are equally likely. Using this description of the distri-
bution of {A( xe_F(C)}, eippenger and Spencer perform a probabilistic calculation
based on Hall’s theorem about bipartite matching to show that the probability that
{A([ xeF(C)} fails to have an SDR is O(d-4). It follows that when n (and hence
d) is sufficiently large, the Pippenger-Spencer networks are generalized connectors.
Thus Pippenger and Spencer have provided an explicit family of three-stage (n n)-
generalized connectors with 9n3/2 switches.

There is a simple randomized routing algorithm for the three-stage generalized
connector of Pippenger and Spencer: simply draw a realizable function K from gt

and try to construct the required SDRs. If all the SDRs exist, then use the recipe
given in the proof of Theorem 3.1 to derive the paths required to satisfy F. When d
is sufficiently large, the probability is high that, for a random K, the required SDRs
will exist.

5. A Variant of the Pippenger-Spencer design. In this section we consider
a variant of the Pippenger-Spencer design in which each first-stage crossbar has twice
as many sinks as sources, rather than three times as many. Our networks will have n
sources and m sinks. Assume that n dr and m fg, where d, e, f, and g are positive
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integers. Our network will have r (d 2d) first-stage crossbars A(1),A(2),-.. ,A(n),
2d (r f)second-stage crossbars B(1),B(2),...,B(2d) and f (2d g) third-stage
crossbars C(1), C(2),..., C(f). As in the Slepian-Duguid-Le Corre and Pippenger-
Spencer designs, the jth sink of n(i) is identified with the ith source of B(j), and
the kth sink of B(j) is identified with the jth source of C(k). In terms of the general
construction of 3, we have n dr and s 2d.

We prove that, for certain choices of d, r, f, and g, this construction yields
generalized connectors. Up to a point, our approach to the proof will parallel that of
Pippenger and Spencer, but, at the cost of some redundancy, we will be completely
explicit, rather than asking the reader to make the necessary changes in the set-up
for the Pippenger-Spencer proof.

The first stage has the set of sources S and the set of sinks D, where SI dr
and [D[ 2dr. A function K" D S is realizable if and only if, for each xD, x
and K(x) lie on the same first-stage crossbar. The probability space f consists of
those realizable functions with the additional property that each element of S is the
image under F of exactly two elements of D. All functions in f are assigned the same
probability. Thus, to draw a realizable function K from the probability space t, we
randomly partition the 2d sinks of each first-stage crossbar into d two-element sets,
and randomly establish a one-to-one correspondence between these two-element sets
and the sources of the same crossbar. Then K(x) y if and only if sink x is in the
two-element set associated with y.

We can prove that our network is a generalized connector by showing that, for each
request pattern F and each third-stage crossbar C, the probability that {A[ xF(C)}
fails to have an SDR is less than l/f, when K is drawn from t. From the definition of
t it follows that, for each xeF(C) the set A is a two-element subset of { 1, 2,.--, 2d },
that A and A are disjoint if x and x2 are distinct sources on the same first-stage
crossbar, and that all specifications of {A[ xeF(C)} satisfying these conditions are
equally likely.

By exploiting the fact that each set A is of cardinality two, we can .give an alter-
nate description of the SDR problem associated with {A[ xeF(C)}. Let HK,F(C) be
a multigraph (i.e., multiple edges may occur) with vertex set { 1, 2, 2d }, having as
its multiset of edges {A[ xeF(C)}. Then the statement that {A[ xeF(C)} has an
SDR is equivalent to the statement that it is possible to orient the edges of HK,F(C)
so that no two edges point toward the same vertex; this, in turn, is possible if and
only if each connected component of HK,F(C) is either a tree or a unicyclic graph
(a connected graph is said to be unicyclic if it has exactly as many vertices as it has
edges; equivalently, a connected graph is unicyclic if it contains exactly one simple
cycle). We omit the simple proofs of these statements.

Call a graph good if each of its connected components is either a tree or a unicyclic
graph, and bad otherwise. Then we must prove that, for all F and C, the probability
that HK,F(C) is good, when K is drawn from t, is at least 1If.

Let us define HE(C) as the random variable over the probability space t that,
at the point K, is equal to HK,F(C). Then we are interested in the probability that
HE(C) is a bad graph. The distribution of HE(C) depends on both the request pattern
F and the crossbar C. To account for this dependence, we introduce the concept of
a k-signature. A k-signature a (hi,a2,... ,ah) is simply a partition of the integer
k; i.e., the ai are positive integers summing to k, and their order does not matter.
Associated with each k-signature a is a probability space S(a) of k-edge multigraphs
on the vertex set 1, 2,..., 2d. The experiment required to draw a multigraph from
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S(a) is as follows: for each integer ai, choose ai vertex-disjoint edges at random from
the complete graph on vertex set (1, 2,..., 2d}; i.e., all sets of ai vertex-disjoint edges
are equally likely to be chosen. The edge set of the multigraph is then the union of
the h vertex-disjoint sets that have been chosen.

LEMMA 5.1. A suJficient condition .for the three-stage network determined by the
parameters d, r, f and g to be a generalized connector is that, for every g-signature
a, the probability that a multigraph drawn from S(a) is bad is less than 1If.

Proof. We need to show that, under the stated condition, the probability that
HF(C) is bad is less than 1If. We may restrict attention to pairs F, C such that, in
request pattern F, no two sinks of C request the same source. Partition the sinks of
C into equivalence classes, so that sinks x and x2 are in the same equivalence class
if F(xl) and F(x2) are on the same first-stage crossbar. Associate with the pair C,F
the signature a whose parts are the cardinalities of the equivalence classes into which
the sinks of C are divided. Then clearly the distribution of HF(C) is the same as the
distribution of multigraphs drawn from S(a). [:]

Lampe and the author of this paper have devised a dynamic programming al-
gorithm that computes, for each k-signature a, where k ranges from 1 to g, the
probability that a multigraph drawn from S(a) is bad. The algorithm works as fol-
lows. Let H be a multigraph on vertex set (1, 2,..., 2d) in which each component is
either a tree or unicyclic. Define the profile of H as the expression (p; q, q2,’", qt),
where p is the number of vertices in unicyclic components, t is the number of acyclic
components, and (q, q2,’", qt) are the numbers of vertices in the acyclic components.
The algorithm computes, for each k-signature a and profile v, the probability that a
multigraph drawn from S(a) has the profile u. The computation is recursive, and pro-
ceeds through increasing values of k. The probability that a multigraph drawn from
S(a) is good is then the sum, over all profiles , of the probability that a graph drawn
from S(a) has profile r. We do not describe the details of the recursive computation.

Using this dynamic programming algorithm, we have proved that the following
parameter choices all yield three-stage generalized connectors:

n 5r, m 6f, r arbitrary, f _< 20,
Number of switches: 50r + 1Off + 60f;
n- 6r, m 7f, r arbitrary, f _< 18,
Number of switches: 72r + 12rf + 84f;
n- 7r, m 8f, r arbitrary, f _< 18,
Number of switches: 98r + 14rf + l12f;

n- 8r, m- 9f, r arbitrary, f <_ 17,
Number of switches: 128r + 16rf + 144f;

n 9r, m- 10f, r arbitrary, f <_ 16,
Number of switches: 162r + 18rf / 180f.

Particular parameter choices yield the following designs:
Number of

n m switches
100 102 5420
120 117 6912
136 117 7584

The dynamic programming computations also revealed an interesting pattern.
Let us say that signature a is a refinement of signature a if a can be obtained by
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dividing the parts of a into disjoint groups and replacing each group by the sum of its
parts. For example, the partition (2, 3, 2, 4, 1) is a refinement of (5,6,1); the k-partition
in which each part is 1 is a refinement of every k-partition. Our computational results
suggest the following conjecture" if partition a is a refinement of partition ap, then the
probability that a graph drawn from S(a) is bad is at least as great as the probability
that a graph drawn from S(ap) is bad. If this conjecture were known to be true then,
to prove that the network with parameters d, r, f, and g is a generalized connector, it
would suffice to consider the g-signature in which every part is 1. In other words, it
would suffice to show that, when g edges are drawn with replacement from the uniform
distribution over the edge set of the complete graph on vertex set {1, 2,..., 2d}, the
probability of getting a bad graph is less than l/f; let us say that the triple (d, g, f/is
good if this statement is true. By adapting standard results from the theory of random
graphs, we find that, for every a less than 1, and for all d sufficiently large, the triple
(d, [d], 2d} is good. Thus, if the conjecture is true, the parameter choice n 2dd],
r 2(dJ, s 2d, g cd, f 2d yields an infinite family of three-stage (N N)
generalized connectors with slightly more than 4x/N3/2 switches.

6. A novel interconnection pattern. In this section we modify the design
just presented to obtain yet another family of three-stage networks, and use the
Erdbs probabilistic method together with Monte Carlo experiments to verify that
certain of these networks are generalized connectors. A particular network is speci-
fied by three positive integer parameters, d, f, and g. The first stage consists of 2d+l
(d d)-crossbars A(0),A(1),... ,A(2d); the second stage consists of 2d/ 1 (2d f)-
crossbars B(0), B(1),..., B(2d); and the third stage consists of f ((2d+ 1) g) cross-
bars C(1), C(2),..., C(f). The connections between stages two and three follow the
pattern of the Slepian-Duguid-LeCorre and Pippenger-Spencer designs, and of the
designs we presented in the last section: the kth sink of B(j) and the jth source of
C(k) are hard-wired together. The novelty lies in the connections between the first
and second stages: each source of a second-stage crossbar is hard-wired to one sink
of some first-stage crossbar, and each sink of a first-stage crossbar is hard-wired to
two sources on second-stage crossbars. Specifically, let u and v be distinct integers
between 0 and 2d, and let u + v mod (2d + 1). Then one of the sinks of A(i) is
hard-wired to the ith sources of B(u) and B(v).

Our networks can be presented as instances of the generic construction of 3 with
n d(2d + 1), r 2d, and s 2d + 1. Let us say that the ith source of B(u) and the
ith source of B(v) are paired if u + v mod (2d + 1). Let D be the set of second-
stage sources and let S be the set of first-stage sources. It follows from the definition
of the first stage that a function K: D - S is realizable if and only if, whenever
the ith source of B(u), and y2, the ith source of B(v), are paired, g(yl) g(y2) x,
where x is one of the sources of A(i).

To prove that a particular network in the family under discussion is a generalized
connector, we introduce a probability space ft of realizable functions. For K to lie in
t, the following special condition must hold: K(yl) K(y2) only if y and y2 are
paired. In other words, the realizable functions in t correspond to first-stage switch
settings that connect each first-stage source to exactly one sink of the (d d)-crossbar
on which it lies. We take all elements of ft to be equally likely.

Just as in 5, each set A contains exactly two elements, and we can represent the
SDR problem associated with request pattern F, third-stage crossbar C, and realizable
function K, where Ke f, by a graph HK,F(C) having vertex set {1, 2,..., 2d + 1} and
edge set {AI xeF(C)}. In this case the graph has no multiple edges since, for any
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two first-stage sources xl and x2, A A.
Let HE(C) be the graph-valued random variable that, at point Kel2, is equal to

HK.F(C). We wish to show that, for every C and F, the probability that HF(C) is bad
is less than 1/f. We can attack the estimation of these probabilities using a concept
similar to, but more complicated than, the concept of signature used in the preceding. Let us say that an ordered signature is an array a (co, a1,..., a2d) of nonegative
integers summing to g. Associate with each ordered signature a probability space T(a)
of g-edge graphs on the vertex set (0, 1,..., 24}. Let E(i) be the set of edges (u,
of K2d+ such that u -b v mod (2d -b 1) i. Then the following stochastic experiment
defines the probability distribution T(a)" for each i, draw ai edges randomly, without
replacement, from E(i); let the edge set of the graph be the union of these edge sets,
as i ranges over (0, 1,..., 2d}.

LEMMA 6.1. The following is a sufficient condition for the three-stage network
determined by the parameters d, f, and g to be a generalized connector, for every
ordered signature a, the probability that a graph drawn from T(a) is bad is less than

Proof. We may restrict attention to pairs C, F such that no two sinks of C re-
quest the same source. Associate with C, F the ordered signature a (co, a,..., a2d),
where ai is the number of distinct sources on first-stage crossbar A(i) requested
by sinks of C. Then the distributions of HE(C) and graphs drawn from T(a) are
identical.

We need to show that for each ordered signature a_, the probability that a graph
drawn from T(a) is bad is less than 1If. There are two major difficulties: first,
the dynamic programming technique of the last section cannot be extended to the
present situation and, secondly, the number of different ordered signatures is very

2dq-g ). For a typical choice of parameterslarge. The number of ordered signatures is (2d+
(d 7, g 9) (2d+g) 490,314. We shall use a Monte Carlo approach to gather2d-b1
convincing statistical evidence that all the required probabilities are sufficiently small.
However, it is not feasible to perform a separate Monte Carlo computation for each
ordered signature. Fortunately, we can avoid doing so by using two observations.

The first observation is that certain pairs of ordered signatures are equivalent,
in the sense that they have exactly the same probability of producing a bad graph.
Let a and/ be integers between 1 and 2d such that a is relatively prime to 2d q- 1.
Let a (co, a,..., a2d) and b- (bo, bl,..., b2d) be ordered signatures such that, for
all i, ai bi+ mod 24+1. Then there is a bijection between the probability spaces
T(a) and T(b) that maps bad graphs onto bad graphs: to obtain the image under
the bijection of a graph F in T(a) we replace each edge {u, v} of F by the edge
(du q- 13.2-1, dv q- . 2-1}, where arithmetic is modulo 2d + 1 and 2-1 is the inverse
of 2 mod 2d + 1. For the case d 7, g 9, the 490,314 signatures fall into roughly
4000 equivalence classes.

By a Monte Carlo trial, we mean the following stochastic experiment associated
with an ordered signature a: draw a graph from T(a) and test whether it is bad.
The second observation is that we can perform Monte Carlo trials for many ordered
signatures with a single stochastic experiment. Define the base signature of the ordered

is the largest evensignature a to be the array (a, hi,... a2d),
number less than or equal to hi. The following stochastic experiment has the effect
of performing a Monte Carlo trial for each of the signatures having (bo, b,..., b2d) as
its base signature:

(i) For i 0, 1,... ,2d draw bi edges without replacement from the uniform



THREE-STAGE GENERALIZED CONNECTORS 269

distribution over E(i);
(ii) Let B be the set of edges drawn at step (i). For i 0, 1,..., 2d draw one

edge from the uniform distribution over E(i)\B;
(iii) Let C be the set of edges drawn at step (ii). Using a backtrack search method,

list all the g-edge bad graphs whose edge set includes B and is included in
BUC;

(iv) For each bad graph G’ listed in step (iii) for 0, 1,..., 2d, let a be the
number of edges from E(i) in G’ (a is either bi or b + 1); record the Monte
Carlo trial for the signature a (ao, al,..., a2d) as bad;

(v) For all signatures that do not correspond to bad graphs listed in step (iii),
the Monte Carlo trial is recorded as good (this is done implicitly, by failing
to record the trial as bad).

The Monte Carlo trials for the various signatures having (bo, bl,..., b2d) as base
signature are dependent, but the successive Monte Carlo trials for any given signature
are independent.

Combining our two observations, we can consider two base signatures (b0, b,
’’, b2d) and (bto, b,..., bt2d) equivalent if, for some integers a and fl between 1 and 2d

To performsuch that a is relatively prime to 2d+ 1, and for all i, b b+ rood 2d+l"
a Monte Carlo trial for at least one ordered signature in each equivalence class of
ordered signatures, it suffices to perform a Monte Carlo trial for one base signature
in each equivalence classes of base signatures.

The number of equivalence classes of base signatures is rather small. For example,
in the case where d 7, g 9, there are 490,314 ordered signatures, about 4000
equivalence classes of ordered signatures and 56 equivalence classes of base signatures.
By working with equivalence classes of base signatures we can perform one Monte
Carlo trial for each of the 490,314 ordered signatures by performing only 56 simple
stochastic experiments.

The approach we have outlined makes it feasible to obtain convincing "statistical
proofs" that certain networks in our family are generalized connectors. A typical
example is d 7, f 11, g 9, corresponding to a 105 99 generalized connector. It
took 70 minutes on a SUN/350 (or, alternatively, a bit over 4 minutes on a network of
15 SUN/350s) to conduct 1000 Monte Carlo trials for each of the 56 equivalence classes
of base signatures (and thus, implicitly, for each of the 490,314 ordered signatures).
Out of the 1000 trials, the largest number of bad trials for any ordered signature was
63. There were 12 equivalence classes of ordered signatures for which 50 or more bad
trials were recorded. For each of these, 1000 further trials were carried out, and in
no case were more than 50 bad trials recorded. This provides convincing evidence
that, for each ordered signature, the probability of a bad graph is less than 1/11
and, therefore, that our network is a generalized connector. The number of switches
in this case is 4530. Another parameter choice that has similarly been "proven" to
yield a generalized connector is d 8, f 12, g 10, corresponding to a 136 120
generalized connector with 6392 switches.

Finally, we turn to the question of devising a "routing algorithm" that, for any
given request pattern F, constructs a network configuration satisfying F. An obvious
approach is to keep drawing realizable functions from t until one is found with the
property that the SDR problems associated with third-stage crossbars are all solvable.
There is a simple recipe for constructing the required network configuration once such
a realizable function is at hand.

However, it is expensive to apply such a procedure each time a request is added to
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the current request pattern. Moreover, it is inherent in this algorithm that changing a
single request is likely to cause a radical rearrangement of the network. Even though
such rearrangements are allowed since we are not demanding that the network be
nonblocking, it is certainly preferable in practice to minimize the number of switch
settings that change when a single request is made.

Extensive simulations conducted by the staff of DVA Ltd. indicate that a much
simpler procedure works extremely well in practice. Consider a point in time when
the request pattern is F, the network is in a configuration satisfying F, and the first-
stage configuration corresponds to the realizable function K. Now suppose one sink
on third-stage crossbar, say C(i), changes its request. Let the new request pattern be
F’. For every third-stage crossbar C different from C(i), the graphs HK,F,(C) and
HK,F(C) are the same, and, by the assumption that the present configuration satisfies
F, these graphs are good. The graph Hg,F,(C(i)), which differs from Hg,F(C(i)) by
the deletion of one edge and the insertion of another, may be bad. If HK,F,(C(i))
is good, then the settings of the second-stage and third-stage crossbars can easily be
changed to satisfy F/, without altering the first-stage settings; moreover, the required
change will not alter the paths used to satisfy the requests on the third-stage crossbars
other than C(i). If HK,F,(C(i)) is bad, then it is necessary to change the first-stage
switch settings, and this is done using the concept of an interchange, which we now
define. Let A(i) be a first-stage crossbar. Let Xl and x2 be two sources on A(i), yl

and y2 be two sinks on A(i), and consider a configuration in which xl is connected to
yl and x2 to y2. Define an interchange as the process of changing the configuration
so that X is connected to y2, and x2 to y. Let K and KI, respectively, be the
functions realized by the first-stage configurations before and after the interchange.
Then A, A, A, A, and, for all x except X and x2, A A,. Thus,
the effect of the interchange is to exchange the roles of the edges A and A. If
graph HK,F, (C) contains neither or both of these edges, then it is unaffected by the
interchange; i.e., HI,F,(C) HK,F(C). On the other hand, if HK,F,(C) contains one
of these two edges, then that edge is replaced by the other.

If the new request F’ makes HK,F,(C(i)) bad, then the algorithm looks for an
interchange that will make HK,,F,(C(i)) good. Among such interchanges, it gives
preference to one that does not create any bad graphs, i.e., one such that, for all C,
HK,,F,(C) is good, where K is the function realized by the first stage after the in-
terchange. Usually, this will be possible. If not, the algorithm chooses an interchange
that makes the graph associated with C(i) good and minimizes the number of third-
stage crossbars whose graphs become bad. It then seeks one or more interchanges to
correct these newly formed bad graphs one at a time, always choosing an interchange
that corrects the bad graph under consideration and creates as few bad graphs as
possible. The process continues until no bad graphs remain. A few interchanges have
always sufficed to eliminate all bad graphs.

7. An "almost strictly nonblocking" two-stage network. Throughout this
paper we have been concerned exclusively with rearrangeable networks. Such a net-
work is capable of satisfying any request pattern F; however, a change in the source
requested by one sink may necessitate a global change in the configuration of the
network. In some applications a more stringent requirement is imposed. A connec-
tor or generalized connector is said to be strictly nonblocking if, whenever it is in a
configuration satisfying a request pattern F and one output z changes its request, it
is possible to satisfy the new request pattern in such a way that, for every output
y different from z, the path connecting F(y) to y is not changed. There is also the
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weaker concept of a wide-sense nonblocking network; this means that the above re-
quirement holds, not for every possible configuration, but for every configuration that
can occur when a particular routing algorithm is used. In [1] and, independently, in

[5], it is proved that a strictly nonblocking (n x n)-generalized connector must have
t(n2) switches, and a strictly nonblocking (n x n)-connector with depth k must have

(nl+-r- switches. This result suggests the following questions: for which c does
there exist a family of strictly non-blocking n x n generalized connectors (respectively,
connectors) of depth at most 2 with Cn2 + o(n2) switches? Of course, for all k, C 1
is achievable using an (n x n)-crossbar. In this section, we exhibit a family of depth-
two (n n)-generalized connectors that are almost strictly nonblocking in the sense
that, when a single output z changes its request, at most one input-output path, other
than the one terminating at z, must be changed. The number of switches required by

2 2the networks in this family is n + 2n3/2.
A particular network in the family is specified by positive integer parameters d and

f; the number of inputs is equal to d2, and the number of outputs is 5h. To enable
comparison with the generic construction of 3, we describe our design as a three-
stage network; however, the first stage contains no switches, so the network is indeed
of depth two. The second stage consists of 2d (d f)-crossbars B(1), B(2),..., B(2d),
and the third stage consists of f (2d 5)-crossbars C(1), C(2),..., C(f); as usual,
the kth sink of B(j) is hard-wired to the jth source of C(k). With each source
of the overall network is associated a pair (u, v), where ue{1,2,... ,d} and w{d +
1,..., 2d}.Whe source is hard-wired to a source of B(u) and a source of B(v); each
pair (u, v)e {1, 2,..., d} {d + 1,..., 2d} is associated with exactly one source of the
network. Thus the first stage realizes a single function K; if a source x is connected
to B(u) and B(v), then A {u, v}. For every third-stage crossbar C and every
request pattern F, the graph HK,F(C) is a bipartite graph with five distinct edges,
each of which connects a vertex in { 1, 2,..., d} with a vertex in {d + 1, d + 2,..., 2d}.
Since no five-edge bipartite graph can be bad, the network is a generalized connector.
We leave it to the reader to verify that, when an output on third-stage crossbar C
changes its request, at most one of the other outputs on C, and no output on any of
the other third-stage crossbars, needs to be served by a different input-output path.

In the case where n m d2 5f, the network is a depth-two (n n)-generalized
connector with -n2 + 2n3/2 switches. This is uninteresting as an asymptotic result,
but is competitive in switch count with the known three-stage designs when n is less
than 50.

8. Conclusion. Table 1 compares the various generalized connectors presented
in this paper by giving the number of switches required when n and m are close to
100.

TABLE

Number of Number of
Design n m switches stages

Dolev et al. 100 100 4000 4
Pippenger-Spencer 100 100 9000 3
Karp (5) 100 102 5420 3
Karp (6) 105 99 4530 3
Karp (7) 100 100 6000 2

A peculiarity of this paper is that, except in 7, we establish the correctness of
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particular networks, with fixed numbers of inputs and outputs, rather than proving
the correctness of entire families, as is usually done. Moreover, for the networks
considered in 6, we depend on stochastic experiments that are only valid if we trust
our pseudorandom number generator. We do not know of any fully satisfactory way
around this difficulty, which is endemic to the fields of simulation and Monte Carlo
computation.
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PRIVACY AND COMMUNICATION COMPLEXITY*

EYAL KUSHILEVITZt

Abstract. Each of two parties Px and Py holds an n-bit input, x and y, respectively. They wish
to privately compute the value of f(x, y). That is, Px should not learn any additional information
about y (in the information-theoretic sense) other than what follows from its input x and the function
value f(x, y), and similarly, Py should not learn any additional information about x.

In this paper, the two following basic questions in the theory of private computations are con-
sidered:

1. Which functions can be privately computed?
2. What is the communication complexity of protocols that privately compute a function f

(in the case that such protocols exist)?
A complete combinatorial characterization of privately computable functions is given. This

characterization is used to derive tight bounds on the rounds complexity of any privately computable
function and to design optimal private protocols that compute these functions.

It is shown that for every 1 _< g(n) _< 2-(2 1) there are functions that can be privately
computed with g(n)-rounds of communication, but not with (g(n) 1)-rounds of communication.
This implies that the communication costs of private protocols can be exponentially higher than the
communication costs of nonprivate protocols.

Interestingly, randomization helps neither to increase the set of privately computable functions,
nor to improve the rounds complexity of these functions.

Key words, private distributed computations, communication complexity

AMS(MOS) subject classifications. 94A15, 94A60, 68R05

1. Introduction. The topic of this paper is private computations and their com-
munication complexity. To exemplify the issue, we consider the "two millionaires"
problem presented by Yao [17]. Two millionaires wish to know who is the richer.
However, they want to do this in a way such that neither of them will receive any
additional information about the other’s wealth. Can the two millionaires solve their
problem?

The general question that we address is which functions of two arguments can be
computed in such a way that no party learns any additional knowledge, other than
what follows from the value of the function and its input. The result is that the
answer to this question relies heavily on the assumptions that are made regarding
the computational power of the parties. One possible approach is to assume that the
parties are limited to efficient computations (i.e., in polynomial time). The issue of
privacy, using this approach, was resolved in [19], [11], under (unproved) intractability
assumptions.

Another possible approach is the information theoretic approach. The compu-
tational power of the parties is not restricted, and no intractability assumptions are
made. Thus the notion of privacy is much stronger. It is not only that the parties
cannot obtain additional information using polynomial-time computations, but that
such information cannot be obtained at all. This approach was studied in [5], [6].
It was shown that any function f of N arguments can be computed [(N- 1)/2J-
privately. No coalition of t _< [(N- 1)/2J parties learns anything, other than the
value of the function from the execution of the protocol. (Note that for the case
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where N 2 this claim is not meaningful.) On the other hand, for t > [(N- 1)/21,
Ben-Or, Goldwasser, and Wigderson [5] showed that some functions cannot be com-
puted t-privately. In [8] a complete characterization of the t-private Boolean func-
tions, for [(N- 1)/2J < t < N is given. The basis for this characterization was a
reduction from the multiparty case to the two-party case. In the two-party case, it
is shown that a Boolean function f is 1-private if and only if it can be expressed
as f(x, y) h(x) g(y), where h and g are also Boolean functions, and @ denotes
exclusive-or [8].

In this paper we solve the question of privacy with respect to arbitrary two-
argument functions: A complete combinatorial characterization of the privately com-
putable functions is given. In particular, this provides a necessary condition for pri-
vacy in the general multiparty case. This characterization was independently found
by Beaver [3].

A new facet of privacy, considered in this paper, is the communication complex-
ity of computing functions privately. Two measures of complexity are considered in
this paper: communication complexity (number of bits) and rounds complexity. The
communication complexity of computing functions in a two-party system was exten-
sively studied in previous works. Yao, for example, investigated the communication
complexity of computing arbitrary Boolean functions in such a system (both in a
deterministic model and a probabilistic model) [16], [18]. Tight O(n) bounds on the
communication complexity of explicit functions and of random functions were given
both for the case of deterministic protocols [16] and for randomized protocols [1], [7],
[12]. Rounds complexity was studied by Papadimitriou and Sipser [15] and by Duris,
Galil, and Schnitger [9]. They showed that for certain functions there is an exponen-
tial gap between the number of bits that must be exchanged using k-round protocols
and k + 1 -round protocols.

We use the characterization of privately computable functions to derive tight
bounds on the communication complexity and rounds complexity of these functions.
We show that the privately computable functions form a very dense rounds-complexity
hierarchy. For every 1 < g(n) < 2. (2n 1), there exists a function that is privately
computable by a g(n)-round protocol but cannot be privately computed by any (g(n)-
1) -round protocol. In particular, certain functions require 2. (2n- 1) communication
rounds and O(2n) bits to be privately computed. This should be contrasted with the
fact that in a regular computation (that is, without privacy constraints), any function
f can be computed using O(n) bits and two communication rounds (Px sends x; Py
computes and sends f(x, y)). Comparing these two bounds we conclude that even
when a function is privately computable, the "cost" of privacy may be exponentially
larger.

In distributed computing, randomization often increases the computation power
[13], [2], or significantly decreases computational costs [4], [10], [14]. Interestingly, this
is not the case for private two-party computation. For every privately computable
function f, we present a deterministic protocol, which privately computes f in an op-
timal number of rounds (and deterministically optimal number of bits). We conclude
that randomization helps neither to increase the set of privately computable functions
nor to improve the rounds complexity of privately computable functions.

The rest of this paper is organized as follows. In 2 we present the model and the
definitions of privacy. In 3 we give the characterization of the privately computable
functions, and in 4 we deal with the communication complexity and rounds com-
plexity of these functions. Finally, in 5 we discuss some connections of the results
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with multiparty private protocols.

2. Preliminaries.

2.1. Two-party protocols and communication complexity (without pri-
vacy). In this section we define the model of two-party computation and the notions
of complexity that are used in this paper. These definitions are originally due to Yao

The model consists of two parties, Px--holding n-bit input x--and Py--holding
n-bit input y. Px and Py wish to compute the value of f(x, y) (f" {0, 1}n {0, 1}n
{0, 1,..., m- 1}) using a probabilistic protocol. A probabilistic protocol [16] for com-
puting f(x,y) is a predetermined probabilistic program. That is, the parties are
allowed to toss coins during their local computations. The parties are alternately
sending messages to each other. The message q, sent by a party in the ith round,
is a function of its input, its coin tosses, and the messages it h received so far
(q,’", q-l). We sume that the parties are honest; that is, they follow their prede-
termined programs. The last message sent in the protocol A is assumed to contain the
value of the function and is denoted A(x, y). We say that the protocol A computes
the function f if

Vx, y e {0, 1}n" Pr(A(x, y) f(x, y))

where the probability is taken over the random coin tosses of the two parties.
The communication string passed in the protocol is the concatenation of all the

messages ql’q2 q sent in the course of the protocol. We assume that in
every round, the set of all possible messages forms a prefix-free code. Thus the
communication string can be uniquely decomposed to its messages. It also enables
party that receives a message to recognize its end. The influence of this assumption
on the communication complexity of the computation is bounded by a constant.

The communication complexity of a protocol A is the maximal number of bits
transmitted during the execution of the protocol A (where the maximum is taken
over all the possible inputs (x,y), and all the possible coin tosses). Similarly, the
rounds complexity of a protocol A is the maximal number of rounds in any run of
the protocol A.

The communication complexity (rounds complexity) of a function f is the mini-
mum communication complexity (rounds complexity) over all protocols that
compute f.

Remark 1. Since the last message of the protocol should contain the value of
f(x, y), it was assumed that if the image of f is of size m, then the image is the
set {0, 1, 2,.-., m- 1}. If this is not the case, we can use, in the last message, some
encoding of f(x,y) into the set {0, 1,...,m- 1}. Therefore, the length of the last
message is at most log2 m bits (note that m 22 nd therefore log2 m 2n).

Remark 2. The assumption that x ]y] is not essential for any of our results
and can be easily relaxed.

It is convenient to visualize any function f" {0, 1}n z {0, 1}n {0, 1,-’’, m 1}
as a 2n 2n matrix with entries in {0, 1,..., m- 1}. We denote this matrix by M.
Each row of M] represents an input x held by Px, and each column of MI represents
an input y held by Py. The entry (x, y) of the matrix M contains the value f(x, y).
A submatrix of M is called monochromatic if f is constant over it.

2.2. The privacy constraints. In this section we formally define the notions
of weak and strong privacy in a two-party distributed system. The definitions re
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taken from [8], and the definition of strong privacy is equivalent to the definition

Informally, a protocol is private if each party does not learn anything from the
execution of the protocol other than the value of the function. This means that the
parties do not gain even a probabilistic advantage over what they know by themselves.

Formally, we call a protocol weakly private with respect to Px (a similar definition
holds for Py) if for every two inputs (x, Yl) and (x, y2) satisfying f(x, yl) f(x, y2),
and for every communication string s

Pr(s[(x, y)) Pr(s[(x, y2)),

where the probability is taken over all the possible coin tosses of both parties.
Now, we make the notion of privacy stronger in two ways. First, we require

that the protocols will not make errors, and, second, we require that the parties not
learn anything from the execution of the protocol even when taking into account their
random coin tosses. Formally, we say that a protocol jt is strongly private with respect
to Px (a similar definition holds for Py) if jt always computes the correct value of
the function (that is, A(x,y) f(x, y)), and if for every two inputs (x, y) and (x, y2)
satisfying f(x, Yl) f(x, y2), every string of coin tosses rx held by Px, and for every
communication string s,

Pr(s]rx, (x, yl)) Pr(s]rx, (x, y2)),

where the probability is taken over all the possible coin tosses of Py.
A protocol jt is called weakly/strongly private if it is weakly/strongly private with

respect to both parties. A function f is called weakly/strongly private if there exists
a weakly/strongly private protocol that computes it.

Finally, we remark that when dealing with the communication/rounds complexity
of private functions, we consider only private protocols.

3. Characterization of private functions. In this section we give a complete
combinatorial characterization of the privately computable functions. This character-
ization is used to derive a deterministic private protocol for any privately computable
function. We start with some definitions.

DEFINITION 1. Let M C D be a matrix (C is the set of rows and D is the
set of columns). The relation on the rows of the matrix M is defined as follows:
Xl, X2 ( C satisfies X x2 if there exists y E D such that Mxl,y Mx,y. The
equivalence relation on the rows of the matrix M is defined as the transitive closure
of the relation . That is, Xl,X2 C satisfies x _= x2 if there exist z,z2,...,z C
such that Xl Zl z2 z x2. Similarly, the relations and are defined
on the columns of the matrix.

DEFINITION 2. A matrix M is called forbidden if it is not monochromatic, all
its rows are equivalent, and all its columns are equivalent. That is, every xl, x2 C
satisfies x _= x2, and every y, y2 @ D satisfies Yl Y2. (For examples of forbidden
matrices, see Fig. 1).

The first theorem claims that if a function f is represented by a matrix Mf that
contains a forbidden submatrix, then f is not privately computable.

THEOREM 3.1. Let f be a function. If Mf contains a forbidden submatrix M
C D then f is not (weakly) private.

Proof. The idea of the proof is to show that any protocol Jr, trying to compute f
privately, fails (with "high" probability) in computing the correct value of the function
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x 0
x2 0

Xl 0 0

x2 2 4
X3 2 3

FIG. 1. Forbidden matrices.

for some inputs. Intuitively, this is done by showing that for any xl, X2 ( C, and any
message q, the probability that Px sends q on input x is equal to the probability
that Px sends q on input x2. An analogous argument holds for Py with respect to
any Yl, Y2 E D. Thus, the probability distribution on communication strings is the
same for any (x, y) E M. Since M is not monochromatic, and since the protocol is
required to compute the correct value of f for every input with probability greater
than 1/2, then for some of the inputs the protocol fails.

Let C {x,...,x} and D {y,...,yp}. Let s q’q2 qk be any
communication string. We prove, by induction on the round number t, that for every
(x, yj) M,

(1) Pr(q, qt[(xi, yj)) Pr(ql, qtl(xl, yl)).

This implies that for every (x, y) e M the probability Pr(sl(x y)) is the same. The
induction assumption implies that for every (x, y) M the probability Pr(q,...,
(x, y)) is the same. If this probability is zero then for every (x, y) M we have
Pr(sl(x,y)) 0. Otherwise, we consider the tth round (1 <_ t _< k) and assume,
without loss of generality, that t is odd. Therefore the message qt is sent by Px
(a similar argument holds for the messages of Py). The submatrix M C D is
forbidden; hence, all the rows of M are equivalent. Therefore we can also assume that
the set C is ordered in a way such that for every i (i >_ 2) there exists j < i such that
x xj. We now prove by induction on i that for every 1 <_ i <_ g,

(2) Pr(qtlxi, ql, qt-) Pr(qtlxl, ql, qt-)

Given > 1, there is some j < with x xj. By the definition of , there exists
y e D such that f(x, y) f(xj, y). According to the definition of (weak) privacy,
this implies that for every communication string s, Pr (sl(x,y)) Pr(sl(xj,y)). In
particular, Pr(ql,..., qt[(xi, y)) Pr(q,..., qtl(xj, y)). However,

(3) Pr(ql,..., qt](x, y)) Pr(ql,..., qt-l(x, y)) Pr(qtlx, q, qt-1).

By the assumptions, Pr(ql,..., qt-ll(Xi, y)) Pr(ql,..., qt-ll(Xj, y)) O. There-
fore, by (3) and the privacy condition, Pr(qtlxi, ql,’", qt-1)= Pr(qtlxj, ql,’", qt-1),
which implies by the induction hypothesis (2) that Pr (qtlxi, ql,...,qt_)

Pr(qt]xl, ql,"’, qt-1). This completes the proof of claim (2).
By the induction hypothesis (1) and claim (2) we get that for every (xi,yj) M,

Pr(q, qtl(xi, yj)) Pr(ql,’..,qtl(xl,yl)).
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This completes the proof of (1). Therefore, for every input (xi,yj) e M, the prob-
ability distributions of communication strings sent on these inputs are all equal. In
particular, for every (xi, yj) E M the last message of the communication string, which
is Jt(xi,yy), is distributed in the same way. On the other hand, the correctness of
implies that for every (xi, yy),

Pr(Jt(xi, yj f(xi yj > -Thus the same function value is computed for all the inputs in M, in contradiction
to the assumption that M is not monochromatic.

The special case of Theorem 3.1, where M is a 2 2 submatrix, is useful for proving
that particular functions are not private. It says that if there exist xl, x2, yl, y2

{0,1}n such that f(xl,yl) f(xl,y2) f(x2,yl) a, and f(x2,y2) # a, then f
is not private. We can now prove, for example, that the "greater equal" function
(f(x, y) 1 ==a x >_ y) is not private. It is enough to observe that for every integer
a we have f(a- 1, a)= f(a- 1, a + 1)- f(a,a + 1)= 0, but f(a, a)- 1. Note that
finding a private protocol for the "greater than" function is actually solving the "two
millionaires" problem. We remark that in the computational model this problem can
be solved [17].

We will now prove that the condition of Theorem 3.1 is not only necessary but
also sufficient. Namely, if the matrix Mf does not contain a forbidden submatrix
then f is privately computable. Before proving this claim, we introduce some new
definitions.

DEFINITION 3. A matrix C D is called rows decomposable if there exist
nonempty sets C1, C2,..., C, (t >_ 2) such that

1 C1,C2 C, are a partition of C. That is i=lCi-Candfralli#j"
c n c -O;

2. For every Xl, X2 C, if X X2 then X and x2 are in the same C.
Similarly, we can define when a matrix C D is columns decomposable. When we

say the optimal rows (columns) decomposition of a matrix we mean the rows (columns)
decomposition that maximizes t (the number of sets). Note that the optimal decom-
position is unique. This is because the sets of the optimal decomposition are exactly
the equivalence classes of the relation (in general, the sets of any decomposition
are unions of equivalence classes of --).

DEFINITION 4. A matrix C D is called decomposable if one of the following
conditions holds:

1. C D is monochromatic.
2. C D is rows decomposable to submatrices C1 D, C2 D,..., Ct D, which

are all decomposable.
3. C D is columns decomposable to submatrices C D1, C D2,..., C Dr,

which are all decomposable.
An example of a decomposable matrix is given in Fig. 2 (4).

Given a matrix M, it is easy to check whether it is decomposable, or rows

(columns) decomposable, and to find the optimal decomposition. Such an algorithm
will be needed for the design of efficient private protocols. For example, the following
algorithm checks if M (n m matrix) is rows decomposable and finds the optimal
rows decomposition:

1. For every row 1 <_ <_ n, create a set C {i}.
2. If there exist Xl Ci, x2 Cj (i j) and y such that f(xl,y) f(x2, y)

(i.e., X X2) then Ci Ci U Cy (that is, unite Ci and Cy to a single set)
and return to step (2).
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3. If the number of sets is 1-, there is no rows decomposition. Else, the current
sets are the optimal rows decomposition of M.

To prove the sufficiency of our condition, we will use the following lemma, which
claims that a matrix is decomposable if and only if it does not contain a forbidden
submatrix.

LEMMA 3.2. Let M C D. M is decomposable if and only if for every
submatrix M of M, M is not forbidden.

Proof. If M contains a forbidden submatrix M, then by induction we can show
that the rows and columns of this submatrix always remain in the same submatrix of
the decomposition. As a decomposition must end with monochromatic submatrices,
M is not decomposable. Conversely, if M is not decomposable, then we have a
submatrix M, which is not monochromatic, not rows decomposable, and not columns
decomposable. This means that M is a forbidden submatrix of M.

THEOREM 3.3. Let f {0, 1}n {0, 1}n -- {0, 1,...,m- 1} be an arbitrary
function. If Mf does not contain a forbidden submatrix then f is (strongly) private.

Proof. If Mf does not contain a forbidden submatrix, then according to Lemma 3.2,
Mf is decomposable. We use the optimal decomposition of Mf for presenting a de-
terministic private protocol ,4 which computes f. We assume that the two parties
have a common way of numbering the sets in the decomposition. The protocol is as
follows.

Protocol
1. Px and Py both set C D {0, 1,-.., 2n 1}.
2. While C D is not monochromatic,

(a) Px sends the j such that x E Cy in the optimal rows decomposition of
C D. Both Px and Py set C Cj.

(b) Py sends the j such that y E Dy in the optimal columns decomposition
of C D. Both Px and Py set D Dj.

3. Px sends the constant value in C D as the value of f(x, y).
From the definition of a decomposable matrix, it is clear that during this algorithm

C D is always decomposable and that the protocol ,4 terminates. Since the input
(x, y) always belongs to C D, then it follows that ,4 terminates with the correct
value of f(x, y). (Note that the first time step 2(a) is performed, it is possible that
C D is not rows decomposable. In such a case, C D must be columns decomposable,
and we can start from step 2(b). From this point on, since we use the optimal
decomposition, C D is rows decomposable and columns decomposable alternately.)
Since Jtj is deterministic, then for every input (x, y), the communication string is
unique. Therefore, for showing that ,41 is (strongly) private, we should verify that
for every two inputs (x, yl) and (x, y2) that satisfy f(x, yl) f(x, y2) the same
communication string is exchanged. This is true since the messages sent in step 2(a)
depend only on x, while, according to the definition of columns decomposition, the
messages sent in step 2(b) are uniquely determined by x and the function value (note
that Yl Y2 in every submatrix C D that contains (x, yl) and (x, y2), and thus
they will never be decomposed). Similarly, we can verify that for every two inputs
(x, y) and (x2, y) that satisfy f(x, y) f(x2, y), the same communication string is
exchanged.

From Theorems 3.1 and 3.3, we obtain the following corollaries.
COROLLARY 3.4. If f is weakly private, then f is also strongly private.
If f is weakly private then, according to Theorem 3.1, Mf does not contain a

forbidden submatrix. Therefore, according to Theorem 3.3, f is strongly private. In
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particular, this means that the ability of the protocols to make errors does not help
to achieve privacy.

COROLLARY 3.5. If f i8 private, then it can be privately computed using a deter-
ministic protocol.

According to the proof of Theorem 3.3, every private function is privately com-
putable using a deterministic protocol. That is, randomization does not help to
achieve privacy in the two-party case. We emphasize that this is not the case for
multiparty protocols (see [5], [8]).

4. The communication complexity of private functions. In this section
we deal with the communication complexity of private functions. We show a cor-
respondence between every protocol Jr, which computes a function f privately, and
a decomposition of the matrix Mr. This correspondence is used for proving lower
bounds on the number of rounds and the number of communication strings needed
for computing f privately.

It may be convenient to look at the decomposition of a matrix M, as a tree con-
taining submatrices in its nodes. The root (level 0) of the tree contains the given
matrix M. The children of a node v in an even level of the tree contain a rows decom-
position of the submatrix in v, while the children of a node in an odd level contain a
columns decomposition of the submatrix. All the leaves of the tree are monochromatic
submatrices. Such a tree is called a decomposition tree of the matrix M. The tree
corresponding to the optimal decomposition is called the optimal decomposition tree.
(We assume without loss of generality that M itself is rows decomposable. Otherwise,
in the even levels we should use columns decomposition and in the odd levels rows

decomposition.)
Following Yao [16], we visualize every protocol that computes f as a decision tree.

We show that the decision tree of any private protocol is also a decomposition tree.
Given Jr, a (weakly) private protocol for computing f, we describe how to create a
decomposition tree that corresponds to Jr. The root (level 0) contains the matrix Mr.
Let v be a node in level g of the tree containing a submatrix M C D. We define
its children as follows. Assume that the message in round g + 1 of the protocol should
be sent by Px (a similar definition holds for the case where the next message should
be sent by Py). Every Xl,X2 E C, for which Px behaves "similarly" will be in the
same C, where "similarly" means that for every message q+l and for every sequence
of messages ql, q2,’", qi passed in previous rounds (with a positive probability),

Pr(q+llXl, q, q2,""", qt) Pr(qt+llX2, ql, q2,""", qi).

Since it is given that .4 is (weakly) private, then f(xl,y) f(x2,y) implies that
for every communication string s we have Pr(sl(xl,y)) Pr(sl(x2, y)). Thus, the
probability Pr(q+lxl ql, q2,’", q) is equal to Pr(q+lx2 q, q2,’", q). Therefore,
if X x2, then x and x2 are in the same C, and the conditions for rows decomposi-
tion hold. Finally, we must show that the leaves contain monochromatic submatrices.
This follows from the fact that the same probability distribution of messages is sent for
every element of the submatrix, and that for every input the protocol should compute
the correct value of the function with probability greater then 1/2. (Note that if the
protocol jt is not efficient, it is possible that there are rounds that give decomposition
with t 1. In such a case, we can omit these rounds.)

Continuing with this correspondence, it is easy to see that the number of com-
munication rounds in the protocol is equal to the depth of the corresponding decom-
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position tree. To derive our lower bounds we use this equality together with the next
lemma, which claims that the optimal decomposition tree has the minimal depth.

LEMMA 4.1. Let M be a decomposable matrix. Let Top be the optimal decompo-
sition tree for M. For every T, a decomposition tree of M, the depth of Top i8 less
than or equal to the depth of T.

Proof. Given a nonoptimal decomposition tree T, we can use the following
bottom-up process to get the optimal tree Top without increasing the depth: In
each step, find an internal node v for which the decomposition is not optimal, but the
decomposition in any node of its subtree is optimal. Changing the decomposition in
the node v to the optimal one, does not increase the depth of the tree (and may even
decrease it).

More formally, let v be an internal node of T as above and denote by Cv Dv the
matrix corresponding to v. Assume without loss of generality that in v we have rows
decomposition. That is, C is decomposed to C1, C2,’", Ct. Since the decomposition
is not optimal, there exists a set Ci in the decomposition that can be replaced by C}
and C (i.e., C1,..., Ci-1, C1, C2, C+1,... ,Ct are the sets of a row decomposition
of C D,). Let C D be the matrix in any node of the subtree corresponding to
C D; then in the subtree corresponding to C Dv (j 1, 2) this matrix will
be replaced by (C N C) D. In the case that this matrix is monochromatic, then
its subtree will be omitted. It is easy to verify that the modified tree is indeed a
decomposition tree, and clearly the depth is not increased. D

COROLLARY 4.2. For every private function f, the protocol Jtf (described in the
proof of Theorem 3.3) achieves the optimal number of rounds.

This is because every private protocol that computes f corresponds to a decom-
position tree. According to Lemma 4.1, the optimal decomposition tree, which is
exactly the tree corresponding to jrf, has the minimal depth. Note that Lemma 4.1
implies that AI is optimal in a very strong sense: the depth of every input (x, y) in
the corresponding tree is minimal, and not only of the worst-case input.

COROLLARY 4.3. For every 1 <_ g(n) _< 2. (2n 1) there exists a function f that
is privately computable using a g(n)-round protocol but is not privately computable
using any (g(n)- 1)-round protocol.

This corollary implies the existence of a rounds-complexity hierarchy for privately
computable functions. To prove it, we present below a function that is privately
computable using a (2. (2n- 1))-round protocol, but is not privately computable
using any (2. (2n 1)- 1)-round protocol. This example can be easily generalized to
any 1 _< g(n) _< 2. (2n 1). We consider the following function f (see M in Fig. 2):

2x if x _< y,f(x,y)- 2y+l ifx>y.

The optimal decomposition of M gives us the following protocol 4i:
For 0, 1,2,...,
1. Px compares its input x with i. Ifx it sends f(x,y) 2.i and the

protocol is terminated. Otherwise it sends a GO-ON message (one bit).
2. Py compares its input y with i. If y it sends f(x, y) 2. + 1, and the

protocol is terminated. Otherwise, it sends a GO-ON message (one bit).
It is easy to see that this protocol requires 2. (2n 1) rounds (and O(2n) bits)

for the input (2n 1,2 1). Moreover, the average number of rounds (and bits) is
also o(2n). Note that in a regular computation every function f can be computed
using at most n + If(x, Y)I bits and two communication rounds (simply, Px sends x
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and Py computes and sends f(x, y)). Since in every round of the optimal protocol
we decompose our matrix into at least two submatrices, then the function f defined
above is the worst function. In other words, every private function f can be privately
computable using at most 2. (2n 1) rounds.

COROLLARY 4.4. Let m be the size of f’s range (i.e., f {0, 1}n {0, 1}n --{0, 1,..., m- 1}); then the rounds complexity of f is bounded above by 2. (m- 1).
Here again we use the optimality of ,4f to claim that in every round the current

submatrix is decomposed into at least two submatrices. In addition, in a rows decom-
position, for every row x all the y’s such that Mx,y has the same value belong to the
same Di in the decomposition. (A similar property holds for columns decomposition.)
Thus, if the original matrix contains m different values, then (by a simple induction)
we can show that after 2. i rounds of the protocol, every row and every column of the
submatrix C D contains at most m- different values. Therefore the number of
rounds is bounded by 2. (m- 1).

To give lower bounds on the communication complexity of privately computable
functions, we present the following claim, which relates rounds complexity to commu-
nication complexity in private computations.

CLAIM 1. Let f be a privately computable function. Denote its communication
complexity by C(f) and its rounds complexity by R(f). Then the following holds:

R(f) <_ C(f) <_ n. R(f).

Proof. R(f) <_ C(f) since in any protocol the parties send at least one bit per
round. On the other hand, for every privately computable function f, the bound
R(f) is achieved by the protocol Jtf. In any round of this protocol, the parties send
a message with size at most n. (Note that in steps 2(a) and 2(b) of Jt we may save
one bit per round by omitting the most significant bit which is always 1.) The claim
follows. [:]

COROLLARY 4.5. Randomization does not help to reduce the number of rounds
needed in private computations.

This is true since the protocol Jtf is a deterministic protocol. We remark that
besides being optimal in its rounds complexity, is also optimal in its communication
complexity among the deterministic protocols. To prove this, we observe that if
Jt is a deterministic protocol then the number of different communication strings
is equal to the number of leaves in the decomposition tree that corresponds to ,4.
We conclude not only that randomization does not help to compute more functions
privately, but also that it does not help to reduce the number of rounds needed in
private computations.
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5. Discussion. As is pointed out in [8], the characterization of two-party private
functions can be used to give necessary conditions for privacy in a multiparty scenario.
That is, f(xl,x2,... ,XN) is t-private, for t _> [(N- 1)/2] + 1, if for any partition
of the N parties into two sets of participants T and T, where T is of size t, the
two-argument function ] defined as

is private.
Using the above observation and Theorem 3.1, we get from any such partition a

necessary condition for f to be t-private (t > L(N- 1)/2J + 1). In addition, from any
such partition and using Corollary 4.2, we get lower bounds on the rounds complexity
and the communication complexity of computing f t-privately.

The problem of giving an exact characterization of the t-private (general) func-
tions for [(N- 1)/2J < t < N is still open.
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AN OPTIMAL ALGORITHM FOR THE MAXIMUM TWO-CHAIN
PROBLEM*
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Abstract. Given a point set p, a chain is a subset ( C_ p of points in which, for any two points,
one is dominated by the other. A two-chain is a subset of p that can be partitioned into two chains. A
two-chain with maximum cardinality among all possible two-chains is called a maximum two-chain.
This paper presents a O(n log n) time and O(n) space algorithm for finding a maximum two-chain in
a point set p, where n IPl. Maximum two-chain has applications in, for example, graph-theoretic
problems, VLSI layout, and sequence manipulation.

Key words, point dominance, dominance hull, max two-chain, optimal algorithm, lower bound
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1. Introduction. Consider a point set p {P1, P2,"’, Pn} on the x-y plane,
where Pi (xi, yi) with xi > 0 and yi > 0; by convention, xi > xj for i > j and all
the y’s are distinct. Following [PSI, we say Pi dominates Pj if xi > xj and yi > yj.
Points Pi and Pj are crossing if xi > xj and yj > yi, or vice versa; otherwise, they
are noncrossing. A subset of p is called a chain if its points are pairwise noncrossing.
A subset is called a two-chain if it contains no three points that are pairwise crossing.
A maximum chain is a chain with the maximum number of points among all chains.
A maximum two-chain is a two-chain with the maximum number of points among all
two-chains. The algorithm for finding a maximum two-chain can be used to solve the
following problems.

Graph-theoretic problem. Given a permutation graph model, find a maximum
bipartite subgraph. The problem of finding a maximum bipartite subgraph in an
overlap graph (i.e., circle graph) is generally NP-hard [SL1]. However, for problems
with a fixed "partition number," a polynomial-time algorithm is proposed in [SL2].

VLSI layout. This is the two-layer topological via minimization problem in a
restricted two-sided routing region (called the two-sided-channel TVM problem) [SL1],
[SL2].

Sequence manipulation. Given a sequence of numbers, find a maximum two-
increasing subsequence.

The maximum one-chain problem can be solved by an algorithm proposed in [AK]
in O(n log n) time. For the maximum two-chain problem, it is easy to find an example
for which the "greedy method" (e.g., applying the algorithm for the maximum one-
chain problem twice, where the chain obtained in the first application is removed
from the original set before the second application of the algorithm) will not produce
a maximum two-chain [SL1]. Previously, an O(n2 log n) time algorithm to solve the
maximum two-chain problem was proposed [SL1]. Recently, an O(kn2) time algorithm
to find a maximum-weighted k-chain was proposed [SLo]. In this paper, we present
a O(n log n) time algorithm for finding a maximum two-chain of a point set p, where
n IPl (an fl(n log n) lower bound is also established).
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FIG. 1. To assign each point a level.

This paper is organized as follows. In 2 the basic idea of the algorithm is outlined.
In 3 details of the algorithm are given, and its time complexity is analyzed.

2. Basic idea of the algorithm. In this section, we first define some termi-
nologies that simplify the description of the algorithm.

Consider a chain C {PI, P2,’", P,cl }, where, by convention, x < xj for
< j. Point Pi is called the ith point of the chain. The first point and the last point

are also called the bottom and the top of the chain, respectively. Given a set of points
p, the points that are not dominated by any other points are called the maxima of
p. We can find the maxima of p all maxima are at the same "level," known as the
dominance hull [PSI of p. Then ignore the points at this level and recursively find
other points at the same level for the remaining points. This process is repeated until
all points in p have been assigned a level (Fig. 1). We call the levels, from bottom to
top, levels 1, 2,..., s, where level s contains points on the dominance hull of p. We
denote the set of points at levels by Pi. We also assign each point Pa a value L(a),
called the L-value of point Pa, to indicate that P is at level L(a). The set of points

Vin Ui=p, where u _< v, is denoted by P,v. By convention, p,v=, for u > v.
The levels have a property stated in Lemma 2.1.
LEMMA 2.1. Each point at level u, where 1 <_ u < s, is dominated by at least one

point at level u + 1.

Proof. Assume that point P is at level u. If P is not dominated by any point
at level u + 1, then point Pa is a maximum of P1,+1. According to the definition of
a level, Pa should be at level u + 1. This is a contradiction.

The point with the smallest (or largest) x-coordinate at a level is called the left-
(or right-) point of the level. The point at level u + 1 with the smallest (or largest)
x-coordinate among all points dominating P at level u is called the left-dominating
(or right-dominating) point of Pa. Let the left-point of level 1 be the first point
of a chain, and let the left-dominating point of the ith point of the chain be the
(i + 1)th point, for 1 _< < s. Symmetrically, let the right-point of level 1 be the
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first point of another chain and the right-dominating point of the ith point of the
chain be the (i + 1)th point, for 1 _< < s. A chain with one point at each level
is called a solid chain. Obviously, each of the above two chains is a solid chain. If
these two chains have no common point(s), then they form a maximum two-chain
containing 2s points. If these two chains have some common point(s), then the union
of these two chains may not be a maximum two-chain. For example, consider points
P1 (1, 3), P2 (2, 1), P3 (3, 4), P4 (4, 5), and P5 (5,2). The just-described
technique selects {P1,P2, P3, P4} as a solution. However, the entire point set is
two-chain. (One "wrong" point, in this case, P3, can guide us to select a suboptimal
two-chain.) Thus we need a more involved algorithm, described below, to find
maximum two-chain. However, the above two chains will be used as a "skeleton" of
the final maximum two-chain.

We assume that there is a fictitious level 0 containing one fictitious point P0
(0, 0). Clearly, P0 is dominated by all points in p. Then we process the points from
left to right, starting from level 0, level by level. For each level u, we perform the
following four phases"

(1) local chain assignment phase,
(2) N-value assignment phase,
(3) candidate chain assignment phase, and
(4) adjustment phase.

At the end, we construct chains T(O),B(1),Bn(1), :Y(1),... ,B(k),Bn(k), and
:Y(k), where k _< s, each of which is a subset of p: we refer to these chains as local
chains. Chains B(i), BT(i), and :Y(i) are called left branch, right branch, and tie of
the ith local chains, respectively. (Changes in the index indicate that a new branch
pair has been reached.) A point in a local chain is called a marked point; otherwise,
a point is unmarked. Initially, all local chains are empty. At local chain assignment
phase of level 0, we assign P0 to :Y(0). At local chain assignment phase of level u,
where u > 0, we assign points at level u to local chains depending on the assignment
of points to local chains at level u- 1 (see Fig. 2). There are two cases, as follows"

(LC1) Point Pa at level u- 1 has been assigned to local chain :Y(i)" If the left-
dominating point and the right-dominating point of Pa are distinct, we assign
them to B(i + 1) and Bn(i + 1), respectively. Otherwise, we assign the point
dominating Pa to :Y(i).

(LC2) Points Pa and Pb at level u- 1 have been assigned to local chains B(i)
and Bn(i), respectively: If the left-dominating point of Pa and the right-
dominating point of Pb are distinct, then we assign them to B(i) and
respectively; otherwise, we assign the point dominating both P and Pb to

At N-value assignment phase of level u, we assign a value N(a) to each point Pa
at level u, called N-value of Pc. Intuitively, N(a) is the size of a maximum two-chain
in PI,L(a) containing Pa (obviously, fictitious point P0 does not contribute to any two-
chains). Such a maximum two-chain is denoted by P-max-2-chain. We assign N(a)
to Pa according to the following rules (see Fig. 3)"

(R1) N(0) 0 for g0;
(R2) If point Pa is in a tie, then N(a) equals N(b)+ 1, where Pb is any marked

point at level L(a) 1;
(a3) If point Pa is in a branch, then g(a) equals N(b)+ 2, where Pb is any marked

point at level L(a) 1;
(R4) If point Pa is unmarked, then N(a) equals the maximal value of IN(b)+
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r(0)

FIG. 2. Local chains. .: unmarked point; o: marked point assigned to a tie at local chain
assignment phase; [] marked point assigned to a branch at local chain assignment phase; []: marked
point assigned to a branch at adjustment phase; []: marked point assigned to a tie at local chain
assignment phase and then removed to a branch at adjustment phase; tv local chains.

L(a) L(b) / 1] over all points Pb dominated by Pa. One of the points,
chosen arbitrarily, whose N- and L-values make IN(b) / L(a)- L(b) / 1]
maximum, is called the preceding point of Pa.

Note that marked points at the same level have the same N-value.
At candidate chain assignment phase of level u, for each point Pa at level u,

we construct a chain C(a) with top P, called candidate chain of P, in the following
manner (see Fig. 3). If Pa is marked, then C(a)=(P}. Otherwise, C(a) C(b)LJ(Pa),
where Pb is the preceding point of Pa. Note that the bottom of a candidate chain
must necessarily be a marked point.

At adjustment phase of level u, we examine all points at that level to adjust local
chains and N-values of marked points. If there exists a point Pf at level u belonging
to a tie T(i), and.there also exists some unmarked point at level u, say Pg, whose
N-value is the largest among all unmarked points at level u and is no less than N(f),
then we delete Pf from :T(i) and set N(f) equal to N(g) (e.g., PZ and Pg in Fig. 3).
If Xg > x, then we assign Pg to Bz(i d- 1) and Pf to/z:(i / 1) (e.g., P and Pg in
Fig. 2). Otherwise, we assign Pg to B(i d- 1) and Pf to Bn(i / 1). Note that Pg is
now a marked point but may have a candidate chain containing more than one point.

Local chains and candidate chains have properties stated in the following lem-
mas. Lemma 2.2 follows directly from local chain assignment rules (LC1), (LC2) and
adjustment phase procedure.

LEMMA 2.2. At each level, there are exactly two points in branches, one in a left
branch and the other in a right branch, or one point in a tie.

LEMMA 2.3. There exists a solid chain from each marked point at level u to a
marked point at level v, u < v.

Proof. According to Lemma 2.1, at local chain assignment phase and adjustment
phase we can find for any point Pa in 13(i), Bn(i), or r(i) at level u, at least one
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FIG. 3. N-value of each point and candidate chains of some points in Fig. 1: (7(a) {Pc},
C(b) {Pb}, C(c)= {Pb, Pc}, C(d)= {Pd}, C(e)= {Pb, Pc, Pe}, C(g)= {Pd, Pg}.

marked point at level u + 1 dominating Pa. Thus, inductively, we can find a solid
chain, in which every point is marked (i.e., belonging to a branch or a tie), from Pa
to a marked point at level v, where u < v. Note that, if there exist two marked points
at level v, the solid chain may reach only one of them. In particular, there exists a
solid chain from any marked point Pa at level u < s to a marked point at level s. The
claim follows. D

LEMMA 2.4. Each marked point has the largest N-value among all points at the
same level.

Proof. Let us consider the following cases first.

(1) If Pp is the first point of a branch obtained at local chain assignment phase
(from local chain assignment rule (LC1)), and Pq is the marked point (in a tie) at
level L(p) 1, then N(p) N(q) + 2 N(q) + L(p) L(q) + 1.

(2) If two points Pp and Pq are in the same branch and L(p) > L(q) (and hence
Pp is assigned to the branch at local chain assignment phase), then, from N-value
assignment rule (repeated applications of rule (R3)), N(p) N(q)+ 2(L(p) L(q)) >_
N(q) + L(p) L(q) + 1.

In other words, if Pp is a point assigned to a branch at local chain assignment
phase, if Pq is a marked point, and if n(p) > n(q), then Y(p) > N(q)+n(p)- n(q)+ 1.

We now prove the lemma by induction on the level number. It is clear that the
lemma is true for level 0. For level u, we assume that the lemma is true for any
level v, where v < u. Let Pa and Pb be a marked and an unmarked point at level u,
respectively. We distinguish two cases.

Case 1. Pa is assigned to a branch at local chain assignment phase (see Fig. 4): Let
PI be the preceding point of point Pb, and Pg be a marked point at level n(f) (if Pf
is marked, then let Pg be Pf). Pg may or may not be dominated by Pc. By inductive
hypothesis, N(g)>_N(f). From the N-value assignment rule (a4), g(b)-N(f)+
L(a) L(g) + 1 and, from the previous discussion, N(a)>_g(g) + L(a) L(g) + 1.
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FIG. 4. Proof of Lemma 2.4.

Therefore N(a)>_N(b).
Case 2. Pa is a point in a tie or is assigned to a branch at adjustment phase:

Because of the comparison of N-values at adjustment phase, it is clear that the lemma
is true in this case.

Hence the lemma is established. D
In the following, we show how to construct a two-chain M(a) associated with a

point Pa (M’(a)=M(a) {P0} being a Pa-max-2-chain; see Lemma 2.5 below).
(M1) For P0, M(0) {P0}.
(M2) To construct M(a) of Pc, where L(a) > 0, we assume that M(g) of each

point Pg at level L(g), where L(g) < L(a), has been constructed. We have
the following cases.

(M2.1) Pa is an unmarked point (see Fig. 5(a)): Let the marked point(s) at level
L(a) be Pb (and Pb,), Pd the preceding point of P at level L(d) < L(a),
and Pe a marked point at level L(e) L(d). According to Lemma 2.3,
there exists a solid chain from Pe to Pb (or from Pc to Pb,). We assign
to M(a) the set M(d) t2 P U C, where C denotes a solid chain from P
to Pb (or Pb’).

(M2.2) Pa is a marked point in a tie or a branch in the following cases:

(1) If P e 13(i) and Pb E BL(i) are the marked points at level
u L(a) L(b), and one of them, say P, has a preceding point
Pd at level L(d) < u (see Fig. 5(5)), then we assign to M(a) the set
M(d) t3 Pc} 3 C, where C denotes a solid chain from a marked point P
at level L(e) L(d) to point Pb.

(2) If Pa Bn(i) and Pb BL(i) are the marked points at level u
L(a) L(b), and both of them have no preceding point (see Fig. 5(c)),
we assign to M(a) the set M(d) tA {Pc, Pb}, where Pd denotes a marked
point at level L(d) L(a)- 1.

(3) If Pa is in a tie, let Pd be a marked point at level L(d) L(a)- 1
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FI(. 5(a). JA(a) of an unmarked point Pc.

FIG. 5(b). jA(a) of a point Pa in a branch.

(see Fig. 5(d)). We assign to A/I(a) the set
LEMMA 2.5. For each point Pc, jA’(a) is a Pa-max-2-chain containing N(a)

points.

Proof. Because P0 is a fictitious point, clearly P0-max-2-chain is an empty set.

To establish the result for Pc, a > 0, we assume that the lemma is true for all
points Pg with L(g) < L(a).

Case 1. P is unmarked: We first show that A/[(a) is a two-chain containing
N(a) points. It is obvious that A/l’(a) is a two-chain (since it was obtained by adding
a chain to the top point of each chain of a two-chain). The total number M of points
contained in A/I(a) is the sum of N(d)+ 1, 1, and L(a)- L(d), which correspond
to the sizes of sets A/i(d), (Pc}, and solid chain from Pe to Pb (or Pb’), respectively
(cf. (M2.1)). Since Pd is the preceding point of P, N(a) N(d)+ L(a)- L(d)+ 1.
Therefore we have that M N(a) / 1.

Second, we show that no two-chain containing point P in Pl,L(a) has size larger
than N(a). Consider any two-chain in Pl,L(a) containing point Pa with size N’(a)
(see Fig. 6(a)). Assume that this two-chain is constructed from chain Jt and chain B,
where the top of chain ,4 is point Pc. Let the top of chain .4- (Pc) be Pf. From
inductive hypothesis, N(f) is no less than the total size of the portions of chains
and B in 91,L(f). Because ,4 N PL(f)+I,L(a) (Pc) and the size of B PL(f)+I,L(a) is
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FIG. 5(c). J/I(a) of a point Pa in a branch.

FIG. 5(d). J/I(a) of a point Pa in a tie.

no larger than the size of a solid chain in DL($)+I,L(a), we have that

I(,A [,J ) N

N’(a) -I(A U B) PL(I)+I,L(a)[
>_ N’(a) IA F PL()+I,L(a) (- OL(f)+I,L(a)
N’(a)- [B a PL(f)+I,L(a)I- 1

>_ N’(a) -(n(a) L(f)) 1.

Hence N(f) >_ N’(a) (L(a) L(f)) 1 and N(f) + L(a) L(f) + 1 >_ N’(a).
Because Pa is an unmarked point, if Pf is the preceding point of Pc, it holds that

otherwise,

N(a) N(f) + L(a) L(f) + 1 _> N’(a);

N(a) >_ N(f) + L(a) L(f) + 1 >_ N’(a).

Thus N(a) >_ N’(a).
Case 2. Pa is marked: It is easy to show that A/I(a) is a two-chain and contains

N(a) points. We show below that no two-chain containing point P, in Pl,L(a) has size
larger than N(a). Consider any two-chain in Pl,L(a) containing Pa with size N’(a)
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level branches and ties

FIG. 6. Proof of Lemma 2.5.

(see Fig. 6(b)). Assume that this two-chain is constructed from chain ,4 and chain B,
where the top of chain jt is point Pc. Let the top of chain B be point Pk and let the
top of chain B- {Pk} be Pf. As in Case 1,

N(f) + L(a) L(f) + 1 >_ N’(a).

We have the following two cases.
Case 2.1. Pk is an unmarked point If Pf is the preceding point of Pk, then

N(k) N(f) + L(a) L(f) + 1 >_ N’(a);

otherwise,

N(k) >_ N(f) + L(a) L(f) + 1 >_ N’(a).

Thus N(a) >_ N(k) >_ N’(a), where the first inequality follows from Lemma 2.4.
Case 2.2. Pk is a marked point (see Fig. 6(5))" We temporarily introduce a

fictitious unmarked point Pk’ (xk,, Yk’) at level L(a) with x, xk --e and y,
Yk +e (or Xk, Xk +e and Yk’ Yk--e), where e is a real number small enough to make
Pk’ dominate PI. Note that the fictitious point has no effect on N-values of the points
having been processed. Then N(a) N(k) >_ N(k’) >_ N(f)+L(a)-L(f)+l >_ N’(a).

Hence the size of Pa-max-2-chain is N(a). D
Finally, we can obtain a maximum two-chain in pl,8. The following theorem is

readily established from Lemmas 2.4 and 2.5.
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FIG. 7. An example. _: levels; --: a maximum two-chain; (): P0; ": unmarked point; [:]:

marked point assigned to a branch at local chain assignment phase; o: marked point assigned to
a tie at local chain assignment phase; []: marked point assigned to a branch at adjustment phase;
VO: marked point assigned to a tie at local chain assignment phase and then remove to a branch at
adjustment phase.

THEOREM 2.1. If Pa is a marked point at level s, then Pa-max-2-chain is a
maximum two-chain in p.

AA(a) {P0} in Fig. 5(d) is a maximum two-chain of the point set in Fig. 1.
Another example is shown in Fig. 7.

3. Details of implementation. In this section, we discuss detailed implemen-
tation of the algorithm in a bottom-up manner. We first discuss implementations of
several algorithms and then construct the algorithm of finding a maximum two-chain
from these algorithms.

3.1. Algorithm LEVEL. First, we introduce algorithm LEVEL to assign each
point in p to a level. Recall that points in p are assumed to be sorted in ascending order
of x-coordinates such that x < x2 < < Xn. We use a plane sweep technique [PSI
to scan the points from right to left and perform the following operations. Suppose
that we have processed points P,, Pn-1,’", Pi+l and obtained lists of points that
belong to the same levels. For each list, we keep the y-coordinate of the last scanned
point. These y-values are maintained as a height-balanced tree T. In processing Pi,
we use T to first identify the list L:(k) whose associated y-value is immediately below
Yi. We then insert Pi to list :(k) and replace the associated y-value by yi. If yi is
smaller than all y-values in T, the (1 + 1)th list is created, and its associated y-value
is set to be yi. At the end of the process, the number s of the lists created is the total
number of levels. We then reindex the lists so that the innermost level (created last)
has index 1 and the outermost one has index s. A formal description of algorithm
LEVEL is as follows.



AN OPTIMAL ALGORITHM FOR THE MAX TWO-CHAIN PROBLEM 295

Procedure LEVEL(p)
begin

(, Assume that points are sorted so that xi < xi+l, 0, 1,..., n- 1,
and x0 0 ,)
(, T :- the height-balanced tree containing y-coordinates of some
scanned points in p ,)
(, :(j) :- a list of the points that belong to the same level and
maintained as a stack ,)
(, find(y, T) returns the list :(k) whose top element contains a point
Pj such that yj is the largest in T among all y-values smaller than
y *)
(, push(P,(k)) inserts point P on the top of the list/:(k) ,)
(, replace(yi,(k),T) replaces the y-value associated with/:(k) in
tree T by y ,)
(, insert(y,/:(k), T) inserts y, which is associated with (k) to tree
T,)
/:= 1; :(1):= {Pn}; /2(0):= {P0}; T {P0, Pn}; (* initialization ,)
for i--n- 1 downto 1 do

begin
(k) := find(y, T);
if (k O)
then begin

:- / 1;k :- l;
push(Pi, (k));
insert(y, (k), T);

end
else begin

push(P, (k));
T);

end
fori= ltoldo

pi := :(1 + 1- i);
end.

3.2. Algorithm LOCAL-CHAIN. We now describe the local chain assign-
ment phase. Let level i, >_ 1, be the first level with IPil > 1. All the points at level
j < are assigned to T(0). Let the left-point in pi be assigned to B(1) and the
right-point in pi be assigned to Bn(1). Assume now that all points at level 1 through
k- 1 have been processed. We begin to process the points at level k by invoking the
following procedure.

Procedure LOCAL-CHAIN(k)
begin

(, Assume that k > 1 and let P.,, P,+I,’", Pz be the points in

Pk *)
(, Suppose that the marked points at level k- 1 are Pa and Pb *)
(, If chain-type(k- 1)= branch, i.e., Pa Pb, Pa is assigned to B(j)
and Pb is assigned to Bn(j) *)
(, If chain-type(k- 1)= tie, i.e., Pa Pb, Pa is assigned to T(j) ,)
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i :-- m;
while i <_ and P does not dominate Pa do + 1;
(* There is at least one point dominating Pa *)
u :- i; (. Record the index of the left-dominating point of Pa *)
i :- i+1;
second :- false;
while (not second) and _< do

ifP dominates Pb
then second :- true;
else :- i+1;

if (not second)
then begin

Assign P to T(j);
chain-type(k) := tie;

end
else begin

while i _< and P dominates Pb do i :- i / 1;
if chain-type(k 1)= tie then j j + 1;
Assign P to B(j) and assign P-I to BTc(j);
chain-type(k) := branch;

end
end.

3.3. Algorithm N-ASSIGNMENT. Algorithm N-ASSIGNMENT(k) assigns
a value N(a) to each point Pa at a specified level k. If P is a marked point, it is
trivial to assign N(a) according to assignment rules (R1)-(R3). If P is unmarked,
then, according to (R4), it is necessary to find a point Pb dominated by P and with
maximum IN(b)- L(b)+ 1]. Rule (a4) can be performed in an obvious way: for
each point Pa we exhaustively examine all points dominated by Pa and find a point
Pb with maximum IN(b) L(b)/ 1]. This would take O(n) time, however, resulting
in an O(n2) time algorithm. We show below that with a careful manipulation of the
value W(D) N(b) L(D), referred to as the weight of point Pb, we can find for each
point P the desired point in O(log n) time. Toward this end, we introduce the notion
of staircases associated with the points in p.

3.3.1. Staircases. To simplify the discussion, we assume that IPkl rk, k
.., s, and the points in p are reindexed as

p {P, P,..., P}, p {P+,..., p+.},..-,
Ps {Prl+...+r_+l,’-" ,Pr+...+r,}

so that xl < x2 < < xr, xr+ < Xrl+2 < < Xr+r2, and so forth. Consider the
points in p. Let P,d (xi, 0) be the downward vertical intersection (d-intersection
for short) of Pi, 1, 2,..., r. Let P, (0, y) and Pi, (xi-1, yi) be the left-
ward horizontal intersection (/-intersection for short) of the left-point P1 and other
points P in p, respectively, on the y-axis and the vertical line segment Pi-1, Pi-I,d,

2,3,...,rl (see Fig. 8(a)). The rectilinear path (PI,PP2,P2"’" Pi,IPPi,d), ab-
breviated as (PI,"" Pi,d), is referred to as the staircase S(Pi), 1,2,...,rl. For
convenience, we augment the staircase by two points PH (0, oe) and PT (oe, O)
and denote the staircase as (PHPl,lP1..- PiPT,IPT), where PT, := Pi,d. Further-
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FIG. 8. (a) Staircase ql (where rl 3); (b) staircase ,(P4) (where r 3).

more, we adopt the convention that each point Pj in p k {PH, PT} on a staircase has
both d- and/-intersections on the staircase except PH (which has only d-intersection
PH,d Pl,/) and PT (which has only/-intersection PT,I := Pi,d). That is, we shift
each Pj,d up to the staircase and let new Pj,d Pj+I,t, where j 1, 2,..., i- 1. Stair-
case $(Prl) is called the staircase of level 1, denoted 1, and is shown in Fig. 8(a).

Consider now the points in P2, i.e., Prl+I,P+2,"" ,Pr+2- Imagine dropping
downward a vertical line V/ from each point Pi, rl < <_ rl + r2. The point in 81
that is hit by V is the d-intersection, denoted by P,d, of P on 81 (see Fig. 8(b)).
For Pi E P2, the/-intersection on ql, Pi,t is defined in the same way as for the points
in Pl. Let Pa be the left-point in P2. The l- and d-intersections, Pa,l and Pc,d, re-
spectively, partition 1 into three substaircases: (Pc), $’ (Pc), and $’n(P), where
g(P) (PHP,I) is the leading portion of 1, ’J[(Pa) (Pa,l Pc,d) is the middle
portion of 81, and ’n(Pc) (Pa,d"" PT,tPT) is the trailing portion of 81. Let Pk,t
and Pk be two consecutive points in 81 such that xk,t < Xa < Xk. The upward vertical
projection (u-projection for short) of all the points, excluding the endpoints Pa,t and
Pa,d in 9v(Pc) on the horizontal line segment Pc,t, Pc, gives rise to the u-projections
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PI,, P2,,,’", Pk-l,. Similarly, the rightward horizontal projection (r-projection for
short) of all the points, excluding the two endpoints in $-(Pa) on the vertical line
segment Pc, P,d, yields r-projections Pl,r, P2,r,"’, Pk-l,r. The staircase S(Pa) as-
sociated with Pa is obtained from 1 as the concatenation of ’(Pa), ’(Pc), and
-n(P), where Jz(Pa) is the "substaircase" (P,IPI,"" Pk-I,PPI,"" Pk-l,rPa,d)
derived from projecting ’(Pc) onto Pc,l, Pa and Pc, P,d. Thus ,-q(Pa) contains not
only point Pa and its l- and d-intersections Pa,t and Pc,d, but also the leading and
trailing portions of 81 and projections of the points in the middle portion of 81.

Let P be the left-point in pj, j > 1. In general, the staircase $(Pi) of any point
Pi pj, is a rectilinear path of the form (PH P,z bl Pa Ta Pa+l,l /a+l Pa/l ,a+l

Pi,t lli Pi TQ P,d zn(Pi)), where the//’s, 7’s, and $’n(Pi) are, respectively, u-
projections, r-projections, and the trailing portion of the previous staircase S(Pi-1).
Note that 2"c (Pi) (PH Pa,t Ha Pa Ta Pc+l,1 a+l Pa+l a+l Pi,1) and 9r (Pi)
(Pi,t lli Pi Ti Pi,d). Now let us consider how to obtain S(Pi+l) from

We first find the/-intersection Pi+l,g on VL= Pi, Pi,d and the d-intersection
on S(Pi). Let R’ and R" be two consecutive points on VL containing Pi+l,l, and let Q’
and Q" be two consecutive points on S(Pi) containing Pi+l,d. Thus $’(Pi+l) is the
substaircase (R"... Q’) of S(Pi), and the new 2-(Pi+l)is obtained by projecting all
points (including projections) in 9v(Pi+l) vertically upward and horizontally right-
ward onto Pi+l,t, Pi+l, Pi+l, P+l,d, respectively. Note that points on the same vertical
line segment have the same u-projection and that points on the same horizontal line
segment have the same r-projection. The staircase S(Pi+I) is the concatenation of the
leading portion (PH"" R’) of S(Pi), $’(Pi+l), and the trailing portion (Q"... PT)
of S(Pi). According to the convention adopted, we shift certain points each time a
new staircase is obtained. Specifically, let Pg p {PH, PT} be the rightmost point
on S(Pi), whose y-coordinate is greater than yi+l, and let Pg p {PH, PT} be the
leftmost point on S(Pi), whose x-coordinate is greater than xi+l. We let Pi+l,t and
Pi+l,d be the new PLd and Pg,t respectively; that is, we shift Pf,d and Pg,z from their
original positions to Pi+l,t and Pi+l,d, respectively. For example, in Fig. 8(b), when
S(P4) is obtained, P2,t is shifted to P4,d, and PH,d is shifted to Pa,l.

3.3.2. Implementation of algorithm N-ASSIGNMENT. Clearly, for every
point at level 1, its N-value equals 1 if IPl] 1, or 2 if IPll > 1. Recall that the
staircase $(Pi) of any point Pi E p, j > 1, is a rectilinear path of the form (PH Pc,1
bla P T Pa+l,t bl+l Pa+l 7a+1 Pi,t bli Pi TQ blq Pq Tq PT, PT), where Pa
is the left-point in p and Pq is the right-point in pj-1. We now describe how the
N-value of each point Pi is computed, and hence the weight W(i) N(i) L(i).

We maintain a 2-3 tree for all the points PH, Pi,t, Pi in p, PT,t, and PT of S(Pi)
such that each leaf corresponds to a point. The leaf v corresponding to Pi in p is the
root of a binary tree, so that the left and right subtrees, denoted by L/(Pi) and 7E(Pi),
are height-balanced and contain u-projections Hi and r-projections 7Ei, respectively.
The leaf corresponding to Pi,l, where Pi E P, stores the maximum weight of the
points dominated by Pi,l. The leaves corresponding to PH, PT,l, and PT store weight
0. Each leaf w in the height-balanced subtrees corresponds to an r- or u-projection
of a point P or its projection and stores the weight of the point P. The height-
balanced subtrees are maintained so that at each internal node w a weight W(w),
which is equal to the maximum weight among those stored at the leaves rooted at w,
is stored. This is referred to as the max heap property. The points in these trees are
all maintained according to the order in which they are traversed along the staircase.
Initially, the two height-balanced subtrees b/(Pi) and 7(Pi) at node vi corresponding
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to point P in Pl are empty, reflecting the fact that the L/’s and T’s are empty. All
leaves in the 2-3 tree, except the leaves corresponding to points P E pl, which contain
the weight N(i) 1, are assigned weight equal to 0.

We now describe how to maintain the 2-3 tree and the height-balanced trees as
we process the points in a level-by-level, left-to-right order. Consider the staircase
S(P), as described above, and let the next point to be processed be P+I. We first
perform a search in the 2-3 tree to find the two points Pa and Pb in p t2 {PH, PT} that
satisfy the following..conditions:

(i) Pa is the rightmost point whose y-coordinate is greater than y+l;

(ii) Pb is the leftmost point whose x-coordinate is greater than X+l.
Points in T.(Pa) and (Pb), Pq,l’s, Pq’s, and all points in L(Pq) and T.(Pq), where
Pq PL(i+I)-I, that are dominated by P+I are in 9v(P+l). We find the point Pc
in ’(P+I) with the maximum weight W(c) and assign to P+I the appropriate N-
value. More specifically, we perform the following steps on the trees while maintaining
the max heap property of the height-balanced subtrees:

1. The leaves of the 2-3 tree that lie between Pa and Pb are deleted and replaced
by three leaves corresponding to P+l,l, P+, and P+,d;

2. We split the tree T(Pa) into two subtrees Tt(Pa) and nr(Pa) such that the
(projection) points in TQ(Pa) have y-coordinates greater than y+ and those
in T,.(Pa) have y-coordinates less than y+l. We replace T(Pa) with at(Pc);

3. We split the tree/(Pb) into two subtrees/t (Pb) and L/(Pb) such that the
(projection) points in Ltl(Pb) have x-coordinates less than x+ and those in
bl,.(Pb) have x-coordinates greater than x+. We replace bl(Pb) with/g(Pb);

4. We find that the weight of the node corresponding to P+l,t (respectively,
P+,d) is the maximum of those in 7r(Pa) and that in Pa,d (respectively,
L(Pb) and Pb,);

5. We find that the left subtree b/(P+) is the concatenation of the trees blt(Pb)
and all b/(Pc) U {P}, where P’s are as defined above;

6. We find that the right subtree (P+I) is the concatenation of the trees
nr(P) and all n(P)t2 {Pq}, where Pq’s are as defined above;

7. If P+I is marked, we assign N-value to P+I according to assignment rules
(a2) and (a3). Otherwise, we find the point Pc in {Pi+,l} t2 /(P+) t2

T(P+I) t2 {P+I,d} with the maximum weight W(c) and assign W(c)+ L(i +
1) + 1 to N(i + 1). The weight W(i + 1) is g(i + 1)- n(i + 1).

The algorithm for N-value assignment is summarized below. Initially, we build
a 2-3 tree, denoted by T2-3, for points in 81, as discussed above. These leaves of
T2-3 are doubly-linked from left to right by the pointers PRED and SUCC. The two
height-balanced subtrees rooted at leaf v corresponding to Pj are initially empty, i.e.,
bl(Pj) T(P) :- nil, for P e p. The leaf node v corresponding to P is denoted by
v(Py). It holds that N(v(Pj)) (or N(j) to be consistent) := min(2, IPI), W(v(Pj)) (or
W(j) to be consistent) := N(v(Py))- 1, MAXID(v(Py)):-- Py for all leaves v(Py)
such that Pj e p and W(v(P)) := 0, MAXID(v(P)) := nil for all leaves v(P)
such that P S and Pq p. Assume now that we are processing points at level
k, k > 1 by invoking the following procedure.
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Procedure N-ASSIGNMENT(k)
begin

(, FIND(T2_3, P) returns points (P,Pb) so that Pc, Pb are in p t2

{PH, PT} and T2-3, P is the rightmost point whose y-coordinate is
greater than y, and Pb is the leftmost point whose x-coordinate is
greater than x. If P is the left-point of level L(i), then Pa PH. If
P is the right-point of level L(i), then Pb PT. *)
(, SPLIW(n(v), y) splits tree T4(v) by value y into two subtrees 7(v)
and Tr(v) that contain values strictly less and greater than y, respec-
tively, and returns two pointers (1, r) to these two subtrees, respec-
tively.
(, SPLICE(T (u), n2(v)) concatenates two trees n and n2 to form
a new tree T, and returns pointer to tree T. ,)
(, We assume that in operations SPLIT and SPLICE the max heap
property of each node w is still maintained. ,)
(, jVI,4X(u,v,...,w) returns (re, M), where m is the maximum
of the values W(u), W(v),..., and W(w), and M is MAXID(u),
MAXID(v),..., or MAXID(w), depending on which W value is
the maximum. ,)
(, Let Rk r +..- + r_ + r ,)

(1) fori=Rk_l+ltoRkdo
begin

(2) (Pc, Pb) :-- FIND(T2-3, P);
(3) if (Pa) is not nil

then begin
(/, r) := SPLIT(n(Pa), y);
n(Pa) :--l;
(maxwl, maxidl) :- ]/[.AX(r, v(P,d));

end
else begin

r nil;
maxwl := W(v(Pa,d));
maxidl := MAXID(v(Pa,d));

end
(4) if bl(Pb) is not nil

then begin
(/’, r’) := SPLIT(b/(P), xi);
bl(Pb) := r’;
(maxw2, maxid2) := M4X(l’, v(Pb,));

end
else begin

:- nil;
maxw2 :- W(v(Pb,));
maxid2 :- MAXID(v(Pb,));

end
(5) u :- v(Pa); n(Pi) :- r;

while SUCC(SUCC(u)) v(Pb) do
begin

w :- v(Pq):- SUCC(SUCC(u));
n(P) :=SPLCE(n(P), (w}
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u :-- w;
end

(6) u := v(Pb); bl(P) := l’;
while PRED(PRED(u)) v(Pa) do

begin
w := v(Pa):= PRED(PRED(u));
L/(P) :=SPLICE(/g(Pg) U {w},/(Pi));
u :-- w;

end
(7) (maxw,maxid) := ]/[4X(T(Pi),bl(Pi), v(Pa,d), V(Pb,l));
(8) v(P,l) := new-node( ); v(Pa,d):-- v(P,l);

(* Create a new leaf in T2-3 for P, Pa,d (Xa, y) pointed to
by v(P,l) and v(Pa,d). *)
W(v(P,g)) := maxwl; MAXID(v(P,t)) :- maxidl;
PRED(v(P,t)) := v(Pa); SUCC(v(Pa)):= v(P,t);

(9) v(P) := new-node( );
(. Create a new leaf in T2-3 for point P pointed to by v(Pi)..)
W(v(Pi)) := maxw; MAXID(v(Pi)) := maxid;
PRED(v(Pi)) := v(Pi,t); SUCC(v(Pi,t)):= v(Pi);

(10) v(Pi,d) := new-node( ); v(Pb,t) := v(Pi,d);
W(v(Pi,d)) := maxw2; MAXID(v(Pi,d)) :-maxid2;
PRED(v(Pi,d)) := v(Pi); SUCC(v(P)):= v(Pi,d);
PRED(v(Pb)) := v(Pi,d); SUCC(v(Pi,d)) := v(Pb);

(11) precede(Pi) := nil;
(. precede(Pi) is the preceding point of Pi; here we first assume Pi
is a marked point..)
if Pi is marked

then call N-ASSIGNMENT-(R2)-(R3);
(. Assign N(i) according to (R2) and (a3)..)

else begin
N(i) := maxw + k + 1;
precede(Pi) := maxid;
end

(12) W(v(P)) := N(v(P)) k;
end (. end of the for loop .)

end. (. end of the Procedure .)

There is an important property of the staircase S(P), referred to as the projection
containment property (Lemma 3.1). Note that the u-projection of a u-projection of
point Pi is considered a u-projection of Pi (i.e., Pi,); the r-projection of point Pi
is similarly defined. The u- (or r-) projection of an r- (or u-) projection of a point
is simply called a projection of the point. For simplicity, the u-projection and the
r-projection of point Pi are also called the projections of the point.

A point Pi dominated by Pj is said to satisfy the projection containment property
if the following are true: (1) If the x-coordinate of Pj, is greater than x, then a
projection of P appears at P,; otherwise, at least a projection P, appears on P,P;
(2) If the y-coordinate of P,d is greater than y, then a projection of Pi appears at
Pj,d; otherwise, at least a projection Pi,r appears on PiPy,d.

LEMMA 3.1. Each point Pi in p satisfies the projection containment property with
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respect to each point Pj dominating Pi in p.
Proof. Assume that the points dominating Pi in p are PI, P.,’", Pz, where

z is the number of points in p dominating Pi and al < (2 < < (z. We prove
the lemma inductively. For inductive basis, consider PI first. Pal must be the left-
dominating point of Pi. Obviously, Pi, and Pi,r are in 9v(P), and the lemma is
true for Pi with respect to Pa.

Now consider point Pa and suppose inductively that the lemma is true for Pi
with respect to each point Pak, where k < h. There are two cases.

Case 1. If P(_) and P are at the same level then, by definition, either Pi has
a projection at Pa(_),d or Pi,r appears at a position on Pa(_)Pa(_),d, dependent
upon if yi being less than or greater than the y-coordinate of Pa(_),d, respectively.
Thus Pi will have a projection at P,t.

Case 2. If Pa(_) and P are not at the same level, then let Pb be the leftmost
point of ,(Pa_ in p dominating Pi. By induction hypothesis, there is a u-projection
of Pi, i.e., Pi,u, that lies on Pb,Pb. The x-coordinate of Pi,u is less than xa, and thus
Pi,u will be projected on Pa,tPa in S(Pah), for there are no points between
and Pah dominating Pi.

Similarly, we can show that either Pi has a projection at P,d or that Pi,r appears
on PP,d in ,(P). Thus the lemma is true.

3.4. Algorithm MAX-TWO-CHAIN. It is straightforward to implement an
algorithm C-CHAIN for the candidate chain assignment phase and an algorithm AD-
JUSTMENT for the adjustment phase. Algorithm READ-MAX-TWO-CHAIN scans
all points at level s to find a marked point Pa and assigns points to ]Pt(a) iteratively,
according to Lemma 2.5. From Theorem 2.1, it follows that A/i (a) is a maximum two-
chain in p. We now summarize the entire algorithm for finding a maximum two-chain,
below.

Procedure MAX-TWO-CHAIN (p)
begin

call LEVEL(p)
call INITIALIZATION(p1)
(. Assign points at level 0 and level 1 to local chains, and assign each
point an N-value. Also, find points in 81 and build T2-3 for them..)
fork- ltosdo

begin
call LOCAL-CHAIN(k)
call N-ASSIGNMENT(k)
call C-CHAIN(k)
call ADJUSTMENT(k)

end
call READ-MAX-TWO-CHAIN(p)

end.

We now analyze the complexity of the algorithm. Algorithm LEVEL and INI-
TIALIZATION are easily seen to take O(n log n) time. Since algorithms LOCAL-
CHAIN, C-CHAIN, ADJUSTMENT, and READ-MAX-TWO-CHAIN can be done
in linear time, we concentrate on the analysis of algorithm N-ASSIGNMENT, which is
the most complicated. We now analyze the complexity of algorithm N-ASSIGNMENT.
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FIG. 9. p and .
Step (1) (in 3.3.2) can be done in O(logn) time per point. Steps (2)-(7) require
SPLIT and SPLICE operations, each taking O(log n) time [AHU]. Let Pi E Pk be the
left-dominating point of some points P’s E Pk-1. The number of times the operation
SPLICE is executed is equal to twice the number of points P. Since a point P can
appear at most once as a leaf in the 2-3 tree when it is inserted and is left-dominated
by only one point at the next higher level, the total amount of time contributed by
each point is at most O(logn). Thus algorithm N-ASSIGNMENT takes O(n log n)
time.

It is obvious that the space requirement is only linear, and we thus have the
following main result.

THEOREM 3.1. Algorithm MAX-TWO-CHAIN finds a maximum two-chain in a
point set p in O(n) space and O(n log n) time, where n- IPl.

In the following, we show that t(n log n) is a time lower bound for the maximum
two-chain problem. In [KR] it is shown that the problem of finding the set of points
on the dominance hull of a given set p of n points requires Ft(n log m) time under the
algebraic decision (computation) tree model (see [AHU], [BO]), where rn is the number
of maximal points in p. We can apply the same argument to the problem of finding a
maximum chain and show that gt(n log m) time is required to find a maximum chain
of m points. In the worst case, since the number of points on the dominance hull can
be n, t(n log n) is a lower bound for the maximum one-chain problem.

We now show that the maximum two-chain problem requires (n log n) time as
well. Given a point set p, we can construct in linear time a chain fi, in which each
point is crossing with all points in p (see Fig. 9). A maximum two-chain of p t2 fi
should include fi and a maximum chain of p. So we can find a maximum chain of p
by applying any maximum two-chain algorithm to p t2 ft. The following theorem is
established.

THEOREM 3.2. In the algebraic computation tree model, any algorithm that finds
a maximum two-chain in a point set p requires (n log n) time, where n- IPl.
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4. Conclusion. We have presented an optimal algorithm that runs in (n log n)
time and (n) space for solving the maximum two-chain problem given a set p of
n points, find a maximum subset C c_ p of points such that C can be divided into
two chains, each of which contains points that dominate each other. Whether the
algorithm can be extended to handle weighted-point set version and to handle k-
chains (i.e., to improve the O(kn2) time algorithm of [SLo]) or restricted versions of
the problem (e.g., when some points are to be assigned entirely to chain i, 1, 2)
that was solved in O(n2 log n) time [SL2] remains to be seen.

[AHU]

[AK]

[BO]

[KR]

[PS]

[SL1]

[SL2]

[SLo]

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

M. J. ATALLAH AND S. R. KOSARAJU, An ejficient algorithm for maxdominance, with ap-
plications, Algorithmica, 4 (1989), pp. 221-236.

M. BEN-OR, Lower bounds for algebraic computation trees, .in Proc. of 15th ACM Sympos.
on Theory of Computing, Boston, MA, 1983, pp. 80-86.

S. KAPOOR AND P. RAMANAN, Lower bounds for maximal and convex layers problems,
Algorithmica, 4 (1989), pp. 447-459.

F. P. PREPARATA AND M. I. SHAMOS, Computational Geometry, Springer-Verlag, New York,
1985.

M. SARRAFZADEH AND D. T. LEE, A new approach to topological via minimization, IEEE
Trans. Computer-Aided Design, 8 (1989), pp. 890-900.
, Topological via minimization revisited, IEEE Trans. Comput., 40 (1991), pp. 1307-

1312.
M. SARRAFZADEH AND R. D. Lou, Maximum k-coverings in transitive graphs, in Proc.

IEEE International Symposium on Circuits and System, May 1990, pp. 332-335; Algo-
rithmica, 1992, to appear.



SIAM J. DISC. MATH.
Vol. 5, No. 3, pp. 305-320, August 1992

(C) 1992 Society for Industrial and Applied Mathematics
001

ON THE POSITION VALUE FOR COMMUNICATION SITUATIONS*
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Abstract. A new solution concept for communication situations is considered: the position value. This
concept is based on an evaluation of the importance of the various communication links between the players.
An axiomatic characterization ofthe position value is provided for the class ofcommunication situations where
the communication graphs contain no cycles. Furthermore, relations with the Myerson value are discussed,
and, for special classes of communication situations, elegant calculation methods for their position values are
described.
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1. Introduction. A communication situation corresponds to a triple (N, v, A), where
N:= { 1, n } is the set of agents (players), (N, v) is a coalitional game having player
set N and characteristic function v 2N -- R with v() 0, and where (N, A) is an
undirected communication graph.

The game (N, v) describes the economic possibilities ofeach coalition subgroup
of players) that decides to cooperate. However, cooperation is restricted because com-
munication is. The possibilities for communication are described by the graph (N, A),
where the arc set A consists of (unordered) pairs of players. If { i, j } e A, then the
interpretation is that players andj can communicate directly. Indirect communication
between and j is possible if there is a path in (N, A) from to j. Because of this
interpretation and since we will implicitly assume that each player is able to communicate
with himself, we may restrict our attention to communication graphs without parallel
arcs and loops. For convenience, we assume throughout this paper that the underlying
game (N, v) is zero-normalized; i.e., v( i} 0 for all N.

Communication situations were first studied in Myerson (1977), who introduced
corresponding graph-restricted games or communication games and who characterized
the Shapley value (Shapley (1953 )) of these games in terms of efficiency and fairness.
An alternative proof ofthis characterization is provided in Aumann and Myerson (1988),
who also address the following question. Given a coalitional game, what communication
links may be expected to form between the players? Here the Shapley value of the cor-
responding communication games is used as a criterion. In the present paper, Myerson’s
communication games will be called point games, and the Shapley value of these games
will be called the Myerson value (cf. Aumann and Myerson 1988 )) for the corresponding
communication situation. Point games and the Myerson value were also investigated in
Owen (1986), who concentrated on situations where the communication graph is a tree.
Other types of graph-restricted games were introduced in Rosenthal (1988a), (1988b)
by putting weights on the communication arcs representing costs ofcommunication and
measures of trust or friendship, respectively. Finally, we note that Myerson (1980) gen-
eralized the idea of direct communication between two players toward direct commu-
nication between the players of certain subgroups ofN (conferences).

The present paper offers an alternative approach to evaluate a communication sit-
uation. While Myerson’s point game focuses on the role ofa node ofthe communication
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graph (a player) in establishing communication within the various possible coalitions,
this paper proposes a dual point of view and concentrates on the role of an arc (com-
munication link). The communicative strength of an arc is measured by means of the
Shapley value of a kind of "dual" game on the arcs of the communication graph: a so-
called arc game. Then, assuming each player has veto power of the use of any arc that
he is an endpoint of, it seems reasonable to divide the worth of an arc equally between
the two players who are at its endpoints. The total amount that a player obtains in this
way is called the position value for the player in the corresponding communication sit-
uation. This value was first introduced in Meessen (1988). Formal definitions are provided
in2.

It may be noted that, in general, the Myerson value and the position value differ.
In 3 it is shown that for the class of those communication situations in which the
communication graph contains no cycles, the position value can be characterized by four
properties: additivity, component efficiency, the superfluous arc property, and the degree
property. Furthermore, for the same class ofcommunication situations, a new axiomatic
characterization of the Myerson value is provided in terms of the first three properties
mentioned above and the so-called communication ability property.

In 4 we derive a relation between the dividends (cf. Harsanyi (1959)) of an arc
game and the dividends ofthe coalitional game underlying the communication situation.
For the position value, this leads to computational results in the manner ofOwen (1986)
for special subclasses of communication situations in which the underlying coalitional
game is a pure overhead game or a quadratic measure game. These results are described
in 5. The paper concludes with some remarks for the case when the communication
graph does contain cycles.

Preliminaries. Let N := { 1, n and 2s := { S[ S c N}. By GS we denote the
class of all coalitional games (N, v) and by G, the subclass of all zero-normalized games.
A game (N, v) often will be identified with its characteristic function v.

Let v Gs. Then the Shapley value ,(v) of v (cf. Shapley 1953 )) is defined by

i(v)= (v(PR,,(i)t_J {i})-v(PR,,(i)))
P(N)

for all N, where P(N) is the set of all permutations ofN and

PR( i) := (jeNI t(j) < a(i) }
denotes the set ofpredecessors of player according to . Furthermore, having the una-
nimity game Us Gg on S defined by

ifTS,
us(T)=

0 else,

for all S 2s\ { }, we find that v Ys2N\} Av(S)us, where the dividends Av(S)
(cf. Harsanyi 1959 )) are given by

Ao(S) (--1)tst-tTtv(T).
T S

For the Shapley value, it readily follows that

t ltS - f eS

0 else
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for all S e 2N\ { } and, consequently,

A(S)
,I,(v)

S=N.s Sl

for all e N. Finally, we define the empty sum to be zero.

2. Myerson value and 0osition value. Let CSudenote the class of all communication
situations (N, v, A) with fixed player set N as described in 1. So, especially, (N, v) is
zero-normalized and (N, A) is an undirected graph without parallel arcs and loops.

Let (N, v, A CSu. It is clear that the communication possibilities within N, given
by the graph (N, A ), determine a partition N/A ofNinto communication components.
So a coalition T is a component within N ifand only if all players in Tcan communicate
and if there is no coalition T with T c T and T 4: T in which all players can communi-
cate. Similarly, we can define components within each given coalition S by only allowing
the communication possibilities given by the subgraph (S, A (S)), where

(1) A(S)’= { {i,j}AIiS,jS}.
Then a partition of S results, which will be denoted by S/A.

The following notation will be used frequently. Let the player set N and the game
v GV be fixed. Then, for each S c N and each L c { { i, j [i N, j e N},
(2) rv(S,L) , v(T)

T S/L

will denote the reward for the coalition S having the communication arcs in L(S) c L
available (cf. )). Note that ,rV(, L) rv(S, ) 0 for all S and L.

Now we can formulate the following definition.
DEFINITION (cf. Myerson (1977)). Let (N, v, A) CSN. Then the point game

(N, r) corresponding to (N, v, A is given by

(3) r](S)’=rv(S,A) forallS2N.
Furthermore, the Myerson value #(N, v, A) RN corresponds to the Shapley value of
(N, r), so

(4) #(N, v,A b(N, rA).

Another type of game corresponding to a communication situation is introduced
in the definition below.

DEFINITION. Let (N, v, A) CSu. Then the arc game (A, ru) corresponding to
(N, v, A is given by

(5) rv(L) rV(N,L) for all L2A.
Furthermore, the position value r(N, v, A) RN is given by

(6) 7ri(N,v,A) A -a(A’rVu) for all i6N,
a

where

(7) Ai := { i,j } cA IjN}
denotes the set of all arcs of which player is an endpoint.

If there can be no misunderstanding, the upper index v will be omitted from the
notation above. The following example illustrates the various concepts introduced above.
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Example 2.1. For the communication situation (N, v, A), let N { 1, 2, 3 }, A
{ { 1, 3 }, { 2, 3 } }, and let v equal the unanimity game U(l,2. This situation is schematically
represented in Fig. 1. Then (N, ra) is given by

ifS= N,
rA(S)=

0 else.

So #(N, v, A (b(N, ra
Furthermore, (A, rN) is given by

lrN(L)=
0

So, with a := {1, 3 } and b { 2, 3 },

and

ifL =A,

else.

(ba(A, rN) (bb(A, rN) 1/2

7rl(N,v,A)=1/2(ba(A,rN)=1/4, 7r2(N,v,A)=1/2(bb(A,rN)=1/4,

7r3 (N, I),A) 1/2(ha(A, rN) + 1/2(bb(A, rN) 1/2.
Note that, for the game in Example 2. l, the position value for each player N is

the same multiple ofthe degree di (N, A := A; ofthe corresponding point in the graph
N, A ), which in some sense is a "natural" measure for the importance ofa point (player)
in the (communication) graph. This relation between the position value and degree will
play an important role in the axiomatic characterization of the position value given in
3.

This section is concluded with an example showing that even ifthere are no restric-
tions on communication at all, i.e., ifA { ( i,j} 2NI 4:j}, the Myerson value (which
then just is the Shapley value of the underlying game (N, v)) may differ from the posi-
tion value.

Example 2.2. Let (N, v, A) be given by

N={1,2,3},v=u(l,2) and A={{1,2},{1,3},{2,3}},
as represented in Fig. 2. Then rA=v and, with a’={1,2}, b {1,3}, and
c:= (2,3),

ifaLor {b,c}cL,
ru(L

0 else.

Hence #(N, v, a) (I)(N, u(,2)) (1/2, 1/2, 0), (a(rN) , Pb(rN) (c(rN) , and
r(N, v, A) (, , ).

3

FIG.
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3

--i a

FIG. 2

3. Axiomatic characterizations. In this section we consider properties of allocation
rules 3’ CSN "- RN and, in particular, of the rules g and r introduced in the previous
section. Myerson (1977) showed the following result.

THEOREM 3.1. The Myerson value # CSN -- gN is the unique allocation rule that
satisfies component efficiency andfairness.

Here, a rule 3" CSN -- RN is called component efficient if

(8) , 7(N,v,A)=v(C)
iC

for all (N, v, A) CSu and all components C N/A. Note that, for all C N/A, we
have that v(C) rC/A V(T) r(C, A). Furthermore, 3" CSN -,. N is called fair
(of. Myerson 1977 )) if

(9) 3"i(N,v,A)-3"i(N,v,A\{{i,j}})=3"j(N,v,A)-3"j(N,v,A\{{i,j}})

for all (N, v, A) CSN and { i, j } A. So, if we use a fair allocation criterion in the
manner of Myerson and an arc is removed from the communication graph, then the
two players connected by this arc lose (or gain) the same amount.

The following example shows that the position value r CSN -- Ndoes not satisfy
this fairness criterion.

Example 3.1. Consider the three-person communication situation (N, v, A) of Ex-
ample 2.1. Then

7r,(N,v,A)-Tr,(N,v,A\ { {1,3)}) =-0 =1/4,
while

r3(N,v,A)-Tr3(N,v,A\ (1,3) }) =1/2-0 =1/2.
A rule 3" CSN -- N is called additive if

(10) 3"(N,v+ w,A)=3"(N,v,A)+3"(N, w,A)

for all v, w Gv and communication graphs (N, A).
An arc a A is called superfluous for the communication situation (N, v, A if

(11) r( N,L)= r( N, LtA{a}) for all LA.

This means that in each communication subsystem the presence of a superfluous arc
does not affect the gains of the grand coalition. A rule 3" CSN -- gCu is said to have the
superfluous arc property if

(12) 3"(N, v,A 3"(N, v,A \ {a})
for all (N, v, A) CSu and superfluous arcs a e A.
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Now we can formulate the following lemma.
LEMMA 3.1. Both the Myerson value I caN -. tN and the position value r

CSN
__

#N satisfy component efficiency, additivity, and the superfluous arc property.
Proof. For both t and r, additivity follows trivially from the additivity ofthe Shapley

value, since r,]/ r + r and rv+ rv + r for all v, w GV and all communication
graphs (N, A ).

For t, component efficiency follows from Theorem 3.1. To prove the component
efficiency for r, let N, v, A) CSN and C N/A. Then

Z 7ri(N,t,A) c A-Cba(A’rN)= Z ba(A,rN)
ic a aA(C)

(*) , Oa(A(C),rN)=rN(A(C))=I(C),
aA(C)

where equality (.) follows from the definition of the Shapley value and the fact that

r( N, LID { a} )- r( N,L) r( N,(LfhA( C))LJ { a) )- r( N, LfqA( C))

for all L c A and a A (C).
Now let (N, v, A) CSN have a superfluous arc a A. To prove the superfluous

arc property for u, it suffices to show that rA rA\{a}.
Let S c N. Then

rA(S) , V(T) , v(T) , v(T) r(N,A(S)),
T S/A T S/A(S) T N/A(S)

where the third equality follows from the fact that v is zero-normalized and, similarly,

rA\{a}(S)=r(N,A(S)\ {a}).

So 11 immediately implies that rA(S) rA\a(S) for all S.
Proving the superfluous arc property for r, expression (11 directly implies that

the arc a is a zero-player in the game (A, ru) and ’ha(A, rN) 0. Furthermore, it fol-
lows that ,(A, rN) (A\ { a}, rN) for all b A\ { a ). Hence, r(N, v, A)
r(N, v, A \ {a}). E]

A communication situation (N, v, A) CSu is called arc anonymous if there exists
a function f: { 0, 1, ..., A[} - such that

(13) r(N,L)=f([ L[) for all LcA.

Since in an arc anonymous communication situation all arcs are equally important
(cf. Lemma 3.2), the communicative strength of a node (player) can be measured by
its degree, and therefore it seems reasonable to allocate the gains of the grand coalition
proportional to this degree. Formally, an allocation rule 3’ CSu - u is said to have
the degree property if for all arc anonymous communication situations (N, v, A), we
have that ,(N, v,A) is a multiple of the degree vector d(N,A) := (di(N,A))iu, i.e.,

(14) 3’(N,v,A)= ad(N,A) for some ae.

An equivalent formulation of (13) is given in the following lemma. The proof is
straightforward and is therefore omitted.

LEMMA 3.2. Let N, v, A CSN. Then N, v, A is arc anonymous ifand only if
r(N, L\ {a}) r(N, L\ { b} )for all L A and a, b L.
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The Myerson value # does not have the degree property as is seen in the next
example.

Example 3.2. The communication situation (N, v, A) of Example 2.1 is arc anon-
ymous since (13) holds with f: 0, 1, 2 } - R given by f(0) f(1) 0, f(2)
1. Furthermore,

d(N,A)=(1,1,2), 7r(N, v,A (1/4,1/4,1/2)-- 1/4d(N,A ),

and #(N, v, A) , , ), which is not a multiple of d(N, A).
However, we have the following lemma.
LEMMA 3.3. The position value r CSu - iu satisfies the degree property.

Proof. Let (N, v, A) CSu be arc anonymous. IfA , then r(N, v, A) 0
d(N, A). So assume that A 4: 5. Let fbe as in (13) and let a A. Since (A, ru) is a
symmetric game (i.e., all arcs are substitutes) we have that

a(A, rN) rN(A 7,f(I A I).
IAI

Hence

_1 f(IAI)
7ri(N,v,A) -rba(A,rN)=aA, 2" IAIaAi

for all iN.

f(IAI) f(IAI)= I/-----’IAI= IA’d(N,A)

Now we prove that the above-mentioned properties ofthe position value characterize
r completely on the subclass csN, of cycle-free communication situations where
the communication graphs contain no cycles.

THEOREM 3.2. The (restriction ofthe) position value r is the unique allocation rule
on CSU, that satisfies component efficiency, additivity, the superfluous arc property, and
the degree property.

Proof. Let , CSU, - satisfy the four properties stated in the theorem.
Because of Lemmas 3.1 and 3.3, it suffices to show that ,(N, v, A) r(N, v, A)

for all (N, v, A csN,. Let (N, A be a communication graph without cycles. By additivity
and by the fact that Usl ]S] >- 2 } is a basis of the class GoN of zero-normalized games,
it remains to prove that

(15) 3"(N, Sus,A 7r(N, Sus,A

for all and S 2N with S] >_- 2. Let/3 and S 2N, S] >_- 2, be fixed throughout
the proof. Furthermore, for notational convenience we define w := Us. To prove 15
we will distinguish between two cases.

The first case is that there is no component C N/A with S c C. Then r( N, L)
0 for all L c A. So Oa(A, r) 0 for all a A and, consequently, r;(N, v, A) 0 for
all N. Furthermore, since in this case each arc is superfluous, the superfluous arc
property implies that 3"(N, w, A 3"(N, w, ). Then, since (N, w, ) trivially is arc
anonymous, the degree property implies that there is an a such that

3" N, w J otdi N, J O

for all N. Hence r 3’.
Second, let C N/A be such that S c C. Then C, A (C)) is a tree, and there exists

a (unique) set H(S) c C defined by

(16) H(S) := 71 { TISc Tc C, T,A(T)) is a connected (sub)graph },
which is called the connected hull of S (cf. Owen 1986, Thm. 5 )).
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It is easy to verify that

(17) rW(N’L)={ 0 ifA(H(S))CL,else.
Hence

which implies that

tba(A’rv)= {oIA(H(S))l- if aeA(H(S)),else,

(18)

ri(N, w,A) , - IA(H(S))I-’
aAif) A(H(S))

di(N,A(H(S))) di(N,A(H(S)))
[=

2IA(H(S))I ZjN(N,A(H(S)))

for all 6 N. Furthermore, 17 implies that each arc a A(H(S)) is superfluous, and
so the superfluous arc property implies that

(19) 3"(N, w,A) 3"(N, w,A(H(S))).

The communication situation (N, w, A (H(S))) is arc anonymous because of Lemma
3.2 and the fact that

rW(N,L\ { a }) rW(N,L\ { b }) 0

for all L c A(H(S))) and a, b L. Therefore the degree property implies that there is
an a e R such that

(20) 3"i(N, w,A(H(S))) adi(N,A(H(S))) for all i6N.

So, especially, 3’i (N, w, A (H(S))) 0 for all N\H(S).
Using component efficiency, we find that., 3,i(N,w,A(H(S))) ., 3’i(N,w,A(H(S)))= w(C) =/3.

iC iH(S)

So from (20) we may conclude that

(21) c di(N,A(H(S)))
ieH(S)

Combining these results gives
By introducing one other property for allocation rules, we will be able to provide a

new axiomatic characterization of the restriction of the Myerson value to communication
situations in csN..

A communication situation (N, v, A) CSN is called point anonymous if there
exists a function f: { 0, 1, [D I} -- such that

(22) r( S,a)=f(I Sf-)DI)
for all S e 2N, where

(23) D:= { iNId(N,A)>O }.
An allocation rule 3" CSN -- RN is said to have the communication ability property
if, for all point anonymous communication situations (N, v, A), there exists an a e R
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such that

(24)
c forall iD,

"yi(N,v,A)=
0 else.

Then we have the following lemma.
LEMMA 3.4. The Myerson value CSN --} $N satisfies the communication ability

property.
Proof. Let (N, v, A) be point anonymous and let fand D be as in (22) and (23),

respectively. Because each player N\D is a dummy player in (N, rA) and all players
in D are substitutes, it is found that

rA(N)
if ieD f f(lDI)

if ieD
#i(N,v,A)=bi(N, rA) IDI ’= IDI

0 else 0 else.

THEOREM 3.3. The (restriction ofthe) Myerson value # Ps the unique allocation rule
on csN. that satisfies component efficiency, additivity, the superfluous arc property, and
the communication ability property.

Proof. Let , CSU. --} N satisfy the four properties above. Let the cycle-free com-
munication graph (N, A), the real 3 , and the coalition S 6 2N, SI >= 2, be fixed,
and define w := [3Us. Then Lemmas 3.1 and 3.4, and additivity, imply that it suffices to
show that ,(N, w, A =/(N, w, A ).

If there is no component C N/A with S c C, then rW( T, A) 0 for all T 2N.
Consequently, #i (N, w, A tI) (N, r) 0 for all N. Furthermore, we trivially have
that (N, w, A) is point anonymous, so there exists an a such that ")/i (N, W, A O

for all N with di (N, A) > 0 and qci (N, w, A) 0 otherwise. Using component
efficiency, we may conclude that c 0 and 7(N, w, A) u(N, w, A).

Let C N/A be such that S c C and let H(S) be as in the proof of Theorem 3.2.
Then it is easily checked that

/3 ifn(s) T,
rW(T,A)=

0 else

and, consequently,

(1/IH(S)I)[3 if iH(S),
#i(N, w,A)

0 else.

Furthermore, as we have seen in the proof of Theorem 3.2, the superfluous arc property
implies that

"y(N, w,A) "r(N, w,A(H(S))).

Then, since (N, w, A(H(S))) is point anonymous with D H(S),

f(0) f(IDI- 1)=0 and f(IDI)=/,

the communication ability property and component efficiency imply that qc(N, w, A)
u(N, w,A). []

4. A relation between dividends. In this section we derive a result that can be used
to compute the position value for various subclasses of communication situations in
which the communication graph contains no cycles. This result is based upon the fact
that, for each communication situation (N, v, A in CS,, the coefficients (dividends) of
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the corresponding arc game rv, with respect to the basis of (arc) unanimity games, can
be expressed in terms of the dividends of the underlying game v. It may be noted that
Owen (1986) has derived similar results for computing the Myerson value.

For a communication situation (N, v, A) csN, and the corresponding arc game
(A, rv), we can write

rv r,(L)u,
L2a\ {Z}

where, for all L e 2a\ { }, (A, UL) is the (arc) unanimity game on L and

I’v(L)’= Arv(L) (--1)ILl- IKIrVN(K)
KcL

denotes the dividend for L in the game rv.
Then, extending definition (16) of the connected hull of a coalition S in a cycle-

free communication graph (N, A) by setting H(S) if there is no component C
N/A that contains S, the dividends of the arc game rYv and the underlying game v are
related in the following way.

THEOREM 4.1. Let N, v, A) csN, Then

(25) r()= Av(S)
Se,(L)

for all L e 2a\ { ( }, where

(26) Z(L):= {se2N\ {}IH(S)4,L=A(H(S))}
denotes the set ofthose coalitions that exactly must use all communication arcs in L to
communicate.

Proof. Let L e 2\ ( }. Then
r() Z (-1)’ Z v(C) Z (-1)’ Z A(S)u(C)

KL CN/K Kc L CN/K S. 2N\ J, (-)- Z , Av(S)
KcL CN/KS 2c\ }

Av(S) (- )ILl- IKI

S2N\{2:} KL CN/K: SC

A(S) , I{CN/KISC}I(-1)
KcL. Av(S) (--1) ILl- IKI

s2N\ } H(S)4 J K: A(H(S))c KcL, o(s),
Se (L)

where the last equality follows from the fact that, for each S 2N\ { } such that
H(S) 4: , and with L[ and a [A (H(S))[,

(--1)ILl- IKI Z (-1)l-k
K" A(H(S))c KcL k= k- a

(_1)_ a (-1)
l-a

k=O k

ifl=a,

else.
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In Lemma 4.1, below, the set Z(L) of expression (26) is characterized in an easier
way. Here we use the following definitions. Let (N, A be a communication graph. Then,
for L c A, N(L) c N is defined to be the set of all players that are endpoints of an arc
in L, and, if (N, A) is a tree (i.e., a connected graph that contains no cycles), then

(27) Ext (N,A):= {ieNIdi(N,A)= 1}
denotes the nonempty set of extreme points of (N, A ).

LEMMA 4.1. Let N, A) be a (communication) graph that contains no cycles. Let
L 2A\ { }. Then thefollowing two assertions hold.

If N(L L) is not a tree, then Z(L .
(ii) If N(L L) is a tree, then

(28) Z(L)= {S=N(L)I Ext (N(L),L)=S}.

Proof. Condition (i) is trivial, and the proof of (ii) is a straightforward but tire-
some exercise from the definitions. Its most important ingredients are that, for a tree
(N(L),L),

H(Ext (N(L),L))= H(N(L))= N(L) and A(N(L))= L. D

The above results are illustrated in the following example.
Example 4.1. Consider the four-person communication situation (N, v, A) with

I) U{I,2 andA { a, b, c }, where a { 1,4 }, b { 2, 3 }, and c { 3, 4 }, as represented
in Fig. 3. With, e.g., L { b, c }, we find that N(L) { 2, 3, 4 } and Ext (N(L), L)
{ 2, 4 }. Lemma 4.1 then implies that Z( { b, c } { { 2, 4 }, { 2, 3, 4 } }. In a similar way,
we obtain

Z({a,b})=, Z((a})={1,4}, Z({b})={2,3}, Z({c})={3,4},

Z({a,c})={{1,3},{1,3,4}), and

Z({a,b,c})= { {1,2}, { 1,2, 3 }, {1,2,4}, 1,2, 3,4} }.
Therefore, since

we have

ifS= {1,2},
Av(S)=

0 else,

A,(S)=I1 ifL ={a,b,c),
r(L)=

s() [ 0 else.

5. Examples. (i) Unanimitygames. Using Theorem 4.1, we will re-prove expression
(18) (for ), which describes the position value for each cycle-free communication
situation in which the underlying game is a unanimity game.

4 c 3

FIG. 3
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Let (N, v, A) e CSU. be a fixed communication situation with v Us for some S e
2, SI >-- 2. It is clear that for the dividends Ao(T), we have

if T= S,
Av(T)=

0 else.

Furthermore, for all L e 2A\ { }, the dividends I’v(L) are given by

{1 if S,(L), {1 ifH(S) and L=A(H(S)),
to(L)= A(T)=

r Z(L) 0 else 0 else.

So, ifH(S) , then 7ri(N, v,A) 0 for all eN. Else, ifH(S) 4 , then
_

aZ r()
7ri(N, I),A) Z -a(A,rVN)=

aeAi aeAi 2 .. ILl

di(N,A(H(S)))
2]A(H(S))I ,Nd( N,A(H(S)))aAifqA(H(S))

for all N.
(ii) Pure overhead games. Let T be an arbitrary subset of N. Then the (zero-nor-

malization of the) pure overhead game (N, PT on T (cf. Owen 1986 )) is defined by

-1 + ISTI ifSNT,
Pr(S)

0 else.

It is easily verified that

A(S) o
ifScTand ISI >-2,

else.

Considering a communication situation (N, pT, A) csN., Theorem 4.1 and Lemma
4.1 imply that, for L 2A\ { ),

Fpr(L) S’Ext(N(L),L)cSc(N(L)T)

(29) 0

(-1)lsl if(N(L),L)) is a tree,

f (--1)IN(L)f3TI
0

otherwise,

ifExt (N(L),L) N(L)N T,

otherwise.

A special, simple case occurs when T N.
The condition Ext (N(L), L) N(L) f) T then boils down to Ext (N(L), L)

N(L), which is only satisfied if ILl 1. Hence,

if ILl =1,
FP(L)=

0 else.

Consequently, we obtain the following simple expression for the position value:

30 iN,p,A) 1/2di (N,A

for all N. It follows (cf. Owen (1986)) that in this case T N), the Myerson value
is equal to the position value. In the more general case, this need not be true. This is
illustrated in the next example.
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Example 5.1. Consider the five-person communication situation (N, Pr, A ), where
T { 1, 2, 3 } and the communication graph (N, A is represented in Fig. 4. Then, using
expression (29), it is found that

Per(L) -1

0

Consequently,

ifLe{ {a,b}, {a,c}, {b,c} },

ifL={a,b,c},
else.

Similarly, we find that

7r2(N,p.,A)=Tr3(N,p-,A)=1/2, "n’4(N, pr,A) 1, and 7rs(N,pr,A)=O.

Furthermore, with some work, we obtain

#(N, v,A , 2, , 2, O ).

(iii) Quadratic measure games. Let w (o, Wn) be a nonnegative (weight-)
vector. Then the quadratic measure game q Gcorresponding to w (cf. Owen 1986 ))
is defined by

q(S) (.o (.0
2 20iWj.

{i,j}cS’i4:j

So in the quadratic measure game corresponding to w, the worth of a coalition is com-
pletely determined by the worth of its various two-person subcoalitions, which, in turn,
are completely determined by the product of the weights attached to each of its two
players. It is easily seen that

2wiwj ifS { i,j} with ij,
Au(S)

0 else.

Let us now consider a fixed communication situation (N, qo,, A) csN.. Let L
A be a subset of arcs. Then Theorem 4.1 implies that the dividend I’q(L) is given by

2owt if there are s, N such that A(H( { s, } )) L,
I’q(L)

0 else.

In other words, the dividend I’q(L) 0, unless L establishes a path in the graph
(N, A ). If this is a path from player s to player t, then the dividend I’q(L) equals the
worth of the coalition s, in the quadratic measure game.

4

2

FIG. 4
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We now introduce the following definition. Let s, e N. If H( { s, t } ) 4: , so if
there exists a path from s to t in the (cycle-free) graph (N, A ), then the distance 6(s, t)
between s and t is defined by iS(s, t) := IA(H( {s, t}))l, which represents the number
of arcs supporting the path from s to t. Note that if L c A establishes the path from
player s to player t, we have that ILl 6(s, t).

Computation of the position value will be based on the observation that

(31) ba(A,r)
(s,t)s,t} N’a cA(H({ s,t}))

for all a e A. Note that to apply (3 ), it is necessary to find all paths supported by a
given arc. This can be done in a rather smooth way using (weighted) generating functions.

Let a { i, j } e A be a fixed arc. If we were to cut this arc, then the component
C N/A with i, j C would split up into two parts, say, Ci and C with Ci and j e

C. The weighted generatingfunction Of describes the weighted number of points in Ci
lying at a given distance from the point i. Formally,

(32) )(x) Z Z x
k=0 Ci d( s,i) k

where di := maxsci d(s, i) is the maximum distance between a point in C and i.
Similarly, we define d and 0’.

The following theorem shows that it is possible to rewrite (31 in terms ofgenerating
functions.

THEOREM 5.1. Let N, q,, A) csN. and a { i, j } A. Let 0’] and O] be as in
32 ). Then

(33) a(A, r) 2 O] (x)O(x)dx.

Proof. Note that

2 0] (x)O(x)dx 2WsOtxkdx
=0 sCi,t-Cj’d(s,i)+d(t,j)=k 0

di + 2WsWt
c=0 sG,t(C)’d(s,t)=lc+ 6(S,t)

[(cf. (31))]

ba(A,rqff).

The above concepts and results are illustrated in the following example.
Example 5.2. Consider the nine-person communication situation (N, q, A) with

oi for all e N and the communication graph (N, A) of Fig. 5.
It is found that

0f(x) +2x+2xz, 0f(x) +2x+x2,

O(x) + 2x+ 2x2 + x3, 063(x) + 2x,

0(x) +2x+4xZ+x3, 0(x) 1,
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5

7

FIG. 5

and so

r(N,q,,A) O?(x)O(x)dx+ ob(x)O(x)dx+ OC(x)O(x)dx

1370 +6+3 17 l-ZS.
In a similar way, it is possible to compute the position value for the other players.

6. Final remarks. (i) An open problem is how to characterize the position value
axiomatically for the class CSN of all communications situations. Furthermore, it would
be interesting to find an axiomatic characterization of the position value for the class of
all communication situations (N, v, A) with a full communication graph (N, A), i.e.,
A { { i, j } e 2N 4: j }, because this class corresponds to the class of all (zero-normal-
ized) games in coalitional form (cf. Example 2.2).

(ii) Having characterized the position value for the class ofcommunication situations
in which the communication graph contains no cycles, we might think of extending this
concept to general communication situations by using spanning trees.

Let (N, v, A) CSN. For each component C N/A, we consider the connected
subgraph C, A (C)) and the corresponding set -(C) of spanning trees, i.e.,

(C) { C,L) LcA( C), (C,L) is a tree

and define an allocation rule o CSu RN by

pi(N, v,A) _, 7ri(N, v,L)
I-(Ci)l

for all e N, where Ci N/A is the component to which player belongs. It is clear that

0 equals r on the class CSU. of cycle-free communication situations. However, the fol-

lowing example shows that 0 4: r.

Example 6.1. Consider the four-person communication situation (N, v, A) in which
v u 1,2,3 and (N, A is as described in Fig. 6. There are three spanning trees corresponding

3 b

4

a /

FG. 6
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to L { a, b, c }, L2 a, b, d}, and L3 { b, c, d}, respectively. Then (e.g., using
18 )) it is found that

7r(N,v,L,)=r(N,v, L2)=(1/2,1/4,1/4,0), r(N,v, L3)=(1/2,,,1/2),
and so p(N, v, A) (, ,

92-, ), while some calculation shows that r(N, v, a)
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POLYHEDRA OF THE EQUIVALENT SUBGRAPH PROBLEM
AND SOME EDGE CONNECTIVITY PROBLEMS*

SUNIL CHOPRA’f

Abstract. In this paper the problem of finding a minimum weight equivalent subgraph of a directed graph
is considered. The associated equivalent subgraph polyhedron P(G) is studied. Several families of facet-defining
inequalities are described for this polyhedron. A related problem of designing networks that satisfy certain
survivability conditions, as introduced in [M. Gr6tschel and C. L. Monma, SlAM Journal on Discrete Math-
ematics, 3 (1990), pp. 502-523 is also studied. The low connectivity case is formulated on directed graphs,
and the directed formulation is shown to give a better LP-relaxation than the undirected one. It is shown how
facet-defining inequalities ofP(G) give facet-defining inequalities in this case. Computational results are presented
for some randomly generated problems.

Key words, minimum weight equivalent subgraphs (MWES), polyhedron, facets, connectivity

AMS(MOS) subject classifications. 05C40, 90B 12, 90C27

1. Introduction. Given a directed graph G (V, A ), a subgraph ES (V, F) is said
to be an equivalent subgraph of G if ES has a directed path from vertex u to v if and
only if G does. In this paper, we consider the problem of finding a minimum weight
equivalent subgraph ofa directed graph (MWES) and some related problems. This prob-
lem will be referred to as MWESP in the remainder of the paper. It can be stated as
follows: Given a directed graph G (V, A with arc weights Ca for all arcs a in A, find a
MWES ES V, F).

This problem is known to be NP-hard, in general (see Garey and Johnson [9 ]).
Moyles and Thompson [17] and Hsu [13] have shown that it is sufficient to consider
the case where G is a strongly connected directed graph. Throughout the paper, we
assume that G is strongly connected; i.e., for every pair of nodes u, v 6 V, there exist a
directed path in G from u to v, and one from v to u. Relatively little has been done on
this problem. In addition to the papers mentioned above, Martello and Toth 16] use a
reduction procedure and branch and bound to solve the problem. They present some
computational results. Richey, Parker, and Rardin 21 show that MWESP can be solved
in linear time if G is a series-parallel graph.

An important related problem has been studied by Gr6tschel, Monma, and Stoer
11 in the context ofnetwork survivability. In an earlier paper 10 ], they describe several
models of network survivability. All of their models are on undirected graphs. We show
how the edge connectivity models of low connectivity (connectivity requirements of 0,
1, or 2) can be transformed to the directed case. We also show that the directed formulation
is, in general, superior to the undirected formulation. It is shown how facets of the
equivalent subgraph polyhedron can be transformed to obtain facets in this case. Some
computational results are presented.

Another related problem is one of finding a 2-edge-connected subgraph of an un-
directed graph. This has been studied by Mahjoub [15 ], who gives families of facet-
defining inequalities and a complete inequality description ofthe corresponding polytope
when the graph is series-parallel.

In 2 we give the basic notation used in the paper. In 3 we give an integer
programming formulation for MWESP and consider the equivalent subgraph polyhedron

Received by the editors August 6, 1990; accepted for publication (in revised form) April 30, 1991.
Department of Managerial Economics and Decision Sciences, J. L. Kellogg Graduate School of Man-

agement, Northwestern University, Evanston, Illinois 60208.
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P(G). Several families of facet-defining inequalities are given. In 4 we develop the
relationship between the low-edge connectivity model of Grrtschel and Monma [10]
and MWESP. Some computational results showing the performance of our formulation
are given.

2. Notation and background. G (V, A) will refer to a directed graph with node
set V and arc set A. The arc a directed from node u to node v will be referred to as a or
(u, v). The indegree of node u is the number of arcs of the form (v, u) in A. The
outdegree of u is the number of arcs of the form (u, v).

Let n be the number of arcs in G, i.e., n [A[. Given an equivalent subgraph
ES (V, F), define its incidence vector x(ES), where x R and

x(a)={1 ifaF,

0 otherwise.

The elements in x are indexed by the arc set A. Given any vector w indexed by the arc
set A and an arc a (u, v), the corresponding element of w will be referred to as wa,
w(a), or w(u, v).

UG (V, E) will refer to an undirected graph with node set V and edge set E. The
undirected edge between u and v will be referred to as [u, v] or e[ u, v]. An element of
a vector w indexed by the edge set E will be referred to as We or w[ u, v].

Given a directed graph G (V, A), we can construct the corresponding undirected
graph UG (V, E), where edge u, v E if either u, v) A or (v, u) 6 A.

We give two basic operations ofcontraction and deletion in directed graphs. Similar
operations also hold in the undirected case. Given a directed graph G (V, A) and an
arc a (u, v), contracting arc a consists of identifying the nodes u and v into the node
u and deleting arc a to get Gc (Vc, Ac), where Vc V- { v and Ac A { a }. All
arcs that were incident to either u or v in G are now incident to the combined node u.
If both arcs a u, v) and a2 (v, u) are present, then A A { a, a2 }. On deleting
arc a, we get the graph Ga (V, Aa), where Aa A { a }. The reverse operations are
described as expansion and extension, respectively.

We assume familiarity with basic definitions in polyhedral theory (see, for instance,
Bachem and Grrtschel [1]).

3. The minimum equivalent subgraph polyhedron. Consider a directed graph G
(V, A) with arc weights ca 6 R. Define the arc set A- { a A ]ca < 0 }. Consider the
arc weights (, where

[Ca foraA-A-,
Ca--

0 for aeA-.

Let ES (V, F) be the MWES of G with arc weights . We can verify that ES (V, F),
where F F t3 A- is a MWES of G with arc weights c. Thus we can assume that all arc
weights are nonnegative, i.e., ca R+ for a A. As mentioned earlier, we also assume G
to be strongly connected. The MWESP in this case is to find a minimum strongly con-
nected subgraph of G.

Given n [A I, define the equivalent subgraph polyhedron

P(G) =conv { x[x is the incidence vector of an equivalent subgraph of G } +R.
Since Ca R+ for a 6 A, we can solve MWES by solving the following LP:

min CaXa s.t. x P(G).
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It is clear that P(G) is full-dimensional. Throughout this section, we describe several
families of facet-defining inequalities for P(G). Given a proper subset of nodes V c V,
define the arcs

A(V1, V- VI) {(u,v)eAlue V,ve V- V }.

The arcs in A(V, V- Vl form a directed cut. Every equivalent subgraph of G must
contain at least one arc from each directed cut. Thus the cut inequality

(3.1) xa
eA( VI,V- VI)

is valid for P(G) for all V c V, -< Vl VI 1. Define the polyhedron

LP (G) { xeR x satisfies 3.1 for all V V }.

An equivalent subgraph ES (V, F) is minimal if there does not exist a subset F F,
F 4: F, such that (V, F) is also an equivalent subgraph of G. Let 6 be the set of all
minimal equivalent subgraphs of G and C the set of all minimal directed cuts. Given a
finite set T, a clutter is a family of subsets of T such that no member of contains
another member of #’. Let #’B be the family of all minimal subsets of T having a
nonempty intersection with each member of #’. B is called the blocking clutter or,
simply, the blocker of #’.

PROPOSITION 3.1. o and Cform a pair ofblocking clutters.
Proof. Clearly, both 6 and C are clutters since their members are minimal. Minimal

directed cuts are minimal with respect to the property that they have a nonempty inter-
section with each equivalent subgraph, mutatis mutandis. The result thus follows.

From the results ofFulkerson 8 on blocking polyhedra, the following result holds.
PROPOSITION 3.2. The incidence vector ofeach minimal equivalent subgraph is a

vertex of LP G), and

P(G) conv {xLP (G),x integer }.

Proposition 3.2 shows that MWES can be formulated as follows:

min CaXa s.t. xe LP (G), x integer.

From the results of Fulkerson [8 ], we can also show the following theorem.
THEOREM 3.1. The cut inequality 3.1 isfacet-definingfor P(G) ifand only ifthe

cut A V V V is minimal.
In Chopra 3 it is shown that LP (G) P(G) if G is series-parallel.
We have previously defined the operations of contraction and deletion. Given G

(V, A), assume that arcs al (u, v) and a2 (v, u) are present. Contract a (or a2) to
get Gc (Vc, Ac), where Vc V- { v } and Ac A { al, a2 }. Consider any inequality

3.2 rCxc >= ro
that is facet-defining for P(G). Define the inequality

(3.3) rx >_-

where

7ra { 7rc a if aAc,

ifa { a,a2 }.
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THEOREM 3.2. Inequality 3.3 is facet-definingfor P( G).
Proof. Let ES (V, F) be any equivalent subgraph of G. Then ESc (Vc, Fc),

where Fc F- { al, a2 } is an equivalent subgraph of Go. Thus the inequality (3.3) is
valid for P(G). Furthermore, if the incidence vector x(ESc) satisfies 3.2 with equality,
then x(ES) satisfies 3.3 with equality. Since (3.2) is facet-defining for P(Gc), there are
Ac independent equality solutions to (3.2). Each can be extended to an equality solution

of (3.3) by adding the arcs a and a2. Let .f be any one such extension. Define f and
$, where

(a) ifaeA- {ai }, i= 1,2,
fi(a)=

.f(a)+l ifa=ai, =1,2.

This gives a set of IAI independent equality solutions to (3.3). The result thus fol-
lows. [3

Given G (V, A ), assume that a (u, v) and a2 (u, v) are parallel arcs. Delete
a_ to get Ga (V, Aa). Consider any inequality

(3.4) raxa >= ro
that is facet-defining for P(Gd). Define the inequality

3.5 rx >- r0,

where

rd(a) ifaeAd,
"/i’a

d(r a) ifa=a.

THEOREM 3.3. Inequality (3.5) isfacet-definingfor P( G).
Proof. Let ES (V, F) be any equivalent subgraph of G. If a2 F, then ES is also

an equivalent subgraph of G. If a2 e F, then ES (V, F) is also an equivalent subgraph
of G, where F F t3 { al } a2 }. Thus (3.5) is valid for P(G). Since (3.4) is facet-
defining for P(Gd), there are Aal independent equality solutions to (3.4). Let Y be any
equality solution with Y(al) 1. There must be at least one such solution. Define
Y, where

(a) ifaAd- { a },
Y(a)= 0 ifa=al,

if a a2.

This gives a set of AI independent equality solutions to (3.5). The result thus fol-
lows. [3

G’ (V’, A’) is a minor of G if G’ is obtained from G by a sequence of contractions
and deletions. G’ is a contraction minor of G if the only deletions allowed are on parallel
arcs. Theorems 3.2 and 3.3 allow us to lift any facet of P(G’) to a facet of P(G) if G’ is
a contraction minor of G.

3.1. Wheelbarrow and bicycle inequalities. In this section we describe two classes
of facet-defining inequalities on small graphs that can be lifted to larger graphs using
Theorems 3.2 and 3.3. The names for these inequalities are borrowed from the travelling
salesman problem literature (see Cornuejols, Fonlupt, and Naddef [7 ]), since similar
structures arise there, also.
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For any odd integer k >= 3, define the k-wheelbarrow BWk (V, Ak), where

V= { Y}U{uli{1,2, ,k},j{1,2} }.
For ease of notation, we refer to Y as u for e { 1, 2, k }. The arc set A is de-
fined as

A B UB2, where

B,= {(uj, uj+,),(uj+,,uj)lie{1,2, ,k},je{0, 1} },

B= {(u,u+’),(u+’,u)lie{1,2, ,k} }.
All indices are modulo k. Define C/ {(u, u), (u, u)} and B (Ui Ci) U B2 for
e { 1, 2, k }. The 3-wheelbarrow BW3 is as shown in Fig. 3.1. The arcs in B are

shown with solid lines, and those in A B with broken lines.
On the k-wheelbarrow BW, define the wheelbarrow inequality

(3.6) Xa>=[3k/2q=(3k+ 1)/2.
aB

LEMMA 3.1.1. The wheelbarrow inequality (3.6) is validfor P(BWk).
Proof. Note that at least one arc from each set Ci must be used in any equivalent

subgraph. If r arcs from B2 are used in an equivalent subgraph for r =< [k21, then at
least 2r + 2(k- 2r) other arcs must be present from Ci for e { 1, 2, k }. This gives
a total of 2k r arcs from B. Clearly, 2k r >= [3k/2] for r <= [k/2]. For r >- [k/2] +
1, at least k other arcs must be present, one from each set Ci. Here k + r >_- [ 3k/2]. The
result thus follows.

The following result is stated without proof. A detailed proof can be found in 4 ].
THEOREM 3.1.1. The wheelbarrow inequality 3.6 isfacet-definingfor P(BWk).
Remark 3.1.1. Consider a graph G (V, A) that contains BWk as a sub-

graph, i.e., Ak A. Suppose that A Ak contains the arc sets B and B, where B
{(u6, u), (u/, u), (u], u), (u, u)} and/ {(u_, u)} foralli#je {1,..., k}.
The inequality

(3.7) , Xa+ 2 Xa>=[3k/2]
aBt3 ; a

is facet-defining for P(G).
Similarly, for any odd integer k, we can define the k-bicycle configuration BBk

(V, Ak),where V= {uli{1, Z,...,k},j{1,2}}and

A { (u, u), (u, u ), (u, uF ’), u_+ ’, u), u, u+ ’), u+ , u
1i(1,2, ,k)}.

FIG. 3.1
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FIG. 3.2

Define the arc set

B={(u,u),(u,u+),(ui+,ui),(u,u+),(u+,u)[i{1,2, ,k} }.

BB3 is as shown in Fig. 3.2. The arcs in B are shown with solid lines, and those in Ak
B with broken lines.

On the k-bicycle configuration BBk, define the bicycle inequality

(3.8) Z Xa>-[3k/2]
aeB

LEMMA 3.1.2. The bicycle inequality (3.12) is validfor P(BBk
Proof. BB is a subgraph of the graph obtained by adding all arcs (u, u+l),

(u/l u to the k-wheelbarrow BW. Thus, with an argument similar to that in Cor-
nuejols, Fonlupt, and Naddef 7], we can show that (3.12) is valid for P(BBk).

The following result is stated without proof. A detailed proof can be found in 4 ].
THEOREM 3.1.2. The bicycle inequality (3.8) isfacet-definingfor P(BBk).
Remark 3.1.2. Consider a graph G (V, A) that contains BBg as a subgraph. Define

/ (u, u) } and/ (u, u } for all 4: j 1, k}. The inequality

(3.9) , Xa+2 Z x>-f3k/2]
aBU

is facet-defining for P(G).

3.2. Crown inequalities. Given any positive integer k, define the k-crown configu-
ration CRk V, A), where

V= {ui[i{1,2, ,4k}},

A= {(Ui,Ui+l),(Ui,Ui+2k)[i{1,2, ,4k} }.
The arcs (ui, ui / 2k) are called diagonal arcs. All indices are modulo 4k with 0 4k.
Define the arc set

B= { (ui + 2k, Ui )(Ui + l,Ui + 2k + 1)1i6 { 1,3, ,2k- }
U {(u,u+l)l/z{2,4, ,2k-2}t_J{2k+ 1,2k+3, ,4k- 1}).

A similar configuration was introduced by Naddefand Rinaldi 18 ]. CR2 is as shown in
Fig. 3.3, with the arcs in B shown in broken lines.

On the k-crown configuration, define the crown inequality

(3.10) , Xa>-2k+ 1.
aAk B
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FIG. 3.3

LEMMA 3.2.1. The crown inequality (3.10) is validfor P( CRk
Proof. The following proofwas suggested by an anonymous referee. Define the sets

VI {1, 3,..., 2k- l, 2k + 2, 2k + 4,..., 4k} and V_ {2, 4,-.., 2k, 2k + 1,
2k + 3, 4k- }. Consider the following cut inequalities:

x(A({ui},V-{ui}))>=l for i V

x(A(V- { u }, { u }))>= for i V2;

x(A(V-- { lgl,U2k + }, { bll,U2k + } )) I.

Adding all the above inequalities, dividing the result by two, and rounding up the fight
side and the coefficients of the left side gives inequality (3.10).

The following result is stated without proof. A detailed proof can be found in 4 ].
THEOREM 3.2.1. The crown inequality (3.17) is facet-defining for P( CRk for

k>-l.
Remark 3.2. I. Consider a complete graph G (V, A) that contains CRk as a spanning

subgraph. Define the arc sets

Bl {(Ui,Uj)ljg2}U{(Ui,Uj)l{i,u}Vl}U{(Ui,Ul)liVll..JV2}

[J { (Ui,U2k + l)li gz },

B {(ui,u+l)li6V-{1} }.

Consider the inequality

(3.11) , Xa+ 2 , Xa>--2k+ 1.
BI U Ak-- B a-B2

The validity of inequality (3.11 for P(G) follows from the proof ofLemma 3.2.1. It can
also be shown that inequality (3.11 is facet-defining for P(G).

3.3. Odd wheel inequalities. For any odd integer k >- 3, consider the k-wheel con-
figuration OW V, A), where

V- {u}U{uili{1,2, ,k} },

A {(Ui,/,/), (U, Ui + l)l i { 1,3, ,k-2 } } U {(u,u,),(u,,u)}
U {(ui,ui+)[ie{1,2, ,k} }U {(ui+,ui)[ie{1,3, ,k-Z} }.
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FIG. 3.4

All indices used are modulo k. Define the arc sets

B= {(ui,ui+),(ui,u)li{1,3, ,k-2} }Ll((uk, u)),

B2 {(ui,ui+l)[i{2,’" ,k-3} }.
For k 3, B2 is empty. OW5 is as shown in Fig. 3.4. Arcs in B are shown with broken
lines, and arcs in B2 with double lines.

On the k-wheel configuration, define the odd wheel inequality

(3.12) Z Xa-[-2 E Xak.
aeAk- {BILI B2} aeB2

LEMMA 3.3.1. The odd wheel inequality (3.12) is validfor P(OWk).
Proof. Let r k2q. Consider the following cut inequalities with weights as shown:
x(V- { u2j-l }, { u2j- }) >= with a weight ofj for j e { 1, r }
x( { u_ }, V { u2 } >= with a weight of r j for j e { 1, r }
x(V- { u, uj. / }, { uj, u / } >= with a weight of r for

j6 {1, 2, ..., k- 2};
x(V { u }, { u } >_- with a weight of r 1;
x( { u }, V { u } >_- with a weight of 1.

Adding all the above inequalities, dividing the result by r, and rounding up the fight side
and the coefficients on the left side gives the inequality (3.12).

The following result is stated without proof. A detailed proof can be found in [4 ].
THEOREM 3.3.1. The odd wheel inequality 3.12 is facet-defining for P(OWk),

k>-3.
Remark 3.3.1. Let G (V, A be a complete graph that contains OWk as a spanning

subgraph. The proof ofLemma 3.3.1 allows us to give coefficients for an inequality valid
for P(G), whose restriction to arcs in A is (3.12).

3.4. Composition of facets. Consider two graphs, Gl (V, Al and G2 (V2, h2).
Consider { ui, vi }

_
Vi, 1, 2 and assume that (ui, vi), vi, ui) }

_
Ai, 1, 2.

Assume that the inequality

(3.13) rixi>= r, 1,2

is facet-defining for P(G; such that

7r(ui,l)i)--O 1,2;

r(vi,ui)=a, 1,2.
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Note that all the facet-defining inequalities previously discussed have nodes { u, v } for
which the above condition holds. On the other hand, the same facets provide examples
to show that the above condition need not hold for every pair of nodes u and v for which
both arcs (u, v) and (v, u) are present.

Compose GI and G2 by identifying ul and u2 into u, and Vl and v2 into v, to get
G (V, A). Here A Al tO A2 (-J { (I), U)} { (1)1, Ul), (/)2, U2)). The graphs G1, G2,
and G are shown in Fig. 3.5.

Define the inequality rx >- 7to, where

for aAi- {(1)i,Ui)} 2,7ra

(3.14) , fora=(v,u);

0=+-.
THEOREM 3.4.1. Inequality (3.14) is facet-definingfor P( G).
Proof. First, we prove that inequality (3.14) is valid for P(G). Let ES (V, F) be

any equivalent subgraph of G. Let F( and F(2) be the restriction of F to A1 and A2,
respectively. Define Ei (Vi, F(i)) for 1, 2. Note that if(v, u) F, then

(3.15) rx(ES) + r x (El) + 7r 2x- (E2),

and, if (v, u) F, then

(3.16) rx(ES) r x (E + 7r2xZ (E2).

Note that at least one of the graphs E;, 1, 2, has a directed path from vi to ui. There
are two possible cases.

Case A. Ei contains a directed path from vi to ug for 1, 2. In this case, ESi
(Vi, F(i) t.) (ui, vi } is an equivalent subgraph in Gi, 1, 2. Thus

rixi(ESi)>=r for 1,2.

From 3.15 and 3.16 ), it thus follows that x(ES) satisfies (3.14).
Case B. El contains a directed path from vl to u, while E2 does not contain a

path from/)2 to u2. Define ES2 V2 F( 2 IO { U2 I)2 ), (I)2, U2 } ). ES1 V1, F( tO
(u, v)}) is an equivalent subgraph of Gl, and ES2 is an equivalent subgraph of

G2. Thus

"irlxI(ESI) ->- 7r3; 7r2xZ(ES2)+ ol.>= 7r).

From (3.16 it thus follows that x(ES) satisfies (3.14 ). Thus inequality (3.14) is valid
for P(G).

( )
G G

2
G

FIG. 3.5
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Define ai (vi, ui for 1, 2. Since rix >_- r6 is facet-defining for P(Gi ), there
is a nonsingular matrix C;, each row of which satisfies rx >_- r6 with equality. Matrix
C is as shown below for 1, 2:

Ai- { ai } ai

Di
Ci-

B 0

Di cannot be empty since there must be at least one equality solution to rx >= r with
support in ai. Let d be a row of Di, 1, 2. Define the following matrix C on the arc
set A, where a (v, u)"

A--{al} a Az-{a2}

d O2
dl 0 B2
D1 d2
B 0 d2

where di, 1, 2 is a matrix with each row equal to d, 1, 2. Each row of C is a
vector in P(G) and satisfies (3.14) at equality. It is easy to verify that C has full column
rank. Thus inequality (3.14) is facet-defining for P(G).

4. Network survivability and P(G). In the context of network survivability, there
are problems whose polyhedra are closely related to the equivalent subgraph polyhedron
P(G). Grrtschel and Monma [10 introduced integer polyhedra associated with several
network survivability problems. In 11 ], they give some polyhedral results related to these
problems. We restate the edge survivability problem discussed by them. Consider an
undirected graph UG (V, E) with nonnegative edge weights We for each edge e in E.
We is the cost of establishing the link e. We assume that UG has no parallel edges, but
several copies of a link may be established; i.e., an edge may be used more than once.
For each node w V, a nonnegative integer rv, called the type of v, is specified. For each
pair of nodes u, v V, define ruv min { ru, r }. Define network N (V, F, M), where
F

___
E and M(e) gives the number of copies, or multiplicity, of edge e in N. By N(T),

we denote the multigraph obtained by replicating every edge e as many times as its
multiplicity in N. We say that N satisfies the edge survivability conditions if, for each
pair u, v e V of distinct nodes, N(T) contains at least ru, edge disjoint paths from u to
v. The weight of the network N is given by eF M(e)We. The problem is to find a
minimum weight network N that satisfies the edge survivability conditions. Define the
incidence vector x(N), where

xe(N) / 0 for eeE F,

M(e) for eeF.

Given the graph UG and the vector of node types r, define the polyhedron

ECON UG; r) =conv { x(N) network N satisfies edge survivability conditions }

+R+

We restrict our attention to the case where all node types are 0, 1, or 2. This is referred
to as the low connectivity case in 11 ].
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Given W V, define

con (W) max {ruv]ueW, veV- W}

(W) { u, vlEIu W,v V- W}.

The edge set 6(W) defines a cut of UG for =< WI --< VI 1. Define the polyhedron

LPECON UG;r)= {xRe+[ Xe>=Con (W)
e(W)

for all w=_v,<=lWl<-_lVl-}.

Grrtschel and Monma [10] show the following result.
PROPOSITION 4.1. It holds that ECON (UG; r) conv { x LPECON (UG; r),

x integer }.
Thus a minimum weight network that satisfies the edge survivability conditions can

be found by solving the following problem:

(4.1) min Z WeXe s.t. x LPECON UG; r) ;x integer.

For the low connectivity case, we can reformulate the problem. Given UG
(V, E), define the directed graph G (V, A), where both arcs (u, v) and (v, u) e A if
edge [u, v e E. The arcs in A are assigned weights c, where

c(u,v)=c(v,u)=w[u,v].

Let N be the set of nodes of type 1, and N2 the set of nodes of type 2. If N=I 1, any
node vr e N2 is declared the root; otherwise, any node Vr N is declared the root. Let
ND (V, B) be a subgraph of G such that there is a directed path in ND from Vr to each
node in N and, for every pair u, u2 e N2, there is a directed path in ND from Ul to u2.
Form the network N (V, F, M), where e [u, v] e F if either (u, v) or (v, u)
B. Furthermore,

M(e)= I{(u,v),(v,u)}BI.

We can verify that N satisfies the edge survivability conditions. We say that ND also
satisfies the edge survivability conditions. We can verify that, given a network N
(V, F, M) that satisfies the edge survivability conditions, we can construct the corre-
sponding directed network ND (see, for example, Lovasz [14 ]). Thus the problem of
finding the minimum weight undirected network N on UG is equivalent to finding the
minimum weight directed network ND on G. Define the incidence vector y(ND), where

if arB,
ya(ND)

0 otherwise.

Given the directed graph G (V, A) with root l) and the vector of node types r, define
the polyhedron

DECON G; r) conv{ y(ND) network ND satisfies edge survivability conditions }
++.
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Given W_ V, _-< [W[ _-< IV[- 1, the directed cut A(W, V- W)is as defined earlier.
Consider the polyhedron

LPDECON (G;r)= {yRA+[ 2 y>_-- for all W Vsuch that
aA(W,V- W)

[WfN[ >_- and [(V- W)fN2[ >-- or l)rC Wand [(V- W)N[ >= }.

We can verify the following result.
PROPOSITION 4.2. It holds that DECON (G; r) cony { x LPDECON (G; r),

x integer }.
Proof. Let x be an integer vertex of LPDECON (G; r). From Fulkerson [8 ], it

follows that x is a 0, vector. Define B { a A xa }. ND V, B) has a directed
path from the root to every node in N and a directed path between every pair of nodes
in N; otherwise, one of the cut inequalities would be violated. Thus ND satisfies the
edge survivability conditions.

Conversely, let ND (V, B) be a minimal network satisfying the survivability con-
ditions, i.e., there does not exist B

_
B, B 4: B such that ND (V, B) satisfies the edge

survivability conditions. Thus, for each arc t7 B, there exists a valid directed cut inequality

(4.2) Z Ya >=1
aeA(W,V- W)

such that A (W, V W) fq B {}. Consider the incidence vector y(ND). Clearly,
y(ND) LPDECON (G; r). If y(ND) is not a vertex of LPDECON (G; r), then
y(ND) (y + y)/2, where y, y LPDECON (G, r). If y(ND) 0, then Ya
y2a 0. If y 4: y, there exists an arc ti such that ya(ND) 1, y < and y > 1. y
violates the directed cut inequality (4.1) for which A (W, V W) B {}. This
shows that y y; i.e., y(ND) is a vertex of LPDECON (G; r). The result thus fol-
lows.

Thus, in the low connectivity case, we can find a minimum weight directed network
that satisfies the edge survivability conditions by solving the following problem:

(4.3) min Cya s.t. yLPDECON (G;r),yinteger.

For an undirected graph, we can use formulations (4.1) or (4.3) to find the minimum
weight network.

For ECON UG; r), Gr6tschel, Monma, and Stoer 11 gave a class of facet-defining
inequalities called the partition inequalities. We state the inequality as defined by them.
A collection WI, Wp of subsets of V is called a proper partition of V if

WiO 1, ,p;

Wi fq W4: , <= <j <=p;

w= v;

[WiN(NltAN2)[>-I, i= 1,2, ..-,p;

Wi fq N[ >= for at least two sets W.

Let EP Ui6(Wi ). The partition inequality induced by a proper partition is given by

(4.4) , Xe>=p.
eEP
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Reference [11] gives conditions under which these inequalities are facet-defining for
ECON (UG; r). Define the polyhedron

LPECON1 UG;r)= {xeLPECON UG;r)t x satisfies all

partition inequalities (4.3) }.
The polyhedra ECON (UG; r) and DECON (G; r) are related by the following

linear transformation:

ECON (UG;r)= (xlx[u,v]=y(u,v)+ y(v,u),V[u,v]eE,yeDECON (G;r)}.
This linear transformation allows us to compare LPDECON1 and LPDECON using
techniques of Balas and Pulleyblank [2] or Padberg and Tsung [19]. Using a procedure
similar to that in Chopra and Rao 5 ], we can show the following result.

THEOREM 4.1. It holds that

min { WeXeIXLPECON1 (UG;r)} -<min { CaYalyLPDECON (G;r)}.

Proof. The details of the proof are as in Chopra and Rao [5].
It is easy to see that a directed cut inequality on projection gives the corresponding

undirected cut inequality. Given the partition W, ..., Wp described earlier, consider
the directed cut inequalities

ya>-l, i=1, ,p.
aeA(V- Wi, Wi)

Since W/ fq N2I >= for at least two sets W, each of these inequalities is valid. The
partition inequality is obtained as the sum of all the above inequalities on projection.

Thus the polyhedron obtained on projecting LPDECON (G; r) is contained in
LPECON UG; r).

Theorem 4.1 shows that the LP-relaxation ofthe directed formulation (4.2) will, in
general, give a better lower bound than the LP-relaxation ofthe undirected formulation.
Also note that the directed cut inequalities can be identified in polynomial time, while
identification of the partition inequalities is difficult. This suggests that bidirecting the
graph and solving the resulting directed problem may be better, even though the number
of variables is doubled. This makes the study of DECON (G; r) important.

Given a directed graph G (V, A), let (IV/, 1, ..., p) be a partition of the
node set such that W,. N N2I ->- 1, 1, ..., p. Let G(W,.) be the graph induced by
the node set W.. Let ( I?, ,4) be the graph obtained by identifying each of the node
sets I/V. into a node Wi, i.e., I? { wili 1, p } and
must be strongly connected ifany subgraph ofG is to satisfy the connectivity requirements.
Let ND (V, B) be a network that satisfies all edge connectivity requirements on G,
and let fr l?,/) be its restriction to (. By the construction of (, fr must be strongly
connected.

PROPOSITION 4.3. Let (17, ) be any equivalent subgraph of . It can be
expanded to ND V, B) such that ND satisfies all edge survivability requirements on
G and B f) ,4

Proof. Let Gi (IV/, Ai be equivalent subgraphs of G(W,.) for 1, 2, p.
Define B J (_J ([’-Ji Ai ). ND (V, B) is an equivalent subgraph of G and thus satisfies
all edge connectivity requirements.

Let

(4.5)
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be any facet-defining inequality for the equivalent subgraph polyhedron P((). Define
the inequality

(4.6) ry >= r0,
where

forad,
71-a

0 for aA-.
THEOREM 4.2. Inequality (4.5) isfacet-definingfor DECON (G; r).
Proof. Let ND (V, B) be any network in G that satisfies the edge connectivity

requirements, and (I?,/) its reduction to t. As discussed earlier, is a strongly
connected graph and thus an equivalent subgraph of t. Thus the incidence vector 3()
satisfies (4.4), which implies that y(ND) satisfies (4.5).

To show that inequality (4.5) is facet-defining for DECON (G; r), we exhibit AI
linearly independent equality solutions to (4.5). Since (4.4) is facet-defining for P(t),
there are Idl linearly independent equality solutions to it. Define Gi (Wi, Ai to be
equivalent subgraphs ofG(W/) for 1, 2, p. Let 371 P(() be any equality solution
to (4.4). Define Yl, where

33 (a) for

y(a) foral,.JAi,
0 otherwise.

Yl DECON (G; r) and satisfies (4.5) at equality. This gives J[ equality solutions to
(4.5). Choose any solution Yl from this set. For each arc, b A J define y, where

yb(a)={y(a) for a4:b,

yl(a)+ for a=b.

yb e DECON (G; r) and satisfies (4.5) at equality. This gives AI independent equality
solutions to (4.5) and proves that it is facet-defining for DECON (G; r).

Remark 4.1. The polyhedron DECON (G; r) is also closely related to the Steiner
tree polyhedron STP. Chopra and Rao [5 ], [6] give several families of facet-defining
inequalities in this case. Given a directed graph G (V, A), let (IV/, 1, p) be a
partition of the node set V such that N2

___
Wi for some i. Let 0 (I, ) be the graph

obtained by identifying each of the node sets Wi into a node w. A node w I? must be
spanned if ]W,. f3 (NI kJ N2)[ >-- 1. Let

(4.7) ’3>= 7r0

be any facet-defining inequality for the Steiner tree polyhedron STP ((). Define
the inequality

(4.8) ry >- ro,

where

-it

With an argument similar to that in the proof of Theorem 4.2, we can show that (4.7)
is facet-defining for DECON (G; r).
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4.1. Computational results. In this section we give some computational results for
low-edge connectivity survivable networks. The main purpose of our study is to show
the effectiveness of the directed formulation (4.3). Grrtschel, Monma, and Stoer [12]
give encouraging computational results using the undirected formulation on some real-
world problems. Since these problems are classified, we restricted ourselves to randomly
generated problems.

The problems considered are of four types: (a) random-sparse; (b) Euclidean-sparse;
(c) random-complete; (d) Euclidean-complete.

For (a) and (b), a connected-sparse graph is generated at random. For (a), integer
edge weights are generated at random from a uniform distribution between 0 and 500.
For (b), nodes are assigned randomly on a 500 500 grid, and edges are assigned weights
equal to the distance between the endnodes. For (c) and (d), the graphs considered are
complete, and edge weights are assigned as in (a) and (b), respectively. Nodes in NI and
N2 are generated at random, and one of the nodes in N2 declared the root.

The initial problem solved is the following"

(4.9) min CaYa s.t. ye LPDECON G; r).

Let LP be the optimal solution to (4.8). In the case where (4.8) has a fractional optimum,
we go into branch and cut (see Padberg and Rinaldi [20] for a detailed description) to
get the integer optimum OPT, i.e., the solution to (4.2). At each stage the only inequalities
added are directed cuts (3.1), and these can easily be identified using an efficient max-
flow algorithm. None of the other inequalities described in 3 were included, since the
main objective of this computational study is to show that the solution to (4.8) gives a
very good lower bound for the optimal solutions. Inclusion of other inequalities should
improve the performance of the branch and cut solver. In Tables 1-4, which contain
computational results, we use the following abbreviations:

RAT: ratio of solution to (4.8) and integer optimum; RAT LP/OPT;
NI: number of problems where solution to (4.8) is integer;
TT: total time to solve (4.8) (includes I/O) in seconds.

TABLE
Random-sparse problems.

Avg. Max Min Avg. Max Min
Vl IEI IN, IN=I RAT RAT RAT TT TT TT NI

40 80 22 8 .998 .994 10.6 21.2 6 3
60 120 33 12 .999 .998 39.7 47.9 36.2 3
80 160 44 16 .999 .997 291.5 614.3 81.8 2
100 200 55 20 .999 .997 1112 1476 731 2

TABLE 2
Euclidean-sparse problems.

Avg. Max Min Avg. Max Min
vI IEI INtl IN=I RAT RAT RAT TT TT TT NI

40 80 22 8 .999 .999 19.3 33.6 4.7 4
60 120 33 12 .999 .998 103 181 25.5 2
80 160 44 16 .999 .999 324 831 93 3
100 200 55 20 .998 .995 902 1522 171
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TABLE 3
Random-complete problems.

Avg. Max Min Avg. Max Min
Vl IEI INI IN21 RAT RAT RAT TT TT TT NI

30 435 17 6 13.1 17.1 7.1 5
40 780 22 8 27.6 48.9 17.5 5
50 1225 27 10 .999 .999 103 178 57.2 4
30 435 24 6 .999 .999 7.4 10.3 2.6 4
40 780 32 8 18.9 21.5 15.2 5
50 1225 40 10 .999 .999 30.4 50.7 15.3 4

TABLE 4
Euclidean-complete problems.

Avg. Max Min Avg. Max Min

VI IEI INI IN:I RAT RAT RAT TT TT TT NI

30 435 17 6 14.9 19.5 11.6 5
40 780 22 8 .999 .999 62.3 119 36.4 4
50 1225 27 10 249 336 105 5
30 435 24 6 .999 .999 11.4 14.4 8.7 3
40 780 32 8 25 33.6 13.5 5
50 1225 40 10 .999 .999 80.7 143 38.8 3

For each problem size, five different, randomly generated problems are solved. The results
contain the average, minimum, and maximum value for the five runs.

The computational results were run on a VAX 8700, and the LP solver used was
XMP, written by Roy Marsten.

For the sparse graphs, the number of edges [E[ 21V[. The problems solved have
[N tO N2[ 3 V I/4 and INz[ V1 For the complete graphs, we also consider the
case where V N tO N2, [N_ V[/5.

Reference 12 gives several reduction procedures, which are very effective. However,
since our objective is only to show the effectiveness of the directed formulation, none of
the reduction procedures are used.

The main observations from the computational runs are as follows:
Solving the LP-relaxation (4.8) gives the integer optimum a significant number

oftimes. On average, it brings us to 99.9 percent of optimality and, in the worst case (in
a total of 100 problems solved), to 99.4 percent of optimality.

(2) Increasing [N LI N[ from 3 V1 to V[, while keeping IN2[ fixed, reduces
the time taken to solve (4.8) for the complete graphs on which we ran this comparison
(a total of 30 problems of each type were solved). The reduction in running time seems
to increase with the size of the problem.

Our results are promising, and we feel that the directed formulation may allow us
to solve larger problems than the undirected one. Most of the fractional vertices were
cut offby wheelbarrow and bicycle inequalities, and their compositions formed by using
the procedure in 3.4. Heuristic procedures to identify these inequalities should improve
the performance of our cutting plane procedure. However, all problems considered by
us were solved to optimality at the end of branch and cut.
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ALMOST SAFE GOSSIPING IN BOUNDED DEGREE NETWORKS*

KRZYSZTOF DIKS’" AND ANDRZEJ PELC

Abstract. A variant ofthe well-known gossip problem is studied. Each of n members of a communication
network has a piece of information that should be made known to everybody else. This is to be done by placing
a sequence of two-party phone calls along the lines of the network. During each call, the two participants
exchange all information they currently have, in a unit of time. It is assumed that calls fail independently with
fixed probability 0 < p < and that no information is exchanged during a failed call. For communication
networks of bounded degree, efficient schemes of calls are shown that assure complete communication with
probability converging to as n grows. Both the number of calls and the time they use are of minimal order.

Key words, communication networks, gossip schemes, random faults, reliability
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1. Introduction. Each of n members of a communication network (modeled by a
simple connected undirected graph) has a piece ofinformation unknown to others, which
should be made known to everybody else. This is to be accomplished by a series of two-
party telephone calls satisfying the following assumptions:

1. Each call requires one unit of time (measured by a global clock);
2. Everybody can participate in, at most, one call per time unit;
3. Calls can be placed only along the links of the network;
4. During a call, the two participants exchange all their current information.

Two important parameters of such a series of calls, referred to as a gossip scheme, are
the total number of calls and the total time used. The problem of finding gossip schemes
minimizing the above parameters has been extensively studied, first for complete networks
(cf., e.g., 2 ], 3 ], 5 ], 10 ], 14 ], 16 ], 17 ), and then for other communication graphs
61, 8 ], 111, 13 ]. For more references, see the survey 12 ].

The problem of constructing gossip schemes optimal in the above sense becomes
more complicated if we assume that some calls may fail and that no information is
exchanged during a failed call. In 4 ], 9 bounds on the minimum total number of calls
in a complete network are obtained, assuming that up to k calls may fail. The results
imply that 0(n k) calls are sufficient and necessary. It follows from 15 that the minimum
time required by a gossip scheme is at least [log n] + k under the same assumptions.
Liestman 15 studies networks with the fewest possible links in which gossip schemes
working in minimum time, assuming k failed calls, can be constructed.

Diks and Pelc 7 originated a probabilistic approach to gossiping with failures.
They assumed that links ofthe complete network fail independently with fixed probability
0 < p < 1. Faults were supposed permanent (the fault status of a link did not change
during the scheme), and no information could be exchanged during a call along a faulty
link. In [7 efficient gossip schemes were constructed that assured complete information
exchange with probability converging to 1, as n grows. Although not all links of the
complete network were used in executing those schemes, O(n log n) links were necessary,
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and it was proved that this asymptotic bound cannot be improved for reliable schemes
in the random link failure model. This implies that no reliable schemes are possible in
this model for bounded maximum degree networks, including such important examples
of communication networks as tings, grids, or hexagonal meshes.

In this paper, we pursue the study ofgossiping with random failures under a different
scenario. Instead of assuming permanent link failures, we suppose that individual calls,
rather than links, are subject to independent failures with fixed probability 0 < p < 1.
Now, even failures of calls placed along the same link are independent. We assume that
both parties attempting a failed call become aware of the failure. Our goal is again to
find reliable gossip schemes using a minimum number of calls and!or working in min-
imum time.

The reliability ofa gossip scheme working on a communication network G is defined
as the probability that complete information exchange will be achieved upon completing
the scheme. For any family { Gn n >- } of n-node networks, a scheme working on these
networks is called almost safe if its reliability for Gn converges to as n .

As usual in the presence of failures, two ways of constructing a gossip scheme are
possible. One way is nonadaptive; that is, all calls must be predetermined (by specifying
which pairs of people communicate at a given time unit) before the scheme is started,
without the possibility of modifying the sequence of calls depending on which calls suc-
ceeded and which failed. This approach has been traditionally adopted in literature 4 ],
9 ], 15 ]. (In 9 it was called static.) Another way (cf. [7 ]) is adaptive; that is, everybody
can decide whom to call in a given time unit, depending on the outcome of previous
calls. However, in making this decision, we can only take advantage of the information
we currently have; that is, we do not assume the existence of any central monitor su-
pervising the execution of the scheme.

Our main result concerns nonadaptive almost safe gossip schemes. Contrary to the
situation in 7 ], under our present scenario such schemes do exist for any class of net-
works, even with bounded maximum degree. More precisely, we show that for any class
{ Gn n >= } of n-node networks with bounded maximum degree and diameters D(n),
there is an almost safe gossip scheme working in time O(D(n)) and using O(n log n)
calls. None of these asymptotic bounds can be improved.

An elementary part of a gossip scheme is an individual call with specified com-
municating parties x, y and specified time unit counted since the beginning ofthe scheme.
We say that in time unit i, a call is placed between x and y, or that x calls y.

2. Preliminaries. A communication network is a finite connected undirected graph
without self-loops or multiple edges. Nodes (vertices) of this graph represent members
of the network, and links (edges) represent telephone lines along which calls can be
placed. The degree of a node is the number of adjacent nodes, and the maximum degree
ofthe network is the maximum over all degrees of its nodes. Nodes ofdegree are called
leaves of the network. A tree is a cycle-free network, and a spanning tree of a network G
is a tree that is a subnetwork ofG with the same set ofnodes. Apath is a tree ofmaximum
degree =< 2, and the number of links in a path is called its length. The distance between
two nodes u, v of a network is the length of the shortest path in G with leaves u and v.
The diameter of a network is the largest distance between any pair of its nodes.

Every tree with a specified node r, called the root, is called a rooted tree. The ith
level of a rooted tree is the nonempty set of nodes at distance from the root. The height
of a rooted tree is the maximum over indices of its levels. For any node x on level i, the
adjacent nodes on level + are called the children of x, and the adjacent node on level

is called the parent of x (denoted p(x)). For every x, we fix an enumeration of
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children ofx and call them the first, second, ..., jth, child. For any pair of distinct
nodes x, y of a rooted tree, x is called an ancestor of y, and y a descendant of x, if x is
a node on the path between y and the root.

In our probabilistic considerations, we use the following estimate ofthe probability
that at most e)mqJ successes will happen in a Bernoulli series with parameters m,
q. This is a version of Chernoff bound.

LEMMA 2.1 (see [1]). It holds that

L(l-e)mqJ(m) qk( q)m k e-e2mq/2
k=0 k

for O <= q <= and O <= e <= 1.

3. Main result. The following proposition (cf. Diks and Pelc 7 gives an asymptotic
lower bound on the total number of calls that a nonadaptive almost safe gossip scheme
must use. We include the short proof for completeness.

PROPOSITION 3.1. Let { Gn n >- } be any class of n-node networks. For any
constant c < -1/(4 log p) and any nonadaptive gossip scheme on Gn using at most
cn log n calls, the probability of complete information exchange converges to O, as
n- OOo

Proof. It is enough to prove that, with probability converging to 1, there exists a
person in the network Gn such that all calls in which x participates are faulty. Assume
that a gossip scheme uses at most cn log n calls. Let R be the set of people participat-
ing in at most 4c log n calls. Hence R has size at least n/2. For any x R, denote by
N(x) the set of those y R that are called by x. We construct a subset S c R by in-
duction. Start with any x0 R. If Xo, "", Xk are already constructed and Vk R\
{ x0, Xk } \N(xo)\"" \N(x) is nonempty, let x / be any element of V. If Vg, we put S { x0, "", xg }. Since R has size at least n/2 and at each step at most
+ 4 c log n elements are eliminated, S has size at least n/(2 + 4 c log n))J,

thus at least n / (9 c log n), for sufficiently large n. By construction, S consists of people
who do not call each other. For x e S, let E be the event that at least one call in which
x participates is not faulty. Events Ex are independent. Let E be the intersection of all
events Ex. We have that

and

Prob (Ex)=< _p4clogn= n4c lgp

Prob (E) =< n 4c log p)n/(9c log n).

If c < -1/(4 log p), we have 4 c log p > -1, and hence

n4c logp)n/(9c logn) O.

It is obvious that every almost safe gossip scheme working for a class of n-node
networks { Gn n >= } of diameters D(n) must use (D(n)) time units. Thus our main
result provides asymptotically optimal almost safe gossip schemes, both regarding the
number of calls and the time used, for a large variety of communication networks.

THEOREM 3.2. Let { G n >- } be a class ofn-node networks with bounded max-
imum degree d >- 2 and diameters D( n ). There exists a nonadaptive almost safe gossip
schemefor Gn working in time O(D(n)) and using O(n log n) calls.

The proof of the theorem is split into a sequence of lemmas.
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LEMMA 3.3. Let Pn be an n-node path, for n > 4. Let c be an integer constant >
4/( p). There exists a nonadaptive gossip scheme working on Pn in time 4c(n 2
with reliability exceeding 2 e-ct pn/8.

Proof. Suppose that consecutive nodes ofthe pathP are labelled by integers 1, ,
n. Let T c(n 2). Consider the following algorithm:

PATH TRANSMISSION
for to T do
begin
in time unit 2i-1 each odd node =< j < n calls its neighborj+ 1;
in time unit 2i each even node < j < n calls its neighborj+
end.

We prove that this scheme using 2 c( n 2 time units) communicates information
from all nodes 1, n to node n with probability exceeding e-c(1-p)n/8. A
symmetric scheme transmitting information from node n to all nodes n l, n 2, ,
with the same probability can be applied upon completion ofPATH TRANSMISSION.

The gossip scheme consisting ofthese two consecutive phases will have reliability exceeding
2e-ctl-E)n/8 and will take 4c(n 2) time units.
Consider successive periodsp, P2, , pT, each consisting oftwo time units, counted

since the beginning of the scheme. In each period, every node _-< j =< n calls node
j + exactly once. The probability of the event En that, upon completing PATH
TRANSMISSION node n gets information held by all other nodes, is clearly equal to
the probability that information from node reaches node n. Suppose that information
from node is currently at node j. A weighted coin with heads probability p is tossed
at time unit if and only ifj calls j + in this time unit according to PATH TRANS-
MISSION; distinct tosses are independent. If at least n heads are obtained in T
periods, the event E holds. Since in each time period the coin is tossed once or twice,
the probability of event E is not smaller than the probability of event Fn consisting in
getting at least n heads in T tosses. Consider the probability Rn of the complement
ofF. We have that

Rn pT-j( -p).

In view of Lemma 2.1, with m T, q p, and e 1/(cq), we have that
e)mq n 2; hence

Rn <= e-e2mq/2 e-e2c(n 2)( p)/2.

Sincee= 1- 1/(cq)>1/4,

Rn.e-c(l-p)9(n-2)/32 <e-c(1-p)n/8 for n>4,

which gives the required lower bound on the probability of En. [5]

LEMMA 3.4. Let Tn be an n-node rooted tree ofheight h > 3 and maximum degree
d >- 2. Let c be an integer constant > 4/( p). There exists a nonadaptive gossip
scheme working on T in time 4dc( h with reliability exceeding 2he-c1 -p)(h+ 1)/8.

Proof. Let Vo be the root of Tn and v, Vk, for k < n, its (other) leaves. Our
gossip scheme consists oftwo identical consecutive phases: in the first phase, information
held by all nodes is communicated to the root, and in the second, the root broadcasts
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all obtained information to other nodes. Each of these two phases consists of
c(h repetitions of the following procedure:

SENDING
for := to d do

in time unit each ith child x on odd levels calls p(x);
for to d do

in time unit d+i each ith child x on even levels calls p(x);
(time units are counted since the beginning ofprocedure execution and rth repetition

starts upon completion of (r- )th repetition).

The above procedure clearly takes 2d time units; thus the entire scheme works in
4dc(h time units. Consider any leaf v;, -< =< k, and the path pC;) between v0 and
vi. Let hi be the length of this path. Without loss of generality, we may assume that h
h -> h2 >= >= hk. Let Ei be the event that, upon completion of our gossip scheme,
complete information exchange among nodes ofthe path pC i) is not achieved (Ei is equal
to the event that either vi does not transmit his information to v0 in the first phase, or
that v0 does not transmit acquired information to vi in the second phase). Denote the
probability of Ei by Pi. Clearly, p >= P2 >= >= Pk. Let E t_J { Ei -< k }. If the event
E does not hold, complete information exchange is achieved in the tree Tn. The probability
ofE does not exceed k’pl, and Lemma 3.3 implies that

p < 2 e-c( p)( h + )/8.

Since k < n, it follows that the probability ofE is smaller than 2ne-c(- p)(h + 1)/8.
Our final gossip scheme is a refinement of the previous one, and it enables us to

control both the time and the number of calls used.
LEMMA 3.5. Let Tn be an n-node rooted tree with maximum degree d >= 2 and such

thatflOgd n] > 4. Let h be the height ofTn, and c an integer constant > 4/( p). There
exists a nonadaptive gossip scheme working on T, in time <= 8 cdh with reliability exceeding

2n2e-c(-p)rg"l/8 and using <= 4cn[lOgd n] calls.
Proof. By definition, h >= [1Ogd n] 1. Let L [h/(glOgd nq )J 1. We say that

a node v is a root in the ith layer, for 0 =< =< L, if v is a node on level i(flOgd nq
of T and has at least one descendant on level (i + )([1Ogd nq ). A subtree in the
ith layer is a subtree of T, whose set of nodes consists of a root in the ith layer and all
of its descendants, none of whose ancestors is a root in the (i + )th layer. It
follows that

1. For every 0 =< =< L, every subtree in the th layer has height between
[1Ogd n] and 2[ 1ogd n] 3;

2. Every root in the th layer, for =< =< L, is a leaf of a subtree in the (i )th
layer.

Our gossip scheme consists oftwo consecutive phases. In the first phase, information
held by all nodes is communicated to the root of Tn (which is the root in the zeroth
layer), and, in the second phase, the root broadcasts all obtained information to other
nodes. The two phases, however, are not identical, but the second one is a "mirror image"
in time of the first.

The first phase works by layers. First, information is accumulated in roots in the
Lth layer, then in roots in the (L )th layer, and so forth, and finally in the root in
the zeroth layermthe root of Tn. Transmission in the ith layer starts upon completing
transmission in the (i + )th layer. For a fixed i, transmission in the ith layer consists
in repeating the procedure SENDING, from the proof of Lemma 3.4, c(2[ 1Ogd n] 4)
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times in each subtree in the th layer in parallel. This completes the description of the
first phase. The second phase also works by layers, but here we start with transmission
in the zeroth layer, and transmission in the (i + )th layer starts upon completing trans-
mission in the ith layer.

Since one run of the procedure SENDING takes 2d time units, the total time used
by our gossip scheme is

4(L + )cd(2[ 1Ogd n] 4) =< 8 cdl h/ ([1Ogd n] )J([1Ogd n] 2) =< 8 cdh.

During the entire scheme, 2c(2[ 1Ogd n] 4) calls are placed between every node and its
parent; thus a total of at most 4cn[ 1Ogd r/] calls is required.

It remains to estimate the reliability of our scheme. Let T’ be a subtree of height h’
in the th layer, for some 0 _-< -< L. Denote by E’ the event that complete information
exchange is not achieved in the subtree T’ upon completion of our gossip scheme. In
view of Lemma 3.4, the probability of E’ is at most

2ne-C( p)(h’ + )/8.

Since h’ >_- [1Ogd n] 1, we can overestimate this probability by

2ne-C( p)r logd nq/8.

Let E be the union of events E’ over all subtrees in all layers =< L. There are clearly
less than n such subtrees, hence the probability ofE is smaller than

2n2 e-C( p)rlogdnq/8.

Clearly, if the event E does not happen, complete information exchange is achieved in
the entire tree Tn. Thus the reliability of our scheme exceeds

2n2 e-c( P)flgdn-I/8. ["]

Proof of Theorem 3.2. For every n >= 1, let Tn be a spanning tree of the network
G,, with diameter D(n). In each T,, consider as the root such a leaf that D(n) is the
height of the resulting rooted tree. The gossip scheme described for T, in Lemma 3.5
can be considered to work on networks G,.

Let c > 16 loge d/( p) (which also implies that c > 4/( p), as required in
Lemma 3.5). Hence

e-C( -p)logdnq/8 El

for some s < -2, and, consequently, the reliability of our schememwhich in view of
Lemma 3.5 exceeds 2n2nSmconverges to as n -- . It follows immediately from
Lemma 3.5 that the scheme works in time O(D(n)) and uses O(n log n) calls.

4. Conclusion. We have shown nonadaptive almost safe gossip schemes working
for bounded degree networks and using the number of calls and time of minimal order.
It remains to find such schemes for arbitrary networks, in particular, for hypercubes.

In the adaptive version of the problem, the total number of calls and the total time
needed are random variables; hence the expected values of these parameters seem to be
reasonable measures ofadaptive gossip scheme performance. A modification ofour tech-
niques gives gossip schemes working for bounded degree networks of diameters D(n) in
expected time O(D(n)) and using an expected number of O(n) calls.
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GALOIS GROUPS AND FACTORING POLYNOMIALS
OVER FINITE FIELDS*
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Abstract. Let p be a prime and F be a polynomial with integer coefficients. Suppose that the discriminant
ofF is not divisible by p. Denote by m the degree of the splitting field ofF over Q and by L, the maximal size
of the coefficients of F. Then, assuming the generalized Riemann hypothesis (GRH), the irreducible factors of
F modulo p in (deterministic) time polynomial in deg F, m, L, and log p can be found. This is a generalization
of a result of Huang [Riemann hypothesis andfinding roots overfinitefields, in Proceedings of the 17th ACM
Symposium on Theory ofComputing, Providence, Rhode Island, 1985, pp. 121-130 ]. As an application, under
GRH certain equations of the form nP R can be solved, where R is a given and P is an unknown point of
an elliptic curve defined over GF(p) in polynomial time (n is counted in unary). Finally, an elliptic analogue
of a result obtained recently by von zur Gathen [Theoretical Computer Science, 52 (1987), pp. 77-89] and
independently by Mignotte and Schnorr Comptes Rendus de l’Acadmie des Sciences. Srie I. Mathematique,
306 (1988), pp. 467-472] is proved, and thus a step is taken toward enlarging the set of primes p for which,
under GRH, polynomials over GF(p) in deterministic polynomial time can be factored.

Key words, factoring polynomials, finite fields, Galois groups, elliptic curves, generalized Riemann hypothesis
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1. Introduction. We consider here the problem offactoring polynomials over finite
fields. The problem can be formulated as follows. We have a polynomial f GF(pr)[x]
(p is a prime), and our aim is to find polynomialsf. GF(p")[x] irreducible over GF(p")
such that f ]]j... J. The polynomials f. are unique up to scalar multiples and per-
mutations. The problem can be solved deterministically in time (p + r + deg f)or l) and
by randomized (Las Vegas) methods in time (log pr + deg f)ol) (cf. Berlekamp [B ],
[B2], for variants and refinements; Rabin IRa]; Ben-Or [B l; Cantor and Zassenhaus
[CZ]). The randomized algorithms run in time polynomial in the input size (with respect
to the standard encoding) and work quite well in practice. However, it is an open problem
whether there exist deterministic methods running in time (log pr + deg f)o<).

Recently, some results related to the deterministic complexity of the problem were
obtained that use the generalized Riemann hypothesis (GRH). Deterministic polynomial
time methods are known with GRH

for factoring binomials (Adleman, Manders, and Miller [AMM], Huang [H 1]);
for the modulo p reduction of an irreducible polynomial F Z[x] for which the

Galois group Gal (F) ofF over Q is Abelian (Huang H2 );
when the preceding result is extended to the case when Gal (F) is solvable
(Evdokimov E );

for arbitrary f, if the prime factors ofp are small (Moenck [Mo], von zur
Gathen G], Mignotte and Schnorr MS]);

iff has a bounded number of irreducible factors (Rrnyai R ).
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In this paper, we continue this line of research. The main result is Theorem
5.5. If F Z[x] and the discriminant D(F) is not divisible by p, then, assuming
GRH, the reduction f of F modulo p can be factored over GF(p) in time
(deg F / m / log p 4- L), where m is the degree of the splitting field ofF over Q,
and L is the maximum size of the coefficients of F. The result is a generalization of
Huang’s result from [H2], mentioned above. Furthermore, some key ideas come from,
or were inspired by, that paper.

The organization of the paper is as follows. Sections 2-5 correspond to the major
steps of the proof. In 2 we show how an automorphism of a finite semisimple com-
mutative algebra can be used to find a nontrivial ideal of . In 3 we give an
algorithm to find all the minimal ideals of, provided that we know sufficiently many
automorphisms of . Application of results of this type to algebras of form
GF(p)[x]/(f), f

_
GF(p)[x],f[xp x can be used to obtain factorization algorithms

(Corollaries 2.4 and 3.2). In 4 we settle the case when F defines a Galois extension
over Q, i.e., when m deg F. We essentially work with the finite algebra Zp[ a]/
pZ,[ c], where c is a root of F. The elements of the Galois group of F induce auto-
morphisms of, and the results of 3 are applicable. Here we prove an unconditional
factoring result, also (Theorem 4.3). The proof of the main theorem is concluded
in5.

The rest of the paper is devoted to applications related to elliptic curves defined
over GF(p). We consider elliptic curves o defined over GF(p) and given by a Weierstrass
equation (cf. Silverman [Si], Lang [L2]) of the form

yE=x34-aX+b, a,bGF(p), 4a34-27b24:0.

The curve d has an Abelian group structure. Assuming GRH, we solve equations ofthe
form nP R, where R is a given, P is an unknown point of d, and either R is the 0
element of the group or the x-coordinate of R is in GF(p). Multiplication by n is un-
derstood with respect to the group law on the curve.

In 7 we prove an elliptic analogue ofthe result ofvon zur Gathen G and Mignotte
and Schnorr [MS]: under GRH, we can factor arbitrary polynomials over GF(pr) in
deterministic polynomial time if we have an elliptic curve defined over GF(p) such
that the order of the subgroup of d consisting of points defined over GF(p2) has small
prime divisors only. Here the latter group plays essentially the same role that the mul-
tiplicative group GF(p)* has in [G] and [MS]. In the algorithm, we use the linear
algebra approach from R and R2 ].

We intend to make use ofGRH transparent. To this end, we define two preconditions
depending on a positive integer parameter d.

Precondition Pd. We have a list of polynomials fr, gr GF(p)[X] for every prime
r d such that fr is an irreducible factor of the rth cyclotomic polynomial over GF(p),
deg gr < deg fr, and br gr mod fr is an rth nonresidue in the field Fr GF(p)[x]/(fr).

Precondition P_d is defined similarly, except that we have fr and gr for a//primes r
not exceeding d.

We have no unconditional deterministic polynomial time algorithm to find lists of
polynomials satisfying precondition Pd or P_d. However, from Huang [H2, 4 ], it follows
that under GRH both conditions can be met in time (d + log p)ot). Throughout the
paper, we use GRH only in assuming a precondition oftype Pd or P_d for an appropriate
d. Thus, in the statements, no explicit reference is made to GRH.

2. Finite algebras, automorphisms, and factoring. In this section, we collect some
facts about finite algebras and their automorphisms, which we need later. Also, we present
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here an important auxiliary algorithm (Theorem 2.3 ). This method will be our principal
tool in obtaining partial factorization of polynomials with the help of automorphisms.

Let be a finite semisimple commutative algebra over the field GF(p). By Wed-
derburn’s theorem (cf. Herstein [He], Kertrsz [Ke], Pierce [P]), 1 is a direct sum of
its minimal ideals

where the i are finite extension fields of GF(p). In particular, ,5 contains a subfield
; isomorphic to the prime field GF(p). Following von zur Gathen [G], we call the
direct sum

B()

the Berlekamp subalgebra of 1. The Berlekamp subalgebra can be characterized as the
set of fixed points of the Frobenius map of

B(.) {x ; x x}.
Let ei denote the identity element of ; (or, what is the same, the identity element of
0i ). These elements are the primitive idempotents of.

Let be a semisimple commutative algebra over GF(p). Suppose that contains
a field extension F of GF(p). Then, clearly, we can consider z as an F-algebra, as well.
By an F-automorphism of /, we mean an invertible F-linear map 4’ -- for which
p(xy) p(x)p(y) holds for every x, y 6 . A GF(p)-automorphism is simply referred
to as an automorphism. Every F-automorphism of 1 maps primitive idempotents to
primitive idempotents. If

FF... F(ktimes),

then every permutation ofthe k primitive idempotents induces a unique F-automorphism
of the algebra . We conclude that the automorphism group is isomorphic to the
symmetric group Sk on k letters. Every element u can be written uniquely as

u c e + cze2 + + ce,
where ci e F. If is an F-automorphism of, then

(2.1) dp(u)=cdp(e)Wc2dp(e2)+ +ckck(e).

By setting F GF(p), we obtain that the group of automorphisms of an algebra of the
form B(a/) with k primitive idempotents is isomorphic to S and that an automorphism
is completely described (2.1) by its action on the primitive idempotents.

The problem of factoring polynomials over GF(p) is closely related to the problem
of finding invariant subspaces of matrices over GF(p). Indeed, if

f(x)=xn+alXn-l + +an-X+anGF(p)[x]

is a polynomial to be factored, then we can form the companion matrix Ac off,

0 0 0 0 --an
0 0 0 --an-

0 0 --an-
6 6

Af is an n n matrix over GF(p), and, for the characteristic polynomial, we have
det (Af- xI) (- )nf(x). If we have a nontrivial invariant subspace U ofAf (acting
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on the linear space of column vectors V, of length n over GF(p)), then we can consider
the action of Ay on U. In this way, we obtain a linear transformation of U, and its
characteristic polynomial is a nontrivial divisor off. Conversely, it is easy to verify that
if g is a divisor off, then Ker (g(Af)) is a nontrivial invariant subspace ofAy. Note that
forming Afand computing the characteristic or the minimal polynomial ofa matrix from
M,(GF(p)) all can be done in time (n + log p) ot ).

An algebra over GF(p) can be given by structure constants. If al, a2, a, is
a linear basis of over GF(p), then multiplication can be specified by representing the
products aa as linear combinations of the ai as follows:

aiaj ’yia + + ’Yijnan.

The coefficients "Yijk GF(p) are called structure constants.
Recall that a nonzero element u

1 such that uv O.
PROPOSITION 2.1. Thefollowing algorithmic problems are equivalent up to deter-

ministic polynomial time reductions:
(a) finding a nontrivialfactor offe GF(p)[x];
b finding a basis of) an ideal , (0) < < 1 in a semisimple algebra over

GF(p); is given by structure constants;
c finding a zero divisor u g in a semisimple algebra over GF(p is given

by structure constants;
d finding a basis of) an ideal , (0) < < ff in an algebra 1 over GF(p of

the form GF(p)[x]/(f), where f GF(p)[x] is a given polynomial and
f( x) xp x;

e finding a nontrivial invariant subspace (0) < U < V. ofthe companion matrix

Af, wheref GF(p) x andf(x) xp x.
Proof For the fact that (b) can be solved using (a), we refer to R3 ]. The equivalence

of (b) and (c) is obvious because u is a proper ideal of if and only if u is a zero
divisor in . Problem (d) is a special case of problem (b). We now give a reduction of
(a) to (d). Let f GF(p)[x] be a polynomial to be factored. By Bedekamp’s reduction,
we can assume thatf( x)[xp x. We select a nontrivial ideal J of GF(p)[x]/(f)
with the help of an algorithm, solving (d). Let y be the image of x in the algebra
/. Clearly, we have f(y) 0; hence if re(x) GF(p)[x] denotes the minimal
polynomial of y in 3, then m If. Moreover, rn 4:0 because y generates . Now,
dimGFtp) < deg fimplies that m is a proper divisor. Finally, note that if og is given,
then rn can be computed efficiently. We have already discussed the equivalence of (a)
and (e); the proof is complete.

Ifwe have a proper ideal J of a semisimple commutative algebra , then its direct
complement (i.e., the unique ideal " of for which J holds) can be found
in polynomial time. Indeed, we can use the relation

{ X ;xy 0 for every y r }.

Having (a basis of) J, we can find a basis of by solving a system of linear equations
derived from the above (linear) characterization of’.

An extension of the argument of Proposition 2.1. gives the following simple but
useful statement.

PROPOSITION 2.2. Let f GF(p)[x] be a given polynomial having no multiple
factors. Thefollowing algorithmicproblems are equivalent up to deterministicpolynomial
time reductions:
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(a) finding the complete factorization off(x) into irreducible polynomials over
GF(p);

b finding (bases of) the minimal ideals i.e., the Wedderburn decomposition) of
the algebra 1 GF(p) x /(f).

Proof. Let f ggz’"g be the factorization of finto irreducible polynomials
over GF(p). By the Chinese remainder theorem, we have that

l GF(p)[xl/(f) GF(p)[xl/(g) GF(p)[xl/(g,).

We infer that the minimal ideals of are (f/gi). This takes care of the reduction
from (b) to (a). The converse statement can be verified similarly to the reduction from
(a) to (d) in Proposition 2.1. If- is a given minimal ideal of , then the direct com-
plement J to - is a maximal ideal and is easily computable. From the maximality of
J, we infer that m is an irreducible factor off. Moreover, by the Chinese remainder
theorem, the maximal (minimal) ideals of correspond uniquely to the irreducible
factors off. [3

Suppose that we have an automorphism 4:1 of. An automorphism is completely
described by the sequence of elements (a;), where al,’", an is a basis of ’over GF(p).

THEOREM 2.3. Let be an algebra over GF(p), dimGFtp) n > 1, given by
structure constants such that B( 1. Suppose also that condition Pn holds and, as
part ofthe input, we have a nontrivial automorphism 4 of. Then, in deterministic time
(n + log p) o(1), we can find a basis of) an ideal , (0) < < 1 of.

Proof. We observe first that at least one of the following statements (A), (B) must
hold:

(A) There is an i, =< < n and a primitive idempotent e of such that i 4: id
and dpi(e) e;

(B) t n ido
To prove the claim, we view $ as a permutation of the primitive idempotents of. If $ has a fixed point, then (A) obviously holds. Otherwise, let k > be the length

of the smallest cycle of $ and let e be an idempotent from a cycle of length k. If
bk 4: id, then (A) holds because k < n and q k(e) e. In the remaining case, $ id,
therefore all cycles of b have length k. We infer that k[ n, which implies (B).

If (A) holds, then we obtain a zero divisor in as follows. For each i, =< < n)
such that t id, we can easily find an element b; for which $ ;(bi bi. Now if
the conditions of (A) are met by SJ (and some e), then d SJ(b) b must be a zero
divisor in because d 4: 0, but the e-component of d is 0. Note that the b; can be
computed by solving systems of linear equations. Bases for the ideals dim are easily
obtained.

We now turn to case (B). We first select an automorphism n G such that n 4: id
and r/r id for a prime r n. The computations will be carried out in (GF(p) Fr,
the Fr-algebra obtained from by extending scalars. Recall that Fr is the splitting
field of the polynomial x over GF(p). Fr is available by condition P. From
dimFr n and B(cg) , we immediately see that it suffices to find a proper ideal
(0) < og < cg because, in this case, J f) a is a proper ideal of.

We put z (R) idFr. Clearly, z 4: id is an Fr-automorphism of and z id. These
imply the existence of a primitive rth root of unity c Fr and a 0 4: v e such that
-(v) cv. By condition P,, the primitive rth roots of unity are available; therefore such
c and v can be found efficiently by solving (at most r systems of linear equations
over Fr. If v is a zero divisor in cg, then v is a proper ideal of , and we have achieved
our goal.
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We are left with the case when v is invertible. Write q #Fr, q rkl, where
(r, l) 1. We now use a variant of the factoring method from [R1].

Algorithm 2.1.
INPUT: An invertible element v e cg, such that r(v) cv.
OUTPUT: A proper ideal of the Fr-algebra , i.e., an ideal different from c

and (0).
Step 1. Compute w v using fast exponentiation. Next, form the sequence

of elements

W wr W Wrm

until we obtain a scalar multiple of w d. for some d Fr. Let z denote the
next-to-last element of the sequence.

(* w is not a scalar multiple of because z(w) ctw v w; therefore "next-to-last
element" exists. This also implies that the polynomial x d splits into linear factors in

Step 2. With the help ofthe given rth nonresidue br Fr, find the roots d, d2, ,
dr Fr ofxr- d, using the Tonelli-Shanks algorithm [T], [Sh], [H2, 2 ].

Step 3. Compute bases for the ideals i (Z d ) until < is achieved.
In this case, output i.

(* We have that

0 zr-d 1 (Z-dl 1).. "(z-dr" 1);

consequently, not all factors on the fight-hand side can be inveible elements in . On
the other hand, the definition of z implies that these factors are nonzero elements
of . *)

End.

Algorithm 2.1 gives a way to find a nontfivial ideal of . The coectness of the
algodthm is clear. The length m + of the sequence of elements at Step is bounded
by log q + N n log p + 1. The linear algebra computations employed can be done in
polynomial time (using standard methods). We conclude that Algorithm 2.1 runs in
time polynomial in n and log p. This completes the proof ofTheorem 2.3 as well.

A straightfoard combination of Theorem 2.3 and the reduction in Proposition
2.1 Nves the next statement.

COROLLARY 2.4. Letfe GF(p)[xl,f(x)lx x, deg f= n > be a given poly-
nomial. Suppose also that condition Pn holds and, aspart ofthe input, we have a nontrivial
automorphism of GF(p)[xl/(f). Then, in deterministic time (n + log p)O(1),
we canfind a nontrivialfactor off.

3. Algebras with transitive grous of automorhisms. The results of the previous
section make it intuitively clear that if we have sufficiently many automohisms, then
we can find the minimal ideals of. This is indeed the case in the following sense.

THZORZM 3.1. Let be a finite commutative algebra over GF(p), dimavw)
n, for which B() , given by structure constants. Suppose that we have an auto-
morphism group G (, 2, m) of acting transitively on the set ofprimitive
idempotents of. Suppose also that condition P, holds. Then we can find the minimal
ideals of in time m + n + log p) o().

Pro@ First, we select an automohism r e G and find a proper ideal (0) <
< by using the algorithm of Theorem 2.3. This is possible, bang the trivial case

where n 1. Then compute the ideal < for which . Now, using this
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initial decomposition, we want to reduce our original problem to a smaller instance of
the same problem. The typical step of this reduction is as follows. Suppose that we have
already found a decomposition of 1 as a direct sum of ideals, below:

=JlJ2 Jk, k> 1, oj (0).

We use this decomposition as an input to the subsequent algorithm.

Algorithm 3.1.
j:=l;
while j -< m do
Compute the ideals

and for -< s, -< k form the intersections
s n (,).
if there exist indices s, such that

then
select a finer decomposition from the nonzero ideals of the form s VI .(t)

Jl J2 Jl, l>k
k:=l;
j’=l;
else j := j + end while
End.

Algorithm 3.1 computes a decomposition of that is (not necessarily properly)
finer than the original decomposition given in the input and that is invariant as a whole
under the action of G. The latter condition means that upon termination the primitive
idempotents of an ideal ofi YOITI1 a block under the action of G. Concerning the timing
ofthe algorithm, we note that the number l(m + +j always increases upon completing
an iteration of the while loop and never exceeds (n + )(m + ). Computing 4j(s)
and forming intersections of subspaces can be done in polynomial time; therefore Al-
gorithm 3.1 runs in time polynomial in n, m, and log p.

G preserves the direct decomposition obtained; consequently, the subgroup

St( a,o;i )= { rG, 71-(o o }
acts transitively on the primitive idempotents of oi. In particular, if dimaFo) oi > 1,
then there exists an automorphism r St(G, "i that is not the identity of :i. If we
can find one such r, then we can obtain a proper decomposition of ’i and thus a finer
decomposition of 1 by using the method of Theorem 2.3. Note also that Pn suffices
because dimauo) oi divides n.

To find such an and r e St(G, i ), we first select an element u of o1 that is not
a scalar multiple of ,. Next we compute some (at most k(rn + )) elements from the
G-orbit of u as follows.

Algorithm 3.2.
{u};

while [HI < k + do begin
K:=H;
for v K do
for =<i_-<rndo

H:= HU
End.
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There are at least k + elements in the G-orbit of u because G acts transitively on
the set of primitive idempotents of . Also, every execution of the body of the while
loop increases the size of H. These observations imply that the body of the outer loop
runs at most k + times, and from this we infer that the total time required is polynomial
in n, m, and log p. Upon termination, there exist an and x 4: y H such that x, y
J. Clearly, there exists a r G such that r(x) y, and therefore r St(G, Ji).
Moreover, such 7r can be found efficiently by keeping track of the automorphisms
contributing new elements i(v) to H. We can thus apply Theorem 2.3 to obtain a
decomposition ofJ and then a finer decomposition of

Starting from the initial decomposition s J -, we find that at most log2 n
execution of the method of Theorem 2.3 followed by Algorithms 3.1 and 3.2 gives the
minimal ideals of st. Since the basic ingredients (the method of Theorem 2.3 and Al-
gorithms 3.1 and 3.2) run in polynomial time, the theorem follows.

Remarks. In the subsequent applications, the group of automorphisms we have
acts regularly on the set ofprimitive idempotents; therefore we can find the automorphisms
required by an exhaustive search of the whole group.

(2) We can dispense with Pn in Theorem 3.1 if we have a stronger assumption on
the group ofautomorphisms G. IfG distinguishes the primitive idempotents in the strong
sense that St(G, ei St(G, ej) if 4: j, then a modification ofAlgorithm 3.2 can provide
an initial decomposition of’ and, later, ofany other ideal from a G-stable decomposition
without resorting to Theorem 2.3.

The next statement is an easy consequence of Proposition 2.2 and Theorem 3.1.
COROLLARY 3.2. Letfe GF(p)[x],f( x)l xp x be a given polynomial. Suppose

also that condition Pn holds and, as part ofthe input, we have an automorphism group
G (ck, 42, 4m) of GF(p)[x]/(f) acting transitively on the set ofprimitive
idempotents of 1. Then, in deterministic time n + m + log p)O), we can find the
completefactorization off.

4. Polynomials with regular Galois groups. In this section, let F Z[x],

F(x) x + ax- + + a,,

be a monic polynomial that is irreducible over Q such that K Q[x]/(F) is a Galois
extension of Q. Let L denote the maximum length of the coefficients ai. Suppose also
that the discriminant D(F) is not divisible by p. In this case, the reduced polynomial
f F(mod p) has only simple roots (in some extension of GF(p)). Our objective is to
factor lover GF(p). This will be accomplished by using the methods developed in the
previous sections.

Let D denote the integral closure of Z in K, and Dp (respectively, Zp) denote the
localization ofD (respectively, Z) with respect to the prime p of Z. Let a al, a2,

an denote the roots of F(x) in K. From K Q(a), we infer that there exist uniquely
determined polynomials H, H2, Hn Q[x], deg Hi < n such that ai Hi(a).
Also, there exists a unique automorphism 0i e Gal (K/Q) for which O (O/) O/i

As we have polynomial time algorithms to factor polynomials over algebraic number
fields (cf. Lenstra, Lenstra, and Lovfisz [LLL], Lenstra [Le], Grigoryev and Chistov
[CG], Landau [La]), the polynomials Hi can be found in time (n + L)tl). This, in
particular, implies that the Hi have size polynomial in n and L.

By [L1, Chap. 3, Prop. 16 ], we have that Dp Zp[a]; theretbre the Hi have p-
integral coefficients. Now let A AF Mn(Q) be the companion matrix off and, for
2 =< -< n, put Ai Hi(A). Let =< M(Q) denote the matrix algebra generated by
AF over Q. As F is irreducible over Q, we have the isomorphism of Q-algebras K



GALOIS GROUPS AND FACTORING POLYNOMIALS 353

We can assume that the isomorphism sends A to a, and thus Ai to ai, for =< -< n.
This implies that the minimal polynomial ofA; over Q is F for 2 -< =< n as well. Using
this isomorphism, we can describe the multiplication table ofGal (K/Q) in terms ofthe
Hi and A1. We have 0i o 0j /gk if and only if

(4.1) H(A,)= Hj( Hi(A,)).

Now let Bi M,(GF(p)) be the matrix obtained from Ai by reduction modulo p.
This definition makes sense because the entries ofAi are p-integral. Let 1 <- M,(GF(p))
denote the matrix algebra generated by the matrices B;. is a commutative algebra;
dimew) n and the matrices Bi all have the same minimal polynomial, namely f.
This follows from the fact that f is the characteristic polynomial (up to sign) ofBi. Thus

is semisimple. For every i, _-< _-< n, there exists a unique automorphism ri of
for which ri (B) Bi. The reduction of (4.1) modulo p shows that the map oi ri is
a homomorphism from Gal (K/Q) to Aut ().

THZORZM 4.1. The automorphisms r id, r2, "’", r, form a subgroup G of
Aut () isomorphic to Gal (K/Q). Moreover, G acts transitively on the set ofprimitive
idempotents of1.

Proof. Let -< M,(Q) denote the matrix algebra generated by AF over Q. Recall
that we have an isomorphism of Q-algebras K and , sending ai to Ai. Using this and
the fact that the elements of Q are represented in as scalar matrices, we obtain
the relation

(-1)’(’-1)/2 H (Aj-Ai )= D(F)I,
/j

where I is the identity matrix from Mn(Q). Reduction modulo p gives

(4.2) (-1)’(’-1)/2 I’[ (B-Bi)=D(f)I,
iej

where now I stands for the identity matrix from M,(GF(p)). As D(f) 4: O, we infer that
the matrices B; are all different. This implies that the action of Gal (K/Q) is faithful
(and thus regular) on the set {B1, B2, "", B,}. This proves at once the first two
statements.

Now let E be the splitting field of fand consider the E-algebra cg (R)aFCo) E.
We have dime n, is generated as an algebra over E by the element c B1 (R) l,
andf(c) 0 holds. These facts imply that the Wedderburn decomposition of cg is
E (9 E (9 (9 E (n times). Any GF(p)-automorphism r of can be lifted to an E-
automorphism of c by the law X (R)/3 -) 7r(X) (R) 3. In this way, we obtain an action of
G on eft. We show first that this action is transitive on the set of primitive idempotents
of eft. To this end, we tensor (4.2) with E, below:

(--1)n(n-l)/2 H (B(R) 1-BiN 1)=n(f)I(R) 1.
i4:j

This shows that for 4: j, Bj (R) Bi (R) is neither 0 nor a zero divisor in eft. Now
suppose that there exists a primitive idempotent u 6 and an integer j 4:1 such that
r(u) u. This would imply that u(Bj (R) B (R) 0, which is a contradiction.
Thus G acts semiregularly on the set of primitive idempotents of . This set has exactly
n elements and #G n; hence the action must be regular and therefore transitive.

Next, we remark that is isomorphic to the GF(p) subalgebra (R) _-< c via the
map X,--) X (R) l, and this isomorphism commutes with the action of the elements of G.
Thus it suffices to prove that G acts transitively on the primitive idempotents of (R) 1.
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For every primitive idempotent e e (R) l, there exists a set S(e) ofprimitive idempotents
of such that e u,Ste u, and, if e q: e2, then S(el) and S(e2) are disjoint. Now,
for 1, 2, let ui S(ei and r e G such that r( u u2. As r(e is again a primitive
idempotent of (R) l, the only possibility is r(e e2. This completes the proof of the
theorem, ff]

We have the following theorem.
THEOREM 4.2. Let F Z[x],

F(x)=x+ax-+ +a
be a monic irreducible polynomial over Q such that K Q[x]/(F) is a Galois extension

of Q. Let L denote the maximum length of the coefficients a. Suppose also that the
discriminant D(F) is not divisible by the prime p. Supposefurther that Pn holds. Then
the irreduciblefactors over GF(p ofthe reduced polynomialf F(mod p) can befound
in time L + n + log p) ot.

Proof. The matrices hi can be constructed in time (L + n)1. Then we obtain
the B; in time (L + n + log p)O. These matrices provide a transitive group of auto-
morphisms of the algebra B(). A basis ofB() can be obtained by solving a system
oflinear equations expressing the fact thatB() is the set offixed points ofthe Frobenius
automorphism of. Now Theorem 3.1 is applicable because dimFo B() divides n.
We can find the minimal ideals ofB() in time (n + log p)Otl. From these ideals the
irreducible factors of fover GF(p) can be recovered in time (n + log p)Ot. The proof
is complete.

Next, we prove an unconditional factoring result. Let F, K, D, and p be as in the
beginning of this section, and let ; (i 1, 2, k) be the prime ideals ofD over p.
Note that by the explicit factorization theorem of Dedekind [L1], [H1, Thm. 2.2],
f has exactly k irreducible factors over GF(p). Also, D are finite fields contain-
ing GF(p), the Frobenius automorphism of D is induced by an element b; e
Gal (K/Q), and the elements 4i form a conjugacy class C in Gal (K/Q). Suppose now
that the elements are different or, in other words, #C k. Our condition on the
discriminant implies that p is unramified in K, and thus #C k is equivalent to the
statement that one (and therefore all) of the q are self-centralizing elements of
Gal K/Q). Consider the elements ui a i (ol) . O Clearly, we have that

(4.3) u= uu_. .ue =pD.

We show that

(4.4) u/upD fori=l,...,k.

By symmetry, it suffices to show this for 1. From uu pD and from the primality
of , we infer that uj. e for some j > 1. This implies that (a) .(a) e ,
which, together with (a) 4: (c), supplies contradiction to the fact that D(F) is not
divisible by p. To obtain algorithms, we translate (4.3) and (4.4) to the language of
polynomials. Let Gi Zp[x], deg Gi < n be the unique polynomial for which bi (a)
Gi(c) and put gi(x) x Gi(x)(mod p). We define a map Zp[a] -- 3 by sending
c to B. This map clearly remains surjective if we restrict the domain to D to obtain a
ring-homomorphism rt D -- 3. We claim that ker rt pD. Indeed, pD <= ker is
obvious. The reverse containment follows from the fact that the lattices of ideals of
and D/pD are isomorphic (to the lattice of all subsets of a k-element set). For g
glgz’"g GF(p)[x], this shows that in we have that g(Bl) 0 and (g/gi)(B1) 4:
0 for 1, k; therefore g is divisible by f, and g/gi is not divisible by f. Let si
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gcd (f, gi ). We have that lcm (Sl, Sk) "-f and, for every i, there exists an irreducible
factorf of fover GF(p), which divides sj if and only if j. Consequently, f and si
are the same up to constant factors, and thus J, ..., J are the irreducible factors off.
This suggests the following very simple algorithm to find the irreducible factorization
off.

1. Compute the polynomials Hi for 1, ..., n defined at the beginning of this
section.

2. Compute in GF(p)[x] the polynomials f gcd (f, hi), where hi xp

Hi(x)(mod p). (Note that the gcd can be computed in time (n + log p)Otl) using fast
exponentiation modulof.) The nonconstant polynomials among thef give the irreducible
factors off. We have the following theorem.

THEOREM 4.3. Let F, n, K, p, andD be as in the beginning ofthis section. Suppose
that the Frobenius automorphism belonging to a prime ideal over p in D is a self-
centralizing element ofGal (K/Q). Then we canfactorfover GF(p in deterministic time
(n + L + log p)O().

Remarks. A slight modification of the method of Theorem 4.3 gives a partial
factorization of fif k > #C > 1.

(2) It is possible to prove Theorem 4.3 along the lines of Remark 2 after Theorem
3.1. The Frobenius automorphism of and G give a sufficiently large group of auto-
morphisms of to find the factorization of fusing the methods of 3. We present here
a considerably simpler and more efficient algorithm.

Example. Ifdeg F 6 and the Galois group is $3, the symmetric group on 3 letters,
then we can factor fover GF(p) whenever it has no roots in GF(p). This follows because
every nonidentity element of $3 is self-centralizing. More specifically, we consider the
polynomial from [GR, p. 220]

F(x)=x6-3xSW8x4- llx3+8x2-3x+ 1.

We have D(F) -686000 -245 373. The factorizations

and

f(X)=(X2WX+ 1) forp=2

f X X3 X2 W X "+" 1) X3 + X2 X + 1) forp=3

show that F is irreducible over Q. From the identities F(x) F( x) and
x6F( 1/x) F(x), we see that F(a) 0 implies that the roots ofF are

a-1 a
(4.5) a, l-a, -, ,

a a a-l’ 1-a

Note that these elements must be different, for otherwise a would satisfy a quadratic
equation over Q. Thus F splits in Q(a), and, by inspection of (4.5), we see that the
Galois group of F is isomorphic to $3.

The polynomials Hi corresponding to the automorphisms in (4.5) are HI (x) x,
H2(X) x, Ha(x) -x + 3x4 8x -- lx2 8x + 3, H4(X) Ha(x),
Hs(x) -x + 2x4 6x + 5x2 3x + 1, and H6(X) Hs(x). Now, for a prime
p, let hi GF(p)[x] be the polynomial xp H(x)(mod p). For p 3, the algo-
rith gives

gcd (f, h4) x x2 -{- x -+- 1, gcd (f, h6) x3 -- x2 x ’[" 1.
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For p 23, we obtain that

gcd(f, hE)=X2-x+ lO, gcd(f, ha)=X2+5x+ l, gcd(f, hs)=x2-7x+7.
In both cases, we have the irreducible factors of fover GF(p).

5. Galois extensions. We extend the results of the preceding section to the case
when # Gal (F) > deg F. More precisely, let F Z[x],

F(x)= aoxn + ax + +an
be a polynomial irreducible over Q. Let K denote the splitting field ofF over Q and put
rn K: Q]. Let L denote the maximum length of the coefficients ai. Suppose that the
discriminant D(F) is not divisible by the prime p. Our aim is to factor the reduced
polynomial f F(mod p)in time (rn + L + log p)o(). The condition on the discriminant
implies that (a0, p) 1. Thus we can instead consider the monic polynomial F* (x)
ag-lF(x/ao) Z[x]. This causes only a polynomial transformation in the input size,
and, from the modulo p factorization of F* (mod p), the factorization of f is easily
recovered. Clearly, F* is irreducible over Q, and we have also that (D(F*), p) 1. From
this point, we assume that ao 1.

The idea is to find an integral primitive element a ofKQ such that the minimal
polynomial H of a over Q has size polynomial in rn and L, and such that D(H) is not
divisible by p. Then we can apply Theorem 4.2. First, we need some preparation.

LEMMA 5.1. Let F, F2 be monic irreducible polynomials over Z,

F (x) (x-/3)(x-/32)"-(x-/3g) /3 =/3

Fz(x) (x-’r)(x-3’2)"" "(x- 3’)

such that D(Fi is not divisible by the prime number pfor 1, 2. Supposefurther that
p > (kl) 2. Then there exists an integer s, 0 <= s <= (kl) 2 such that Q(, ,) Q( + s’r),
and, ifH is the minimal polynomial of + so/over Q, then the discriminant D(H) is
not divisible by p.

Proof. Let K >_- Q(/3, -) be a finite Galois extension of Q and let be a prime
ideal of K over p. We claim that there exists an integer s in the interval indicated
such that

/3, + s, --/3 + s’ mod

if and only if i i2 andj j2. Indeed, if i 4:i2 orj 4: j2, then the above congruence
has, at most, one solution s(mod ). Thus the number of forbidden residue classes is
<(kl) 2. As the integers from the interval [0, (k/) 2 are pairwise incongruent mod
the claim follows. Now, for this s, we consider the element/3 + s7 and its minimal
polynomial H over Q. The textbook proofs of the theorem on primitive elements (such
as van der Waerden [W, 46 ]) show that/3 + s- generates Q(fl, ,). We have that
H Z[x] and, using the fact that the conjugates of fl + s7 are all of the form/3i + s%-,
we obtain that D(H) , and hence (D(H), p) 1. The proof is complete.

We need a bound on the size of the primitive elements obtained during the com-
putation.

LEMMA 5.2. Let F, K, L, and m be as in the beginning of this section. Let
2, a be the roots ofF in K and

fl S10/I -[- $2a2 -- + SkOlk,

where si Z, k <= m and 0 <- si <-- m4. Then the length ofthe coefficients ofthe minimal
polynomial of3 over Q is bounded by m(L + + 6 log2 m) + 1.
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Proof. By [KLL, Prop. 1.3 ], we have that [c;[ n2z (a is now viewed as a
complex number). From this, we obtain for an arbitrary algebraic conjugate/3 (j) of/3
that [/(J)[ =< makn2. Now using the fact that there are at most m conjugates, we obtain
that the absolute value of the ith elementary symmetric polynomial of these elements
is, at most,

m)(m4kn2t)m<__(2m62)m=
2mL+ + 61og2 m)

Considering the sign, the lemma follows. D
Now assume that p > m4. We construct an integral primitive element a of KQ

such that the minimal polynomial H of a has size polynomial in m and L, and such
that D(H) is not divisible by p, as follows. Let Ki Q(al, a2, oli) and suppose
that/3; Sial + s2a2 + + &ai 0 <= s; <= m4 is a primitive element ofKi / Q; we have
that (D(H;), p) 1, where Hi is the minimal polynomial of/3i over Q. For
/31 al, H1 F suffices. Suppose that we have already found /i and Hi. We have
deg (Hi) -< m, and, by Lemma 5.2, the size of the coefficients of Hi is bounded by
m(L + + 6 log2 m) + 1. Next, we factor F over K;. Let Fi 41 be the irreducible factor
of F for which F; 41(o/i +1) 0. With the help of Hi and Fi 41, we can compute the
minimal polynomial Fts) of/3; + sai 41 over Q for s 0, 1, m4 until we obtain that
(D(FtS)), p) and Ki(13i + sai 41) Ki 41. The latter property is attained if and only
if deg Fts) [Ki Q] deg Fi 41. Lemma 5.1 ensures the existence of such s. As the
polynomials Fi +1 are factors of F, their size is bounded by a polynomial of m and L.
This is also the case for the polynomials F() by Lemma 5.2. If a good s is found, then

Fs) The computations involved take timewe can put/i + /i -]- SO + and Hi 41

polynomial in m and L. Finally, if deg/-/j- m is attained, then we have K Kj-, and
we can put a =/3j, H =/-/. We have proved the following theorem.

THEOREM 5.3. Let F, K, L, and m be as in the beginning ofthis section. Suppose
that p is a prime and p > m4 Then we can find an integral primitive element a ofKQ
such that the coefficients ofthe minimal polynomial H ofa over Q have size bounded by
m(L + + 6 log2 m) + 1, and such that D(H) is not divisible by p. Moreover, this
algorithm runs in time m + L)o ).

Now we consider the question of factoring of f F(mod p) over GF(p), where p
is an arbitrary prime. Ifp _< m4, then we can afford to use Berlekamp’s method B 1].
Thus we can assume that p > m4 In this case, Theorem 5.3 gives an integral primitive
element a e K and a polynomial H Z[x] meeting the requirements of that theorem.
Next, form An Mm(Q), the companion matrix of H, and then the matrix Ahe
Mm(GF(p)) obtained by reduction OfAH modulo p. It is clear that Ah is the companion
matrix of the polynomial h GF(p)[x] obtained by modulo p reduction of H. Let
denote the matrix algebra generated by Ah over GF(p). With the algorithm of Theorem
4.2, we can factor h H(mod p) over GF(p) in time (L + m + log p)o1), provided
that, for every prime divisor r of m, we have Fr and an rth nonresidue br Fr. In terms
ofthe matrix algebra 3 =< Mm(GF(p)), this means that we have found the Wedderburn
decomposition of . Now let a e K be a root of F. As in 4, we see that a fi Zp[ a].
Moreover, we can find a polynomial F Zp[x], deg (FI) < m for which al Fl(a) in
time (m + L)() by finding a root of F in Q[x]/(H) (any of the roots suffices). Now
we compute the matrix X F1 (An) Mm(Zp). As the matrix algebra generated by An
over Q is isomorphic to Q[x]/(H), we obtain that F(X) 0. This implies at once that
the characteristic polynomial ofX is Fm/’, up to sign. Now let Y Mm(GF(p)) be the
reduction ofX modulo p. Clearly, Y e 3, the characteristic polynomial of Y isfm/’, up
to sign; and we have thatf(Y) 0. These imply that the minimal polynomial of Y over
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GF(p) is f; consequently, the matrix algebra c =< 3 generated by Y is isomorphic to
the subalgebra (Af) <= Mn(GF(p)) generated by the companion matrix Af, and Y Af
can be extended to such an isomorphism. As this isomorphism is efficiently computable,
we can factor f ifwe find the minimal ideals ofthe algebra c. In doing so, the following
easy lemma will be helpful.

LEMMA 5.4. Let c <= 1 befinite-dimensional semisimple commutative algebras
over a (finite)field E. Let S denote the set ofprimitive idempotents of 8. For e S,
we put

o(e) {x6 Cg,xe=O }.
Then (e) is an ideal of cg, and, if (e) 4: q, then (e) is a maximal ideal of qg.
Moreover, for every maximal ideal of c, there exists an e S such that (e).

Proof. It is easy to check that o(e) is an ideal. Let j, f be the primitive
idempotents of . As they are idempotents of as well, we can write f ZeSi e,
where Si S and Si ( Sj if 4: j. Thus, if e Si, thenf, J(e), but fj. J (e) for
4 j. This shows that J (e) is the direct complement ofthe minimal ideal of cg generated

byf. This proves the lemma. [2]

Lemma 5.4 and the Wedderburn decomposition of allows us to find the minimal
ideals of cg in time m + log p) otl as follows. First, we compute the primitive idempotents
of 3 (they are characterized as the identity elements of the minimal ideals of and
thus obtained by solving a system oflinear equations over GF(p)). Similarly, for a given
primitive idempotent e, (a basis of) o (e) can be obtained by solving a system of linear
equations. Lemma 5.4 shows that after #S -< m such steps, we have the maximal ideals
of cg. IfJ is a maximal ideal of , then its direct complement - (i.e., the unique ideal

such that cg o ’) can be obtained in time (m + log p)ot) (see 2). We note
that " is a minimal ideal, and every minimal ideal is a complement ofa maximal ideal.
Thus we have the Wedderburn decomposition of cg, and this allows us to compute the
Wedderburn decomposition of (Af) <= Mn(GF(p)), from which we obtain the irreducible
factors of fover GF(p) in time (n + log p)O). We have proved the following theorem.

THEOREM 5.5. Let F Z[x] be an irreducible polynomial over Q. Let L denote
the maximum length ofthe coefficients ofF and let m denote the order ofthe Galois group
ofF. Suppose that the discriminant D(F) is not divisible by the prime p. Assume that
precondition Pm holds. Then we canfactor the reducedpolynomialf= F(mod p) in time
(m + L + log p)O(1).

The requirement of irreducibility ofF can be dropped because Theorem 5.5 can be
applied to the irreducible factors of F over Q. Note that the irreducible factors can be
found in polynomial time, and their size is bounded by a polynomial of the input size
(cf. [LLL], [M]).

COROLLARY 5.6. Let F Z[x] be a polynomial (not necessarily irreducible over
Q), L be the maximum length of the coefficients ofF, and m denote the degree of the
splitting fieM ofF over Q. Suppose that the discriminant D(F) is not divisible by the
prime p. Assume that precondition Pm holds. Then we canfactor the reduced polynomial
f= F(mod p) in time (deg F + m + L + log p)o).

6. Division polynomials of elliptic curves. First, we recall some facts about elliptic
curves. For proofs and details, the reader is referred to Silverman [Si], Lang [L2]. We
consider elliptic curves defined over a field K, given by a Weierstrass equation of
the form

(6.1) y2=x3+Ax+B, A,BeK, 4A3+27B:4:0.
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In the subsequent considerations, K will be either Q or a finite field. For a field E >= K,
we denote by 8(E) the set of solutions (x, y) e E9- of the above equation, together with
the ideal point P of the vertical lines of the x, y-plane. It is known that d (E) carries a
nice Abelian group structure. The 0 element is Po, and the group law can be succinctly
described as "three collinear points add up to zero." g denotes the curve (and the group)
over the algebraic closure of K. For a positive integer n, let r[n] denote the set of
elements P e 8 for which nP Po. If (n, char K) 1, then n] is isomorphic to
the direct sum of two copies of Z/nZ. If p char K, then either 8[pn] (0) or
o[pn] Z/pnZ.

We define the polynomials Pm Z[A, B, x, y] inductively as follows:

ff 1, 2 2y, if3 3x4 +6Ax2 + 12Bx -A2,

!4 4y(X6 + 5Ax4 + 20Bx3- 5A2x-4ABx- 8B2-A 3),

2m + !m + 23m-m -l3m +1 (m> 1),

2Y!2m m(m + 22m -1 m 22m +1

The polynomials !Pm (for m odd) and (2y)-m (for m even) belong to Z[A, B, x, y].

(6.2) fm=m ifm is odd,

(6.3) fm= arm is even

can be understood as elements of Z[A, B, x] by eliminating y using relation (6.1). If
(char K, n) 1, then we have that

(6.4) deg f= 1/2(n 2- 1) ifn is odd,

(6.5) deg f 1/2(n 4) if n is even.

The polynomialsf are called division polynomials of 8. We record some important facts
about the polynomials m andfm in the next proposition.

PROPOSITION 6.1. Let P (x, y) be an affine point of and let n be a positive
integer.

(a) If e t o 2 ], then e n if and only iff(x) O. In particular, if
(n, char K) 1, thenf has no multiple roots.

b Suppose that P o n ]. Then

nP=x-(n- !n +1..n n +22n !n 2!2n + )-’-n(c) Let Kn denote the extension fieM of K generated by the coordinates of
the points of o[n]. Then Kn/K is a Galois extension, and # Gal (Kn/K) <=
#GLz(Z/nZ) <-_ n 4.

Now assume that K Q, the field of rational numbers, and that A, B Z. For a
polynomial f Z[X, Y], we denote by Ifl the maximum absolute value ofthe coefficients
off. Also, we put ai max _j__< { [j[ }.

LEMMA 6.2. There exists an absolute effectively computablepositive constant c such
that an =< (2 (I A + BI)) cn3 for every positive integer n.

(m> 1).

Thus the polynomials
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Proof. Using the recursion formulas for rn > and information on the degrees of
the polynomials involved, we obtain that

l2m+[ <2(2m+ 1)8aam + 2 and [2m[ < 2(2m)8a4
rn/2o

Now the stated bound can be proved using induction on m. V1

Remark. The above bound is far from being precise. In [L2, Chap. 2, Thm. 3.1],
a better bound is obtained for A and B fixed. For our purposes, it suffices to see that the
polynomials m have size polynomial m and the sizes ofA and B. Lemma 6.2 implies
that the polynomialsfm also have size polynomial in m and sizes ofA and B.

After these preliminaries, we consider factorization problems related to elliptic curves
over GF(p).

THEOREM 6.3. Suppose that we have an elliptic curve o over GF(p), given by a
Weierstrass equation oftheform

y2 x + ax+ b, a,b GF(p), 4a + 27b =/= 0.

Let n be a positive integer and suppose that Pzn holds. Then we can factor the division
polynomialfn of o in time n + log p) o( .

Proof. Clearly, we can assume that n < p; otherwise, we can use Berlekamp’s method.
Let 0 -< A, B < p be integers such that a A(mod p) and b B(mod p), and consider
the Weierstrass equation y2 X + AX + B over Q. By 4A + 27B2 =/= 0, it is implied
that this equation defines an elliptic curve c over Q. Moreover, the recursion formulas
show that the division polynomialf can be obtained as the modulo p reduction of (the
coefficients of) the corresponding division polynomial Fn Z[ X] of . By Lemma 6.2,
the size ofthe coefficients ofF is bounded by a polynomial of n and log p. By Proposition
6.1 (a), n 4: p implies that (D(F), p) 1, and from Proposition 6.1 (c), we infer that
the degree of the splitting field of F over Q is r/4. Now the theorem follows from
Corollary 5.6. E3

Remarks. By a theorem of Serre [Si, Thm. 19.1] for an elliptic curve over
Q and a prime n, the typical case is Gal (Q/Q) - GL(2, ZnZ ). Thus Gal (Q,/Q) is,
in general, not solvable. This implies that Theorem 6.3 cannot be obtained from
Evdokimov’s theorem E ].

(2) If P_4 holds, then we can find the points of o[ n] in polynomial time. Indeed,
the algorithm of Theorem 6.3 gives the x-coordinates, and, from the x-coordinate of a
point P e o, the y-coordinate (and thus P itself) is obtained by solving a quadratic
equation. Moreover, we can efficiently solve quadratic equations in finite extension fields
of GF(p) if we have a quadratic nonresidue from GF(p).

The problem of factoring f is the elliptic analogue of the question of factoring
cyclotomic polynomials. The elliptic versions ofbinomial equations are problems oftype

(6.6) nP R, where R is a given and P is an unknown point of o.
The case where R P is covered by the preceding remark. We now give a solution for
the case when R =/= P and the x coordinate x(R) of R is in GF(p). We assume that
P__<6 holds. As before, it suffices to consider the case where n < p. From R =/= P, we
infer that, for any solution P0 of (6.6), P0 o[n] holds. We can then apply the multi-
plication formula from Proposition 6.1 (b). For the (unknown) point P (u, v), we
have that

,(u, v) + (u, v)
x(R) x(nP) u-

(u, v) 2
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It suffices to give algorithms for the cases when either (i) n is odd, or (ii) n 2 and
x(R) e E, where E is a finite extension of GF(p).

We restrict our attention to finding the x-coordinate of the solutions P0. From
x(P0), we obtain two candidates for y(P0) by solving the quadratic equation arising from
the Weierstrass equation of the curve. The correct value of y(P0) can then be selected
by substituting into (6.6). A nice feature of the multiplication formulas is that v can be
eliminated from them. Indeed, (6.2) and (6.3) gives

fn-1 (U)fn + (U)4(U + au+ b)
(6.7) x(R)=x(ne)=u-

L(u) 2

for n odd, and

x(R)=x(nP)=u-
fn-(U)fn+(U)

4(u3+au+b)f(u)2

for n even. In particular, for n 2, we have that

x(2P)
U4- 2au2 8bu + b2

4(u3+au+b)
The latter formula shows that solving 2P R can be done by factoring a polynomial of
degree at most four over E. By R 1, Thm. 1.1 ], this can be done in time (log (#E)) ot ),
provided that P_3 holds. Case (ii) is settled. We now turn to (i); i.e., we assume that n
is odd and that x(R) GF(p).

When cleating the denominators in (6.7), we obtain a polynomial equation
hn(u) 0, hn - GF(p)[u] for the first coordinates u x(P) of the points P e o such
that nP R. Using (6.4) and (6.5), we obtain that deg hn =< n 2 First, we dispose of the
case when R -R. Then R e o[ 2 ], and thus R itself, is a solution of (6.6). All the
solutions can be obtained as sums of the form R + S, where S e o n]. The elements of
o n can be found using the method ofTheorem 6.3, and, observing that sums ofpoints
on o can be computed efficiently, this case is settled.

We can therefore assume that R 4: -R. Now n 4: p implies that (6.6) has exactly
n 2 solutions (any solution can be obtained as P0 + S, where P0 is an arbitrary solution
and S e o[ n]). Using the fact that n is odd, we obtain that x(P0) 4: x(P if P0 and P
are two different solutions of (6.6). Indeed, P0 4: Pl and x(P0) x(P together imply
that Po -PI. On the other hand, P0 and -P0 cannot be both solutions of (6.6). We
have the important facts that deg hn n 2 and that h, has no multiple roots over GF(p).

Again, we consider the elliptic curve

c: y2 X3 +AX+ B, A,B_Z, a=A(modp), b=B(modp),

and 0 =< A, B < p. Thus o is obtained by modulo p reduction of the coefficients of .
Also, let 0 -< C < p be an integer such that x(R) C(mod p) and let T cg be a point
such that x(T) C. Consider the equation nP= T in , where P is an unknown point
of cg. As in the case of o, we obtain for P (u, v) a condition analogous to (6.7),

(6.8) C=x(nP)=u Fn- (u)Fn + (u)4(u +Au+ B)
n(U)2

where Fi (u) e Z[ u] is the division polynomial of cg defined by (6.2) and (6.3). By
cleating the denominators, we obtain an equation of the form H,(u) 0, Hn Z[ u],
h, H,(mod p). Lemma 6.2 and (6.8) show that nl is bounded by a polynomial of
n and log p. As in the finite case, we infer that deg Hn n 2 and that the roots of Hn are
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precisely the x-coordinates of the points P e c such that nP T. Now let P0 e c be a
solution of this equation and consider the field K’ Q(x(P0), y(P0)) generated by the
coordinates ofP0. We have that [K" Q] =< 2n 2. Recall that Qn denotes the field generated
by the coordinates of the points from cg n ]. Clearly, Hn splits in the composite K"
OnK’. From Proposition 6.1 (c), we obtain that [K"" Q] -< 2n6; i.e., we have a bound
polynomial in n for the degree of the splitting field of Hn. We can thus apply Corollary
5.6 to factor hn and eventually solve (6.6). We can summarize the preceding discussion
in the following theorem.

THEOREM 6.4. Suppose that we have an elliptic curve d over GF(p), given by a
Weierstrass equation oftheform

y2 X + ax + b, a, be GF(p), 4a + 27b2 4 0.

Let R e o be a given point such that x(R e GF(p and n be a positive integer. Suppose
that precondition Pz26 holds. Then we can find the points P e o satisfying nP= R in
time (n + log p)ot ).

7. Factoring polynomials modulo special primes. Recently, von zur Gathen [G]
and, independently, Mignotte and Schnorr MS have shown that under GRH we can
factor polynomials over GF(p) in deterministic polynomial time if the multiplicative
group GF(p)* is smooth (i.e., the prime factors ofthe order are not exceeding O(log p)
for a positive constant c). We prove a result of this type here. In our case, the subgroup
ofrational points over GF(p2) ofan elliptic curve defined over GF(p) plays the role that
the multiplicative group GF(p)* had in the above results.

Let p be an odd prime and suppose that we have an elliptic curve d over GF(p)

(7.1) yE=xa+ax+b, a,beGF(p), 4aaw27b2=/=0.

Let c N’(GF(p2)) denote the subgroup of points of d rational over GF(p2) and let
k #eft p... pre, be the prime factorization of the order of eft. We remark that, for
given a, b e GF(p), k can be computed in time O(log9 p) (cf. Schoof [S]). We put
maxl _i_r {Pi }.

THEOREM 7.1. Letp, , be as above. Letfe GF(p)[x], deg f= n be apolynomial
to befactored and suppose that P_Et6 holds. Then we can find the irreduciblefactors off
over GF(p in time + n + log p) o( }.

Proof. By the availability of Berlekamp’s reduction [B2 ], it suffices to give an al-
gorithm for the case where fix’ x. Also, we can assume that f is monic. Let a l,

2,"’, an e GF(p) be the roots off. The idea of the algorithm is to interpret the
elements a; as x-coordinates of affine points of
such that x(P . In general, there are two possible choices using the fact that, for
two affine points P 4 R e , we have that x(P) x(R) if and only if P -R. In any
case, we know that Pi

For l e + e2 + + er, let s, s2, "’", st be a sequence consisting of the prime
factors of k #off with the appropriate multiplicities (i.e., the sequence contains Pi
exactly e times). For _-< j _-< l, we put ma. 1"I_;_ si. Note that mt= k.

PROPOSITION 7.2. Let Po, Ro
x(Ro). For <-j <- l, we let P mPo andR maRo. Then there exists an integer 0 <=
< such that x(Pi g= x(Ri ), and either at least one ofthe points Pi + , Ri + is Poo, or

both ofthem are affine points and x(Pi + x(Ri + ).
Proof. Let be the largest integer j such that Pa and Ra are both affine points and

x(P) g= x(R). Clearly, such exists and < 1. If neither of the points Pi +l, Ri + is Poo,
then we must have that x(Pi + x(Ri + ). [-]
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Recall that for a point P u, v) g \ g m], we have the multiplication formulas

(7.2) x(mP) u

for m odd, and

(7.3) x(2P)

fm- l(U)fm + (U)4(U + au+ b)
fro(U) 2

U4- 2au2- 8bu + b2

4(u3+au+b)

Let gm(U) - GF(p)(u) denote the rational functions on the fight-hand sides of 7.2 and
(7.3). We can compute gm(C) for a matrix C Mn(GF(p)), which is similar to a diagonal
matrix, provided that the "denominator" is invertible; i.e., if fm(C) 2 for m odd and
4(C + aC + b) for m 2 is an invertible matrix. In this case, if 3’; are the eigenvalues
of C, then the eigenvalues ofgm(C) are gm("Yi ).

After these preliminaries, we consider the problem of factoringf. First, we form the
companion matrix C Af of f. We try to successively compute the matrices Mi
gmi(Af), (Mo Af). Given Mi, we attempt to compute Mi / only ifMi has no multiple
eigenvalues (this holds for M0). If Mi has multiple eigenvalues, then we take a step
toward factoring fas follows. If Mi has at least two different eigenvalues, then, for the
minimal polynomial g of Mi, we have that < deg g < n, g(x) lxp x. In this case,
the problem of factoring f is reduced to the same problem regarding g. Indeed, if h is a
proper factor of g, then ker h(Mi is a nontrivial invariant subspace ofAf(Mi is a poly-
nomial of Af and thus AfMi MiAf). The amount of computation necessary to find g
from Mi and a nontrivial factor of ffrom h is (n + log p) o(l). IfMi has no two different
eigenvalues, then > 0 and Mi diag (a, a, a) for some a e GF(p). In this subcase,
we find a point R e such that x(R) a. This can be done by solving in y the quadratic
equation y2 o3 -t- aa + b in GF(p2). With this point R, we consider the equation
s; P R, where P is an unknown point of g. The solutions ofthis equation can be found
in time (t + log p)o(1) by Theorem 6.4. By our inductive hypothesis, M has no multiple
eigenvalues. If 3’ is an eigenvalue of Mi 1, then we have that gsi (Y) a. From this, we
infer that there exists a point P e g such that x(P) 3’ and sP R. We have, however,
all ofthe points P satisfying the latter equation. Consequently, we can find the characteristic
roots of Mi- by substituting the x-coordinates of the points P into the characteristic
polynomial h ofM;_ 1. As this matrix has no multiple eigenvalues, we obtain the complete
factorization of h and then the complete factorization off.

We can thus assume that Mi has no multiple eigenvalues. For m si / 1, we compute
N fm(M if m is odd and N M3 + aM + b if m 2 (i.e., the "denominator" of
gm(Mi )). This computation requires time (n + + log p) o(1). If N is singular, then we
distinguish two subcases: the first of them being N 0. Then the eigenvalues ofM are
all roots offm if m odd, or x + ax + b if m 2. By Theorem 6.3, we can find the roots
of these polynomials in time (t + log p)o(1) and thus find the eigenvalues of Mi. This,
in turn, leads to the complete thctorization of fat additional cost (n + log p)o(1).

In the remaining subcase, N is singular, but N 4: 0. Then we compute Ker N. This
is a proper invariant subspace of Af, and we obtain a proper factor of f by computing
the characteristic polynomial ofAfin this subspace. The time required is (n + log p)O(l).

Finally, we are left with the case when Mi has no multiple eigenvalues and N
is nonsingular. We compute Mi + by the formula Mi + gm(mi ). This takes time
(n + + log p)O(1).

We have finished the description of the general step of our iteration for generat-
ing the matrix Mi + from Mi. This step requires time (n + + log p)O() and has
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three possible outcomes: (a) we compute Mi +1; (b) we obtain a proper (but possibly
partial) factorization off; (c) we obtain a polynomial g GF(p)[x], < deg g <
n, g(x) lxp x such that, from a nontrivial factor h ofg, we can find a nontrivial factor
of fin time (n + log p)o(1).

Proposition 7.2 ensures that, after less than O(log p) iteration steps, we terminate
(i.e., we cannot compute Mnext) at either (b) or (c). If type (c) termination occurs, then
we repeat the procedure with g in the place off, and so on. Observe that type (c) ter-
mination can happen in a row only at most n 2 times. When we arrive to a type (b)
termination, then, working backward, we obtain a proper factorization of f in time
(n + log p)(), as in [R2, 3]. Summing up, in time (n + + log p)), we find a
proper factorization off. This suffices to prove the theorem. D

A concluding remark. Using a recent result of Lenstra [Len], the preconditions
used throughout the paper can be weakened. We define the precondition Ld for a positive
integer d as follows: we have polynomials fr GF(p)[x] for every prime r[ d such that
deg fr r, and fr is irreducible over GF(p). The statements of the paper remain valid if
we replace Pd by Ld.
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Abstract. This paper presents polynomially bounded algorithms for finding a cycle through any
two prescribed arcs in a semicomplete digraph and for finding a cycle through any two prescribed
vertices in a complete k-partite oriented graph. It is also shown that the problem of finding a
maximum transitive subtournament of a tournament and the problem of finding a cycle through a
prescribed arc set in a tournament .are both NP-complete.
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1. Introduction. For general digraphs, it is easy to see, using standard trans-
formations, that the following three problems are equivalent from an algorithmic point
of view: (i) Given four distinct vertices Ul, u2, vl, v2 in a digraph D, decide whether
D has disjoint paths connecting Ul to Vl and u2 to v2; (ii) Given two arcs el, e2 in
a digraph D, decide whether D has a cycle through el and e2; and (iii) given two
vertices u and v in a digraph D, decide whether D has a cycle through u and v.

The problem of finding a cycle through two prescribed vertices or arcs in a digraph
is NP-complete, as shown by Fortune, Hopcroft, and Wyllie [5]. Hence all three of
the above problems are NP-complete for general digraphs. However, if we restrict
ourselves to a certain class of digraphs, then the complexity (as a measure of difficulty)
of these problems can vary considerably. For example, the third problem is trivial
for tournaments, while the other two, as we see below, are not quite trivial, even
though they prove to be polynomially decidable. Note also that, for semicomplete
digraphs (that is, digraphs with no two nonadjacent vertices) the first two problems
are equivalent from an algorithmic point of view.

If el ylx2 and e2 y2xl are given arcs in a digraph D, then a necessary con-
dition for D to have a cycle through el and e2 is that for each vertex z of D, D- z
has a path from xi to yi for 1 or 2. This condition is also sufficient when D has
no two disjoint cycles, as shown in [11]. In general, however, it is far from sufficient
even for tournaments. Indeed, there are examples of 2-connected tournaments and of
4-connected semicomplete digraphs that contain two independent arcs not contained
in a cycle [3]. Thus there seems to be no simple structural characterization of the
semicomplete digraphs with no cycle through two given arcs. However, we conjec-
ture that there exists a polynomially bounded algorithm for the k-path problem in
semicomplete digraphs. The k-path problem is the following: Given distinct vertices
Ul, u2,..., uk, Vl, v2,"’, vk in a digraph D, decide whether D has k disjoint paths
PI,P2,"’,Pk such that Pi is a (ui,vi)-path for 1,...,k. We verify this here
for k 2. In the last section, we show that, if k is not fixed, then the problem is
NP-complete.

In [5] it is shown that the k-path problem is in P for acyclic digraphs. In [10] the
2-path problem is completely solved in the case of acyclic digraphs. We also present
a polynomially bounded algorithm for finding a cycle through two given vertices in
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a digraph that have the same neighbours. This shows that the third of the above
problems has an easy solution in terms of a polynomial algorithm, for complete k-
partite digraphs.

2. Terminology and preliminaries. Most of the notation is the same as in
[2], [9], but, for completeness, we repeat most of it here, except for the very standard
notation, for which we refer to [4].

i digraph D consists of a pair V(D), E(D), where V(D) is a finite set of vertices
and E(D) is a set of ordered pairs xy of vertices called arcs. In our definition of a
digraph, we do not allow multiple arcs in the same direction between two vertices.
An oriented graph is a digraph with no cycle of length 2. A semicomplete digraph is
a digraph with no nonadjacent vertices. A tournament is an oriented graph with no
nonadjacent vertices. Thus tournaments are a special subclass of the semicomplete
digraphs.

If there is an arc from x to y in the digraph D, then we say that x dominates y,
and we use the notation x - y to denote this. We also sometimes denote the arc xy
by the symbol x - y. For any subset A of V(D) U E(D), D- A denotes the subgraph
obtained by deleting all vertices of A and their incident arcs and then deleting the
arcs of A still present. We write D x instead of D (x} when x E V(D)U E(D).
For a given vertex x of a digraph D, d+ (x) (respectively, d-(x)) denotes the number
of vertices dominated by x in D (respectively, dominating x in D). We also call d+ (x)
(respectively, d-(x)) the outdegree (respectively, the indegree) of x.

The subgraph induced by a vertex set A of D is defined as D (V(D) \ A) and is
denoted by D(A). We often write x E D instead of x V(D) or x E(D), but the
meaning is always clear. A path is a digraph with vertex set xl, x2,.--, Xn and arc
set x -- x2, x2 --* x3,’", xn- -* xn such that all the vertices and arcs shown are
distinct. We call such a path an (x, x)-path and denote it by x --, x2 - --* x.
If P is a path containing a subpath from x to y, then we let P[x, y] denote the part
of P from x to y. A cycle is defined analogously. A k-cycle is a cycle of length k.

A component D of a digraph D is a maximal subdigraph, such that, for any two
vertices x, y D D contains an (x, y)-path and a (y,x)-path. A digraph D is
strong if it has only one component. D is k-connected if, for any set A of at most k- 1
vertices, D- A is strong.

The local connectivity from x to y in a digraph D is the maximum number of
internally disjoint paths in D from x to y.

Let x and y be vertices of a digraph D such that there is no arc from x to y. An
(x, y)-separator of size k is a set S of k vertices of D (x, y) that separates x from y
in D; that is, there is no (x, y)-path in D- S. We also sometimes call S a k-separator
of x and y. A k-separator S of x and y is called trivial if either x has outdegree zero
or y has indegree zero in D- S.

The following theorem gives a sufficient condition, in terms of local connectivities,
for the existence of disjoint (x, yl)-, (x2, y2)-paths in a semicomplete digraph T.

THEOREM 2.1 (see [3]). Let T be a semicomplete digraph and let Xl,X2,y,y2 be
distinct vertices of T. If T- {x,y} has three internally disjoint (x3_,y3_)-paths
and T- {x3-, Y3-} has two internally disjoint (x,y)-paths, for i 1 or 2, then T
has a pair of disjoint (x, yl)-, (x2, y2)-paths.

In [3] this was shown to be the best possible in the sense that "three" cannot be
replaced by "two," and "two" cannot be replaced by "one."

3. Cycles through two vertices with the same neighbours. Before we
describe the main algorithm, we point out that in some special cases it is easy to
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decide if a digraph D has a cycle through two prescribed vertices x, y. If x y, then
we just check if D has a (y, x)-path. The next result deals with the case where x and
y are nonadjacent, but have the same neighbours.

THEOREM 3.1. There exists a polynomially bounded algorithm for the following
problem: Given two nonadjacent vertices x, y in a digraph D such that a vertex z in
D is adjacent to x if and only if z is adjacent to y, find a cycle through x and y or
show that such a cycle does not exist.

Proof. We first assume that there are two internally disjoint (x, y)-paths P1, P2
and two internally disjoint (y,x)-paths Q1, Q2 in D. We claim that D then has a
cycle through x and y. If one of P and P2 has length 2, then the union of that
path and one of Q1, Q2 is a cycle through x and y. So assume that P, P2, Q, Q2 all
have length at least 3. Let x (respectively, y be the successor of x (respectively,
predecessor of y) on P. Then, by the assumption of the theorem, x is adjacent to y,
and y is adjacent to x. If x--y, or x-y, then we obtain a cycle through x and y
as above. On the other hand, if y x and y x are arcs, then they are contained
in a path P from y to x such that V(P) V(PI). Then P J P2 is a cycle through
x and y. If the paths P, P2, Q1, Q2 do not exist, then we can assume that P, P2 do
not exist, and so there is a vertex z such that D- z has no path from x to y. Let
V(D)- z A J B such that x E B, y E A, A N B q} and there is no arc from B to A.
Now D has a cycle through x and y if and only the following conditions are satisfied:

(i) There is a vertex a e A \ {y} such that D- a has a path from z to y and
y--a;

(ii) There is a vertex b B \ {x} such that D b has a path from x to z and

Note that if a exists in (i), then a dominates x, and if b exists in (ii), then y dominates
b. Since all the steps in the argument can be checked in polynomial time, the proof
is complete. [:]

Note that Theorem 3.1 and the remark preceeding it imply the following result.
COROLLARY 3.2. There exists a polynomial algorithm for deciding if two vertices

in a complete k-partite oriented graph are on a common cycle (regardless of the value
ofk).

The restriction of this result to the case where k 2 was found by Manoussakis
and Tuza [7].

4. Two technical results. We now turn to the main algorithm, which is based
on Theorem 2.1. In this section, we prove a theorem that deals with a special case
of the 2-path problem for semicomplete digraphs that do not satisfy the condition
of Theorem 2.1. We also prove a lemma that allows us to reduce the problem to a
smaller one in certain cases.

THEOREM 4.1. Let T be a semicomplete digraph, and let xl, x2, y, Y2 be distinct
vertices of T such that, for each 1,2, there are two, but not three, internally
disjoint (xi, yi)- paths in T- (x3-i, Y3-i}. Suppose that all (xi,yi)-separators of
size 2 in T- (x3-i, y3-i} are trivial, .for 1,2. Then T has a pair of disjoint
(xl, y)-, (x2, y2)-paths.

Proof. When we refer to indegrees and outdegrees, below, it is to be understood
that, for instance, d-(yl) 2 means that Yl has indegree 2 in T- (x2, Y2). Also,
when we refer to a 2-separator of xi and yi, it is to be understood that this is in
T {x3_i, Y3-i), for 1, 2.

We may assume without loss of generality that every (xi, yi)-path has length at
least 3, since otherwise it follows easily, from the assumption of the theorem, that T
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has the desired paths. Also we may assume, without loss of generality, that there is
no arc xi y3-i for 1,2.

We can assume that all (xi, y)-separators of size 2 induce a 2-cycle, for i 1, 2.
For if, without loss of generality, {x, y} is an (xl, yl)-separator of size 2, such that
there is only one arc between x and y, say x y, then we add the arc y x. Now,
if P and P2 are disjoint (x, y)-, (x2, y2)-paths in T with the arc y -- x added, then
P2 does not use the arc y --. x, and, if P uses that arc, then we can replace part of
P1 by either the arc x x or y y, one of which exists by the assumption that all
2-separators of x, y are trivial. We now distinguish between four cases, depending
on the half degrees of xi, Yi, 1, 2.

Case 1. We have that d-(yl), d-(Y2)

_
3.

Then the assumption of the theorem implies that d+(x) d+(x2) 2. Let
r, r, a, a be chosen such that X r, r and x2 --* a, a. By the assumption that all
(x2, y2)-paths have length at least 3, y2 -- a, a. Hence it follows from the fact that all
the 2-separators are trivial and induce directed 2-cycles that there are three internally
disjoint (a, y2)-paths and three internally disjoint (a’, y2)-paths in T {Xl, yl,x2}.
Now Theorem 2.1 implies the existence of disjoint (x, y)-, (a, y2)-paths (respectively,
disjoint (x, yl)-, (a’, y2)-paths) in T-{x2}, ensuring the existence of the desired paths
in T, unless a (respectively, a’) is contained in an (x, y)-separator of size 2. Thus
we may assume that {a, a’} {r, r’}, and now the existence of the desired paths
follows from Menger’s theorem. Now we assume that min{d-(y),d-(y2)} 2 and,
by directional symmetry, min{d+ (x), d+ (x2)} 2.

Case 2. We have that d-(yi), d+(x3_i) _> 3, i- 1 or 2
We may assume, without loss of generality, that 2. Hence d+ (x2) d-(yl)

2. Let a, a, s, s be chosen such that x2 -- a, a and s, s --. y. As in Case 1, we
can assume that {a, a’} {s, s’}. T {x2, Y2, Y} has a pair of disjoint (x, s)-,
(Xl, s’)-paths P1, P2, by the assumption in the theorem. Let P and be P2 be chosen
such that they are minimal; i.e., no proper subset of the vertices of Pi induces a
semicomplete digraph containing a path with the same endvertices, i 1, 2. Let P be
any (x2, y2)-path in T- {Xl, yl}. Go backward on P from y2, and let u be the first
vertex in P U P2 that we encounter. If u E {s, s}, then it is easy to see that T has
the desired paths. Suppose, without loss of generality, that u is on P. If P is the
path x u -. s, then T has the desired paths, since {u, s} is not a 2-separator of
x2 and y2. Thus we may assume that P1 has length at least 3. Now it follows from
the minimality of P that P tA {X2} [-J Flu, y2]- {x} contains an (x2, y2)-path that is
disjoint from the (Xl, Yl)-path P2 t2 {s’ Yl} (s dominates the successor of Xl on P1
and x2 --* s). Now we assume that min{d+(x),d-(y2)} min{d+(x2),d-(yl)} 2

Case 3. We have that d-(yi) >_ 3, d-(y3_i) --d+(x3-i) 2,i- 1 or 2.

We may assume, without loss of generality that 2. By the assumption of the
theorem d+(x2) 2.Let a, a, r, r, s, s be chosen such that x --, r, r, and s, s --. yl

and x2 a, a’. As in Case 1, we can assume that {a, a’} C {r, r’, s, s’}. If there is
an arc from u e {r, r’} to v e {s, s’}, then either the desired paths exist or {a, a’}
{u, v}. Hence we may assume that there is at most one such arc. Thus we may
assume, without loss of generality that there are no such arcs ending in s. Suppose
first that s {a, a’ }. Then, by the assumption of the theorem, T- {x, y, s} contains
two internally disjoint (x2, y2)-paths and T-{x, yl,x2, Y2} contains three internally
disjoint (r, s)-paths. Thus we conclude, by Theorem 2.1, that the desired paths exist,
unless r e {a, a’}. Similarly, r’ e {a, a’}. If {r, r’} {a, a’}, however, then any two
disjoint paths from {x,x2} to {y,y2} (which exist by Menger’s theorem) can be
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modified into the desired paths. Hence we may assume that s E {a, at}. Now either
the desired paths exist, or there can be no arc a --, from {r, r’} to {s, s’} ending in s’
either, since that would imply a 2-separator of x2, y2 (namely, {a, }) that is different
from {a, a’}, a contradiction. Thus, by the same argument as above, s’ e {a, a’}; i.e.,
{a, a’} {s, s’}. Now we can argue as in Case 2 to show that the desired paths exist
in this case. Now, by directional symmetry, there only remains one case.

Case 4. We have that d+(Xl)= d-(yl) d+(x2) d-(y2)= 2
Let a, at, b, bt, r, rt, s, s be chosen such that xl --* r, r and s, s --. Yl and x2 --*

a, at, and b, b -- Y2.
Suppose first that {a, a’, b, b’} {r, r’, s, s’}. If {a, a’} equals {r, r’} (respectively,

{s, st}), then we conclude that T has the desired paths using the same arguments as
we did in in Case 1 (respectively, Case 2). Otherwise, we obtain an (x, y)-path of
length 3 for 1 or 2, and it follows from the assumption of the theorem that this
path does not separate x3- from y3-i.

Thus we may assume that {a, a’, b, b’} {r, r’, s, s’}. By symmetry and direc-
tional symmetry, we may assume that s {a, at, b,

Then the assumption of the theorem implies that there are two internally disjoint
(x2, y2)-paths in T- {xl, Yl, s}, since s is not in any 2-separator of x2, Y2. Also, we
may assume that sr, rt, since otherwise the existence of the desired paths follows
from the fact that s is not in a 2 separator of x2, y2. By assumption of the theorem
and the fact that all 2-separators induce a 2-cycle, there are three internally disjoint
(r, s)-paths (respectively, (r’, s)-paths) in T {xl,x2, Yl, Y2}. We now distinguish
between two further subcases.

Case A. We have that {r, r’} : {a, a’, b, b’}
Say, without loss of generality, that r (a, a, b, bt}. Let T’- T- (xl, yl). As

we have seen, Tt- (x2, y2} has three internally disjoint (r, s)-paths. If T
has two internally disjoint (x2, y2)-paths, then Theorem 2.1 implies the existence of
disjoint (r,s)-, (x2, y2)-paths in Tt, and hence T has the desired paths. Otherwise,
there exists a vertex z such that Tt- (r, s, z} has no (x2, Y2)-path. Now Tt- r has an
(x2, s)-path 51 and an (x2, z)-path 52 such that i Vii2 (x2} by Menger’s theorem
and the fact that r is not in any 2-separator of x2, Y2. Similarly, since s is not in any
2-separator of x2, Y2, Tt- s has an (r, y2)-path L3 and a (z, y2)-path La such that
L3 L4 (y2}. Since the last vertex of L3- y2 dominates the first vertex of L1 -x2,
T has an (xl,yl)-path disjoint from L2 L4, showing that T has the desired paths
(L3 is not just an arc, since r does not dominate y2. Similarly, L1 is not just an arc,
since x2 does not dominate s).

Case n. We have that (r, r’} C (a, at, b,
If (r, rt) (a, at) (respectively, (r, rt} (b, bt)) then we conclude as in Case 1

(respectively, Case 2) that T has the desired paths. Hence we may assume, without
loss of generality, that (r, r’} (a, b}. Since s ti (a, at, b, bt), there is one of a, at, b, b
not in (r, r’, s, st}. If b’ (r, rt, s, st}, then we conclude, as above, that
(or (a, at} (rt, s}, in which case the proof is analogous to the proof given below).
Now, however, the arc between r b and s a implies an (xi, yi)-path of length 3
for 1 or 2, implying the existence of the desired paths, by the assumption of the
theorem (r, s is not a 2-separator of any of the pairs xi, yi, 1, 2). Thus we may
assume that b (r, rt, s, st}, which implies that b st. (We choose the notation
such that r a, r b.)

If b -. s, then T has the desired paths, since r b and (rt, s} is not a 2-seperator
of x2, y2. So we may assume that s - b.
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Suppose first that a s. Then T has the desired paths with x2--a--s--b---,y2
being one of them, unless {a’, s, b} is an (xl, Yl)-separator. Suppose that {a’, s, b} is
an (xl,y)-separator. Then x and a (respectively, b’ and y2) are not separated by
{a’, s, b}. Let R be an (a, s)-path in T-{x2, Y2, a’, b}, and let R be an (x, yl)-path in

T-{x2, Y2, b, s}. Then R contains a’ and an (a’, b’)-path R2. Since R1NR2 , they
can be extended to the desired paths in T (since x a,s y,x2 a,b Y2).

Suppose now that s a. Let T T- {x,yl,x2,Y2}. By Menger’s theorem
and the assumption of the theorem, T"-b has two internally disjoint (a, b’)-,
paths and two internally disjoint (r,s)-, (r,s’)-paths. Also, b-s’, since {b,s’} is a
2-separator of x2, Y2, and we have assumed that all these form 2-cycles. Now it is
easy to see that T" has three paths from {a, b, a’} to {s, s’} that are disjoint, except
that two of them contain s. Two of these can be extended to the desired paths. (If
the path that ends in s starts in a’, then T" has disjoint (a’, b)-, (r, s’)-paths, because
s --. b.) Hence, if s {a, a’, b, b’}, then T has the desired paths. This completes the
proof of the theorem.

LEMMA 4.2. Let T be a semicomplete digraph, and let Xl,X2,Yl,Y2 be distinct
vertices such that there are two internally disjoint (x2, y2)-paths in T-{Xl, yl}. Sup-
pose that there exists a nontrivial 2-separator {x,y} of x2 and y2 in T- {x,yl}
such that there is no arc from B- x2 to y, where A and B form any patition of
T- {x,y,x,y} such that x2 E B, Y2 A, and all arcs between A and B go from A
to B.

Transform T into a new semicomplete digraph T as follows:
1. If x dominates some vertex in A y2 then

If there exists a vertex b B- x2 such that b--ox and there is an (x2, y)-path
in T(B {y} \ {b}), then add all arcs from A y2 to x that are not present
already.
If there exists a vertex b B- x2 such that b---y and there is an (x2, x)-path
in T(B {x} \ {b}), then add all arcs from A- y2 to y that are not present
already.

2. Add the arcs x2 - x, x2 y if they are not present already;
3. Add the arc Xl -- Z for {Z, W} {x,y} if T(B U {z, w, xl}) has a pair of

disjoint (Xl, z)-, (x2, w)-paths, and the arc x---z is not present already;
4. Delete the vertices of B- x2.

Call the added arcs special arcs. Then the resulting semicomplete digraph T has
disjoint (Xl, Yl)-, (x2, y2)-paths if and only if T also has them.

Proof. Suppose that P and Q are disjoint (x,y)-,(x2,y2)-paths in T chosen
such that they are minimal; i.e., no proper subset of P or Q is a path from xi to
for 1 or 2. If x, y e V(Q), then P is entirely in T(A 0 {x, yl}) since there is
no arc from B to y. Let z be that of x, y that is closest to Y2 on Q. Then P is in
T’, and Q’ {x2 -- z} t2 Q[z, y2] is in T’. Now suppose that Q contains only one
of x, y, and let z denote that one, and w the other. Then Q[z, y2] B q}. If P
does not intersect B, then P and Q’= {x2 z} Q[z, y2] are in T’. Thus we can
assume that P intersects B. Then w V(P) since there are no arcs from B to y. If
Pixy, w] intersects A, then the minimality of P implies that P contains the sequence
a b--. w for some a e A,b e S. Let P’ P[x,a]U{a w}UP[W, yl] and
Q’= {x2 - z} Q[z, y2]. Then P’, Q’ are the desired paths in T’. If P[xl, w] does
not intersect A, then we let P’ {x w} P[w, y] and take Q’ as above. Thus if
T has the desired paths, then so has T.
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Conversely, suppose that P’, Q’ are disjoint (Xl, yl)-, (x2, y2)-paths in T’, chosen
such that they are minimal. We may assume, without loss of generality, that P
contains at least one special arc. By the minimality of Q, exactly one of x, y belongs
to Q. Let z be that one, and w the other. If P contains the special arc x - w,
then, by the definition of the special arcs, this is the only special arc in P, and T(B
{x, w, z}) has a pair of disjoint (x, w)-, (x2, z)-paths P*, Q*. Then Q* Q’[z, y2]
and P* P[w, y] are the desired paths in T. If P contains a special arc of the
form a w for some a A, then we know, from the definition of the special arcs,
that there exists a vertex b e B, dominating w such that T((B {z}) \ {b}) has an
(x2, z)-path Q*. Let Q Q* Q’[z, y2] and P P’[x, a] {a --, b --. w} P’[w, y].
Then P, Q are the desired paths in T. Finally, if P contains no special arcs, then P
and Q’[z, y2], together with some (x2, z)-path in T(B {z}), are the desired paths.
This proves the lemma.

5. A polynomial algorithm for the 2-path problem for semicomplete
digraphs. The idea in the algorithm is either to settle the problem, or else to reduce
the problem to a smaller one (i.e., construct a semicomplete digraph S such that the
desired paths exist in T if and only if there exist some corresponding paths in S),
and then let the algorithm call itself recursively. The crucial step in the algorithm is
when the local connectivity from xi to yi is precisely 2 for 1, 2. If all 2-separators
of xi, yi are trivial for i 1,2, then no reduction is possible. Fortunately, this is
precisely the situation in Theorem 4.1, and we can conclude that the desired paths
exist. In the case when a nontrivial 2-separator exists, say, for x2, y2, we show how
to use the structure of the nontrivial 2-separators of x2, y2 to decide the existence of
the desired paths, or to reduce the problem to a smaller one.

THEOREM 5.1. There exists a polynomial algorithm for the following problem
for semicomplete digraphs: Let’T be a semicomplete digraph and x, x2, y, Y2 be four
different vertices of T. Decide whether T has a pair of disjoint (x,y)-, (x2,y2)-
paths.

Proof. Clearly, if there is no (x, y)-path in T- {x3-, Y3-}, i 1 or 2, then the
desired paths do not exist. This is easy to check, and we may thus assume that there
is an (x, y)-path in T {x3-, y3-} for i 1, 2. If T is not strong, then it is easy to
see that the desired paths exist, except possibly when xl, x2, y, Y2 all belong to the
same strong component of T. Then we can reduce the problem to that component.
Since it is easy to find the strong components of T, we can thus assume that T is
strong. We can also assume that T contains none of the arcs Xl-yl,x2--+y2, since
otherwise the desired paths exist.

From Theorem 2.1, we know that, if T- {xi, yi} has three internally disjoint
(X3-i y3_i)-paths and T- {x3-i, Y3-i} has two internally disjoint (x, y)-paths, for
i=l or 2, then T has the desired paths. Thus the algorithm first checks this and stops
if this condition is met. We now distinguish between two cases.

Case 1. The local connectivity from xi to yi in T {x3-i, Y3-i} is 1 for i=l or 2.
Without loss of generality, we may assume that i-2. By Menger’s theorem, there

exists an x e T-{xl,Yl} such.that there is no (x2, Y2)-path in T-{x,x,y}. We
can assume that there is an (Xl, yl)-path in T-{x, x2, Y2}, since otherwise the desired
paths do not exist in T. For a given x, which separates x2 from y2 in T- {x,y},
we define A and B as follows:

A {v e T- {x} Iv can reach Y2 by a path in T- {X, Xl, Yl}},

B V(T) A {x, x, y }.
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Then all the arcs between A and B are leaving A.
If A contains a vertex a dominated by xl such that T-{Xl, Yl, a} has an (x, Y2)-

path P1, and B contains a vertex b dominating yl such that T- (Xl, yl, b} has an

(x2, x)-path P2, then P1 t P2 and Xl-a--.b--.yl are the desired paths. Suppose that
a does not exist. Now the desired paths exist if and only if T(BU (x, xl, Yl) contains
a pair of disjoint (xl, Yl)-, (x2, x)-paths. Thus we have reduced the problem to a
smaller one. The case where b does not exist is analogous.

Case 2. There exist two internally disjoint (xi, yi)-paths in T- (x3-, Y3-} for
i-1, 2.

If all 2-separators of xl and yl in T- (x2, Y2} and all 2-separators of x2 and Y2
in T- (xl, Yl are trivial, then it follows from Theorem 4.1 that T has the desired
paths. Hence we may assume, by renaming if necessary, that there exists a nontrivial
2-separator (x, y} of x2 and y2 in T (xi, yl }. Define A, B as follows:

A (v e T (xl, Yl } v can reach y2 by a path in T (x, y, xl, Yl }},

B T- A- {xl,yl,x,y}.

Then all arcs between A and B go from A to B, and neither X nor Yl belong to
A t2 S. Since {x, y} is a nontrivial 2-separator, we have that A I, S I>_ 2. We can
assume, without loss of generality, that x--y. There are two subcases to consider.

Subcase 2.1. There are no arcs from x to A- y2, or there are no arcs from B- x2
to Yl.

We may assume that the latter case holds, since the former case can be treated
similarly (using an analogous version of Lemma 4.2 to contract A into one vertex,
just as shown below for B in the latter case). Our next step is to contract B into
one vertex x2. First, we check, using the flow version of Menger’s theorem (see, e.g.,
[4]), whether there exist disjoint (xl,z)-, (x2, w)-paths in T(B {xi,x,y}), where
{z, w} {x, y} (using the flow version, we can actually find these paths if they exist).
If T has such paths, then we apply our algorithm to T(BU{Xl, x, y}) to decide whether
T(BU{xl,x,y}) also has disjoint (x,w)-, (x2, z)-paths. If T(SU{x,x,y}) also has
these paths, then we conclude that the desired paths exist. This follows, since there
is no arc from B- x2 to yl and we know that there are two internally disjoint paths
Pi,P2 from {x,y} to Y2 in T(A t2 {x,y}). Also, T- Y2 has a path P from xl to
yl. Going backward on P until we meet a vertex in one of the previously mentioned
paths, P1, P2, or x gives a configuration that contains the desired paths: Suppose
that the first vertex of P1 t2 P2 that we encounter when going backward from yl on P is
the vertex u on P1. Let Q1, Q2 be disjoint (xl, x)-, (x2, y)-paths in T(B {xi, x, y}).
Then QI P[x, u] t2 P[u, y] and Q2 (-J P2 are the desired paths. Thus we may assume
that T(B {x, x, y}) does not have both pairs of paths.

Now we contract B to {x2} giving a new semicomplete digraph T, as described
in Lemma 4.2. By Lemma 4.2, the resulting semicomplete digraph T has disjoint
(xl,Yl)-, (x2,Y2)-paths if and only T also has them. Thus we have reduced the
problem to a smaller one.

Subcase 2.2. xlr for some r E A- y2, and syi for some s E B- x2.
Then T contains the path xlr-syl. If T {xl, r, s, y } has an (x2, y2)-path,

then T has the desired paths. Hence we may assume that this is not the case. Then
{r, s} must separate x2 from Y2 in T-{x, y}..Since the local connectivity from x2 to
y2 in T-{xl, Yl} is 2, r does not destroy all paths from {x, y} to y2 in T(A {x, y}),
and s does not destroy all paths from x2 to {x, y} in T({x, y} t2 S). Thus, since x y
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and T {Xl, r, s, Yl} has no (x2, y2)-path, we conclude that in T(A U {x, y} {r})
there is an (x, y2)-path but no (y, y2)-path, and in T(B t2 {x,y}- {s}) there is an
(x2, y)-path, but no (x2, x)-path. Thus {r, s} is also a nontrivial 2-separator of x2 and
y2 in T- {Xl, Yl} (x is included in the new A and y in the new B).

Now look at the sets A and B that correspond to {r, s} as A and B correspond
to {x, y} (the remainder of the discussion deals only with A, B; hence the reader may
disregard that x, y, A, B). If there is no arc from Xl to A- y2 or there is no arc from
B- x2 to yl, then we are in Case 2.1, where we can settle the problem or reduce.
Hence we may assume that we are in Case 2.2 with A and B instead of A, B. Thus we
have some r E A- y2 and some s E B- x2 such that xl-*r-s-*yl is a path in T.
Again, we may assume that there is no (x2, y2)-path in T- {x, r’, s’, y }. As above,
T(A’ {r, s} {r’}) has an (r, Y2)-path but no (s, y2)-path, and in T(B’ {r, s} {s’})
there is an (x2, s)-path, but no (x2, r)-path. If r-*s’ or r’-*s, then it is easy to see
that T contains the desired paths (for example, if r-*s, then there is an (x2, y2)-path
in T {x, r, s’, y } since s’ does not separate x2 from s in T(B’ t2 {r, s}), and r does
not separate s from y2 in T(A’U{r, s})). So assume that these arcs do not exist. Also,
we must have that x2-*s and r--,y2: Suppose that there is no arc from x2 to s. Let
P1 and P2 be internally disjoint (x2, r)-, (x2, s)-paths in T(B’U {r, s}). By the above
argument, P1 contains s, and, by the assumption, P1 Ix2, s] has length at least 2. Let u
be the first vertex ater x2 on P[x2, s]. We cannot have that u-.r, since then s would
not separate x2 from r in T(B’ t {r, s}) as assumed above. Thus r-*u, and now we
easily find an (x2, y2)-path that avoids the (Xl, yl)-path
(when the vertices of this path are removed, there is still a path from x2 to s and
then to Y2, namely, P2 and any (s, y2)-path in T(A’ {r, s})). Similarly, we get that
r-*y2. Now if we look at the nontrivial 2-separator {r, s}, we can argue similarly
that either T has the desired paths, or x2-*s and r--y2. Hence we may assume that
we have the following paths in T:

Now any (Xl, y)-path in T- {x2, Y2} must contain at least two of the vertices
r, r, s, s, to destroy both of the above (x2, y2)-paths. On the other hand, no minimal
(x, y)-path that does not start with x-*r or x-*r contains more than one of
these four vertices, since {s, s’}-*yl. Thus, if {r, r’} is not a 2-separator of xl and
yl in T- {x2, Y2}, then T contains the desired paths. Hence we may assume that
{r, r’}, and, similarly, {s, s’} are 2-separators of Xl and y in T- {x2, Y2}. That is, all
minimal (x,y)-paths start with one of the arcs x-*r, x-*r and end with one of
the arcs syl, s-*yl. Now it is easy to see that T contains the desired paths if and
only if at least one of T- {x2, s,r’,y2}, T- {x2, s’,r, y2} contains an (x, y)-path.
(Remember that we have assumed that there is no (x2,Y2)-path in T- {xl,r,s,y}
or T {x, r’, s’, yl }).

This completes the proof of the theorem, since it is easy to see that all our actions
can be done in a polynomially bounded number of steps, and, for each application of
the algorithm, the number of vertices decreases before the next time the algorithm is
applied. In fact, the complexity of the algorithm is of order O(nh): The analysis of all
separating sets of size 2 takes O(na) time, the flow calculation and all other actions at
most O(n3) time. Hence, between two consecutive calls of the algorithm we spend at
most O(na) time. Thus, if T(n) denotes the time complexity of our algorithm, then
T(n) <_ T(n x -t- 1) / T(x / 3) / O(na), where x denotes the size of B in Subcase
2.1. This implies that T(n) O(nh). Above n denotes the number of vertices in the
semicomplete digraph. D
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We make no claim as to the optimality of this algorithm. Our sole objective has
been to demonstrate that the problem is polynomially solvable for semicomplete di-
graphs. However, we feel that an algorithm with a significantly lower time complexity
is considerably more complicated to describe. This is supported by the fact that there
exist highly nontrivial families of 4-connected semicomplete digraphs that are not 2-
linked (i.e., in such a digraph, there exist four vertices u, v,x, y such that there do
not exist disjoint (u, v)-, (x, y)-paths ). Hence it is very unlikely that a simple algo-
rithm exists, since this would imply a simple characterization of those semicomplete
digraphs that are not 2-1inked (see also 1, p. 366).

Note that it is easy to use this algorithm to obtain a polynomial algorithm that
finds the desired paths, given that they exist: Successively, reverse all arcs out of
and, each time, call the algorithm to check for the existence of the desired paths. If
an arc is identified, whose reversal destroys the property of having the desired paths,
then this arc must be part of such a pair of paths in the current semicomplete digraph.
Suppose this is the arc xl-.u. Now remove x, rename u by x, and repeat the above
step for the new x. Eventually, we get that the current x dominates yl and that the
current semicomplete digraph T contains an (x2, y2)-path that does not contain any
of x and y. Hence the (x, y)-path given by the sequence of successively identified
vertices and any (x2, y2)-path in the final semicomplete digraph with xl, y removed
is a pair of disjoint paths as desired.

COROLLARY 5.2. There exists a polynomal algorithm .for the following problem
for semicomplete digraphs. Let T be a semicomplete digraph and let x, y, z be distinct
vertices of T. Decide whether T has an (x, z)-path through y.

Proof. This correponds to the situation y x2 in the two path problem. In the
above proof, we required that x, x2, y, Y2 are distinct vertices, but it is easy to see
that this special case of the 2-path problem reduces to the general case in polynomial
time within the class of semicomplete digraphs. Hence the result follows. Details are
given in [1].

6. Two NP-complete problems on tournaments. There are many NP-
complete problems on graphs. One example is the problem of finding a Hamiltonian
cycle. That problem has an easy solution for tournaments, and not many "natural"
NP-complete problems on tournaments are known. (Since every oriented graph is a
subgraph of a tournament, it is, of course, possible to formulate a number of artificial
NP-complete problems involving (subgraphs of) tournaments.) We mention here two
basic NP-complete tournament problems.

THEOREM 6.1. The problem q of finding a cycle through a prescribed arc set in
a tournament is NP-complete.

Proof. To see this, we reduce the problem of finding a Hamiltonian cycle in a
directed graph to q. Let D be a directed graph. First, we split every vertex v of
D into two vertices vl and v2 such that all arcs entering v (respectively, leaving v)
now enter v (respectively, leave v2). We also add the "distinguished" arc vv2. This
transforms D into a bipartite digraph D. We add arcs from vertices of index 1 to
vertices of index 2 in D (whenever the arcs in the opposite direction are not already
present). We add all arcs between vertices of the same index and orient them at
random. Then the resulting tournament has a cycle through the distinguished arcs if
and only if D has a Hamiltonian cycle.

This proves that, if k is not fixed, then the k-path problem NP-complete for
tournaments.

THEOREM 6.2. The problem p of finding a largest transitive subtournament
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(or, equivalently, the problem of finding a smallest vertex set meeting all cycles) is
NP-complete.

Proof. It is well known that the problem p2 of finding a largest set of independent
(i.e., pairwise nonadjacent) vertices in an undirected graph is NP-complete. Now we
reduce P2 to Pl by a polynomial time reduction. Let G be an undirected graph with
vertex set vl,0, v2,0,"’, v,0. We form a tournament T as follows We add, for each
i 1,2,... ,n, a set of n/l new vertices vi,1, vi,2,’",vi,n+. Now T contains the
directed arcs vi,kVj,m whenever i > j or i j and k > m, unless k m 0 and
vi,0, vj,0 are adjacent in G. In that case, T contains the arc vj,0vi,0. Now a vertex set
S in G is a largest independent set if and only if T- (V(G) \ S) is a largest transitive
subtournament of T.

Note that problem of finding a feedback vertex set, i.e., a minimum set of ver-
tices such that every directed cycle is incident with this set, corresponds to pl for
tournaments; hence Feedback vertex set is NP-complete for tournaments.

CONJECTURE 6.3. The problem offinding a minimum set of arcs in a tournament
whose reversal results in a transitive tournament is NP-complete.

Such a set of arcs is also called a feedback arc set. This problem is known to be
NP-complete for general digraphs [6, p. 192].

Note added in proof. After the submission of this manuscript, the second author
[12] has shown that for general digraphs there is no degree of connectivity that will
ensure that a digraph is 2-1inked, i.e., has disjoint (u, v)-, (x, y)-paths for any choice
of distinct vertices u, v, x, y.

We also want to point out that the result of Theorem 6.2 was found independently
by Speckenmeyer; see [8].
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Abstract. An original combinatorial proof of a combinatorial identity is presented.
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1. Introduction. We provide a combinatorial proof that

NNN - - kl !k2! kN-l

o<_ 1+2 <-2

0

_
k -bk -[-...-bkN_

_
N-

2. Sequence graphs and cycle sets. We count the number of sequences of N
integers between 1 and N, which we call N-sequences, in two ways, which give us
the left- and right-hand sides of our equation, respectively. Counting in the obvious
way, there are N choices for each integer, yielding NN total N-sequences. Next, after
setting up some apparatus, we answer the same question in a way that yields the
summation.
A is don in [] nd [2], dn N-ph (N-ph) directed

graph of N nodes, where each node h out-degree 1. We can set up a one-tone
correspondence between N-sequences and N-graphs as follows: Let the (directed) edge
originating at node i of a N-graph terminate at node j, where j is the ith integer of the
corresponding N-sequence. For example, the 12-sequence 433744657575 corresponds
to the 12-graph of Fig. 1. This one-tone correspondence Mlows us to count N-graphs
instead of N-sequences.

To attain the right-hand side of our identity, we sociate with each N-graph a
unique sequence kl, k2,..., kN-, which meets the conditions of the summation. We
then show that the number of N-graphs associated with kl, k2,..., kN-1 is N/klk2
""kN-l[.

To that end, we define the cycle set of an N-graph to be the set of all nodes in
the graph which are contained in at let one cycle. (Since our graph is finite, and each
node h out-degree 1, it is clear that C is nonempty.) Note that, by construction,
all edges originating at nodes of C point to nodes of C, and no two of these edges
terminate at the same node. In our example, C {3, 4, 6, 7}.

3. Ordered forests. An N-graph can be reduced to a forest by removing the
edges originating at nodes contained in C, and letting the nodes in C serve roots.
The forest generated by doing this to the 12-graph of Fig. 1 is shown in Fig. 2. To
remove ambiguity, we then rearrange the forest into what we will call an ordered forest
by placing the roots in cending order from le to right, and doing the same for all
sibling sets (i.e., children of the same node). (See Fig. 3.)

Received by the editors September 10, 1990; accepted for publication (in revised form) July 10,
1991. This research w supported by the Western Cluster of the Pew Science Program.
Harvey Mudd College, Claremont, California 91711.
Reed College, Portland, Oregon 97202. 377
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FIG. 1. The 12-graph o:f the 12-sequence 433744657575.

FIG. 2. A forest from 433744657575.

Next, we label each tree from left to right in postorder. Starting with the root
node of a tree, the postorder labeling process may be defined recursively as follows:
postorder the subtrees whose roots are the nodes that point to the current root, going
from left to right among these subtrees, then label the current root. (See [3].) We
let the first postorder label be zero. In Fig. 3, we have written the postorder label
alongside each node. Note that, by construction, the label assigned to each node must
be greater than the labels of its descendant nodes.

We can now uniquely determine the sequence kl, k2,..., kN-1 from our ordered
forest by letting kj be the number of children of the node with postorder label j. Note
that k0 must always be zero. In Fig. 3, kl through kit are equal to 1, 0, 0, 0, 0, 3,
2, 0, 0, 0, 2, respectively. Note that the condition 0 <_ kt / k2 -...-}- kj

_
j is met

for all j between 1 and 11. This is true in general: k / k2 -... - kj is equal to the
number of children possessed by nodes 0 through j, all of which must have postorder.
labels less than j.

It remains to show that there are N!/k[k2[... kN-l! N-graphs with k-sequence
kl,k2,... ,kN-1. In [3] it is proved that every unlabeled rooted forest is character-
ized by its postorder degree sequence. Hence our k-sequence completely determines
the shape of the ordered forest. For example, any unlabeled forest with k-sequence
10000320002 must look like Fig. 4.

Since the elements of (: and the sibling sets (circled in Fig. 4) must be written in
ascending order, we can convert the unlabeled forest of Fig. 4 into a labeled ordered
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FIG. 3. The ordered forest of 433744657575 with postorder labels.

FIG. 4. Unlabeled graph for k-sequence 10000320002.

forest in 12!/1!3!2!2!4! ways.
In general, any unlabeled forest with k-sequence kl,k2,’" ,kN-1 can be labeled

N!/kl !k2!... kN-1 !11! ways. Finally, each labeled ordered forest with root set C gives
rise to I(1! N-graphs because the edges leaving the nodes of ( must enter different
nodes of

Therefore each k-sequence corresponds to N!/k!k2!... kN-l! N-graphs, as as-
serted. Since each sum counts the correct number of N-graphs, we have finished our
second count and have established the identity.
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Abstract. A class of infinite graphs that can be embedded uniformly in the hyperbolic plane
and carry nonconstant harmonic functions with finite Dirichlet sum is exhibited. In fact, a general
method of constructing such harmonic functions "with prescribed boundary values" is provided.
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1. Introduction. Given a locally finite connected graph G, with vertex set V
and edge set E, without loops or multiple edges, we consider it as an electrical network
where each edge is a resistor of 1 ohm. An electric current is a flow along the edges
with respect to given sources and sinks in V, which satisfies Kirchhoff’s node and loop
laws and has finite dissipative energy. We refer to Flanders [8] and Zemanian [16] for
the fundamentals concerning electric currents in infinite networks. If input and output,
given at finitely many sources and sinks, are balanced, then such an electric current
always exists [8], while uniqueness holds only under additional conditions [8], [16]. In
this paper, we are interested in the question of (non)uniqueness when no additional
conditions are imposed.

If f is a real-valued function on V, then its Dirichlet sum is

[u,v]EE

A function f" V --. R is harmonic if Pf f, where the operator P is given by

1
Pf(u) deg(u) f(v), u e V.

V,

Here v u means that v is a neighbour of u, and deg(u) is the number of such v. We
write D(G) for (f: V -. RID(f) < ) and HD(G) for (f e D(G) f harmonic).
In this setting, proving the uniqueness of electric currents amounts to showing that
HD(G) contains only the constant functions. This problem has been studied, for
example, by Whomassen [13], [14], Soardi and Woess [12], and Doyle [7].

If U is a finite subset of V, then let e(U) be the number of infinite components
in G \ U. The number of ends of G is then defined as

e(G) sup{e(U)" U C V finite}.

Until now, the graphs shown to carry nonconstant HD-functions all have more than
one end [12]. Typical one-ended graphs are square grids, vertex transitive graphs with
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11, 1991. This research was partially supported by an Australian Research Council grant.
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nonlinear polynomial growth, or Cartesian products of two or more infinite graphs.
All these have no nonconstant I-ID-functions [12], [14]. We exhibit a class of graphs,
each of which carries nonconstant HD-functions. The class contains many vertex-
transitive graphs with one end. Our graphs are embedded in a uniform way in the
open unit disc with the hyperbolic metric, they have at least two accumulation points
on the unit circle, and they satisfy a strong isoperimetric inequality. The most typical
examples are the dual graphs of tesselations of the disc by cocompact Fuchsias groups.
For these graphs, I-ID(G) is a discrete anologue of the space of (classical) harmonic
functions u on the unit disc for which

+u <1 -x / -y dxdy <

Such spaces have also been studied more generally in the context of potential theory
on Riemann surfaces (see, e.g., Ahlfors and Sario [1]).

2. Results. Let A denote the unit disc (z E ( "lzl < 1} equipped with the
hyperbolic metric p. All properties and formulas from hyperbolic geometry needed
below can be found in Beardon [3, 7.1, especially pp. 131-132]. A graph G with
vertex set V and edge set E is called uniformly embedded in A if

(i) VCA, and
(ii) There is a constant c >_ 1 such that, for all u, v V, c-lp(u, v)

_
d(u, v) <_

c p(u, v).
Here d(u, v) is the discrete distance between vertices u and v, i.e., the smallest

number of edges on a path in G connecting the two.
The limit set of G is the set OV of accumulation points of V on the unit circle

0A (in the Euclidean topology). Note that OV 0 if G is infinite. By continuity of a
function on V V U OV, we mean continuity with respect to the relative (Euclidean)
topology.

For a finite subset U of V, we denote by dU the set of vertices in U that have
a neighbour in V \ U. We say that G satisfies a strong isoperimetric inequality (see,
e.g., Dodziuk [6], Gerl [9]) if there is a number a > 0 such that IdUI >_ alU for every
finite U C V. Such graphs are sometimes called coercive (see Ancona [2]), infinite
expanders, or enlargers (see Bien [4]).

THEOREM. Suppose that G is uniformly embedded in A and satisfies a strong
isoperimetric inequality. Then, for every A - R satisfying a Lipschitz property
I(z) V(w)]

_
MIz- wl, there is a unique continuous function h on U such that

(a) h coincides with on OV, and
(b) hlv He(c).
In particular, ifV has more than one point, then HD(G) contains nononstant

functions.
We now give examples of graphs satisfying the hypotheses of the theorem.
Example 1 (Fuchsias groups (see, e.g., [3, 8-9] and also [2, p. 13])). Let F be

a finitely generated Fuchsias group acting on A, and let V {’y0 F}, where it
is assumed that 0 0 for all / F, - - id. Assume that the limit set OV of F has
more than two (and thus infinitely many) points (i.e., F is nonelementary) and that
there are no parabolic elements in F. Then there is a convex fundamental domain
F of F in A which has finitely many sides and no proper vertices [3, pp. 227, 254].
For , F, we join the vertices u =/0 and v 0 by an edge if and only if
and ,F have a common side. We thus obtain a graph G that is just the dual graph
of the tesselation of A given by the F images of F. It is a Cayley graph of F [3,
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p. 220]. It is known [2, p. 14] that G is uniformly embeddedin A. Furthermore,
any nonelementary Fuchsian group is nonamenable (see [11]), which is equivalent to
the property that some (equivalently, all) of its Cayley graphs with respect to finitely
many generators satisfy a strong isoperimetric inequality (see [9] and [2]). Hence G
carries nonconstant HD-functions.

Because there are no proper vertices, it is easy to see that G has one end if and
only if F is bounded in the hyperbolic metric, which happens exactly when the limit
set OV is all of 0A. Otherwise, G has infinitely many ends. (Indeed, we can show that
F has a free subgroup of finite index in the latter case.) For a detailed description of
the metric structure of Cayley graphs of one-ended (equivalently, cocompact) Fuchsian
groups, see Cannon [5].

A typical example of this type is abstractly given by the presentation

With respect to these generators, the Cayley graph of F is made rather like a square
grid, but instead of four squares, eight octagons meet at each vertex. Further examples
are the dual graphs of several of the tesselations of A shown in Magnus [10].

Finally, we remark that as an abstract group, every finitely generated nonele-
mentary Fuchsian group is isomorphic with a group having the above properties (see,
e.g., [11, p. 226]). Furthermore, any two Cayley graphs of a given group with respect
to finite sets of generators are metrically equivalent. Hence every Cayley graph of a
finitely generated nonelementary Fuchsian group carries nonconstant HD-functions.

Example 2. Suppose that G is a graph, with vertex set V and edge set E, which
is uniformly embedded in A and, in addition, satisfies

(iii) p(z, V) _< k < oo for all z E A.
Then G has one end, OV 0A, and it is shown in [2] that G satisfies a strong

isoperimetric inequality. Thus our theorem applies.
A typical example is the following graph, which we describe in the hyperbolic

upper half-plane {z E C" (z) > 0} rather than in the disc. Let V-- {m2n-1 + i2n"

m, n Z}; the edges are between m2n-1 + i2n and (m + 1)2-1 + i2n and between
m2n-1 + i2n and m2n-1 + i2n-1 for each m,n 6 Z (see Fig. 1). A similar graph is
described in [2, p. 13]. (Read log((3 + V%/2) for "Log(2)" there.)

(1)

FIG. 1

3. Proofs. Recall that, for z, w 6 A, the hyperbolic metric p satisfies

tanh(p(z, w)/2) Iz wl/ll z l.
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The open hyperbolic disc with centre u E A and radius r > 0 is denoted by B(u, r).
Its hyperbolic area is independent of u, and, writing z x + iy, is given by

(2) =//. a
(u,r) (1 -Iz12)2

dxdy 4 rsinh2(r/2).

We always assume that G is uniformly embedded in A, with constant c > 0 as
in (i).

1 1LEMMA 1. For u e V, deg(u) _< a(c + )/a().
Proof. If u, v V, u v, then d(u, v) >_ 1 and so p(u, v) >_ 1/c. Thus the discs

B(v, ), where v e Y and v u, are mutually disjoint and contained in S(u, c + c)"
A similar argument shows that every compact subset of A must have finite in-

tersection with V, so that indeed OV if V is infinite. In the next lemma, )(B)
denotes the usual Euclidean area of B C A.

LEMMA 2. For u e A, A(B(u,r)) >_ (a(r)/4e2r) (1 -lul2) 2.
Proof. The hyperbolic disc B(u, r) is a Euclidean disc with centre on the ray from

0 through u (e.g., calculate directly from (1)). Thus the minimum of 1 -Izl for z in
the closure of B(u, r) is attained at the point zl on this ray for which Izll _> lul and
p(u,z) r. From (1) we have tanh(r/2) (Izl- lul)/(1 -Izllul), whence

(3) 1 -IZll
_
(1- lul)-,

Thus, by (2) and (3),

4
a(r) <_ A(B(u, r))(1 -[z112)2

4 4e2
A(B(u, r))(1 + 1211)2(1 -IZll)2 <- A(B(u, r))(1 -lu12)2

that

LEMMA 3. It holds that E=ev(1 -lu12) _< 4reX//a().
Proof. Once more using the disjointness of the balls B(u, ), u V, we obtain

r =/k(A) _> E A(B(u, 1/2c)),
uV

and Lemma 2 yields the result.
PROPOSITION 1. /f " A --. R satisfies a Lipschitz property

MIz w on A, then f ly e D(G).
Proof. The hypothesis on implies that

D(f) <_ (M/2) lu- vl.
uEV vu

If u v, then p(u, v) <_ c, and [3, (7.2.4)] gives lu-vl2 <_ sinh2(c/2)(1 lul2)(1 Ivl2).
Hence the Cauchy-Schwarz inequality implies that

E E lu-vl2 <- sinh2(c/2) (E E(1- lu12)2)l/2(E E(1 -IVl2)2) 1/2

uEV vu uV v,,u uV

sinh2(c/2) E deg(u)(1 -[u12)2,
uV
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which is finite by Lemmas 1 and 3.
We now use the strong isoperimetric inequality. Let lo(V) denote the linear space

of finitely supported functions f V R. Furthermore, let /2(V) be the Hilbert
space of square summable functions f V - R, with the usual inner product and

corresponding norm [[f[[2 (uv f(u)2)1/2 Observe that for f e/2(V)

(4) 2D(f) <_ E E(f(u): + f(v) < 2Knnfll ,
uEV v,’u

if deg(u) _< K on V, so that $ D(G).
PROPOSITION 2. Assume that G satisfies a strong isoperiraetric inequality and

has bounded vertex degrees. Then every f E D(G) has a unique decomposition f
g + h, where g /2(V) and h HD(G).

Proof. Under our assumptions, it is known from [9] or [2] that there is a constant
C > 0 such that

D(f) >_ cIIfll for every f e lo(V).

Consider the quotient space of D(G) with respect to the subspace of constant func-
tions, and let [.] denote the corresponding quotient map. Then [D(G)] becomes a
Hilbert space with inner product

(IS], [g]) (f(u) f(v))(g(u) g(v)).
[u,v]E

It is easy to check that h D(G) is harmonic if and only if

([g], [hi) 0 for every g e lo(V).

Hence [HD(C)] is the orthogonal complement of [/0(V)], and thus closed, while its
orthogonal complement is the closure of [/0(V)]. Let (fn) be a sequence in lo(V) such
that [fn] converges in [D(G)]. Then, by (5),

<[A f, l [A > GIlA fr ll
and so (fn) is a Cauchy sequence in /2(V). If f e l(V) is its limit, then by (4),
f E D(G) and If] is the limit of [fn] in [D(G)]. Thus the closure of [/0(V)] is [/2(V)].
Observing that nonzero constant functions are in HD(G), but not in/2(V), the or-
thogonal decomposition theorem now yields the result.

We remark that Proposition 2 is a discrete analogue of Royden’s decomposition.
Another version of it is stated by Yamasaki [15]. We have now collected all the
ingredients necessary to prove our main result.

Proof of the theorem. Let " A -- R satisfy I(z)- (w)l _< M[z- w I. Then
f lu D(G) by Proposition 1. By Proposition 2, there is a unique h HD(G)
such that h- f /2(V). In particular, h- f vanishes uniformly at infinity, so that
h extends continuously to V with the same boundary values on OV as f. This proves
the existence of the required h. If h’ is another harmonic function with the same
boundary values, then h- h’ is harmonic and vanishes at infinity. The maximum
principle implies that h- h’ 0.

Finally, if OV has more than one point, then there are functions on A satisfy-
ing a Lipschitz condition that are nonconstant on OV. The corresponding harmonic
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functions have nonconstant values on OV and hence, by continuity, are nonconstant
on V.
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MEAN PASSAGE TIMES AND NEARLY UNCOUPLED MARKOV
CHAINS*

REFAEL HASSINt AND MOSHE HAVIV$

Abstract. Let P(0) E Rnxn be a stochastic matrix representing transition probabilities in a
Markov chain. Also, for a matrix A . Rnn whose row-sums are zero, let P() P(0) + eA be
stochastic and irreducible for all 0 < e _< emax, for some emax. Finally, let M(e) be a matrix whose
(i, j) entry is the mean passage time from state to state j when transitions are governed by P(e).
When the Markov chain associated with P(0) is decomposable into a number of independent chains
plus a set of transient states, some of the entries of M(e) have singularities at zero. The orders of
these poles define timescales associated with the process when e is small. An algorithm is developed
for computing these orders. The only input required is the supports of P(0) and A, making the
problem a combinatorial one. Finally, it is shown how the orders of the poles of M(e) at zero play a
role in developing series expansions for r(e), the stationary distribution of P().

Key words. Markov chains, mean passage time, nearly uncoupled

AMS(MOS) subject classifications. 60J10, 68C05

1. Introduction. Let P(0) E Rn’ be a stochastic matrix representing transi-
tion probabilities in a Markov chain. Let A Rnn have zero row-sums. For all real, 0 < <_ nax, assume that P() _-- P(0) + A are stochastic matrices representing
transition probabilities in irreducible Markov chains. (The irreducibility assumption
of P() is without loss of generality. However, we still require that the structure of
the chains is the same for all , 0 < _< emax. Of course, such an emax exists.) Note
that we do not assume irreducibility of P(0), and, in fact, we are interested in the
case where the Markov chain associated with it is decomposable into a number of
independent recurrent classes plus a set of transient states. In that case and for small
values of , the matrices P() and the associated Markov chains are called nearly
uncoupled or nearly completely decomposable.

For 0 <

_
max, let M() Rnn be such that Mij() is the mean passage time

from state to state j when transitions are governed by P(e). It is clear that, if P(0)
is decomposable, then there exist pairs (i,j) such that lim_0 Mij() c. As M(e)
admits a Laurent series expansion (see 7), this implies that some entries of M()
have singularities at zero; namely, they have poles there. The orders of these poles
represent various timescales in the nearly uncoupled Markov chain. For example, if
the order of the pole of Mij(e) at zero is two, then, for a process that initiates at i,
the event of hitting state j for the first time occurs after an expected time, which is
of the same order of magnitude as 1/2.

The main purpose of this paper is to show that the problem of finding the orders of
the above-mentioned poles is combinatorial and to develop an algorithm for computing
them. Specifically, we suggest an algorithm whose input is the two binary matrices
describing the supports of P(0) and A. The output of the algorithm is the orders of
the poles.

Finally, we discuss an application of the orders of the poles. Let r() be the
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stationary distribution of P(). If r() -io r(i)i, then the series {r(i)}0 solves

r(0)(i P(0)) 0,

and for j 0, 1,...,

r(j+l)(i_ P(0)) r(J)A.

If P(0) is decomposable, then the first system of above equations does not deter-
mine 7r() uniquely. We show that the minimal number of consecutive sets of equations
that must be considered to determine r() uniquely is maxi,j (uij-ujj) / 1, where uij
is the order of the pole of Mij() at zero.

Nearly uncoupled systems were introduced by Simon and Ando [18]. These were
applied to some Markovian models by Courtois [3]. Also, they were considered in
the Russian literature, probably begining with Gaitsgory and Pervozvansky [6]. The
question of first passage times is dealt with in [10] and [11], but only for the case
where P(0) does not possess transient states. For this case, Latouch and Louchard
(see [10] and [11]) show that the orders of the poles of M() at zero are zero or one.
The more general case, where two independent recurrent chains at P(0) are coupled
at P() through states that are transient at P(0), is considered in Delebecque [4],
Coderch et al. [1], [2], and aohlicek and Willsky [14], who developed algorithms for
approximating the transient and the long-run behavior of the Markov chains asso-
ciated with P() for 0 < <_ Cmax. The analysis in the above-mentioned papers is
based on Kato’s [8] classical perturbation results. The combinatorial version of the
algorithm in [14] is given in Rohlicek and Willsky [13]. They solved a problem differ-
ent from that addressed here. Specifically, let F() be the probability that a process
governed by P() and initiating at state hits state j for the first time prior to time
T. Then let

d argmax(d iF/"(e) > 0 for some finite T}.

Next, we present an example showing that uij and diy do not necessarily coincide.
This example was communicated to us by a referee.

Let

0 1-)P()= 0 1-2 2
0 0 1

Here U13 1: although Pl3(e) O(1), the transition probability e from state 1 into
state 2, and then the additional expected time of 1/2 until hitting state 3, leads to
this value of u3. On the other hand, d3 0 as for any T _> 1, F() >_ 1 .2

The question of series expansions for nearly uncoupled Markov chains is analyzed
by Schweitzer [15]-[17] and Haviv and Ritov [7]. Schweitzer showed that the deviation
matrix of P() has a Laurent series expansion around zero, and he gave some implicit
forms for it. He also solved for the series expansion of r() and related it to the

In order to ease the exposition, here we allow T to be any nonnegative number and not necessarily
an integer.

2 Note that P() here was not defined by a linear perturbation. However, the same phenomenon
can be seen with a corresponding linear perturbation, but in a Markov chain, where state 2, above,
is replaced with three other states.
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expansion for the deviation matrix. His method, or, alternatively, the method given
in [7], can be used to obtain the order of the poles as a by-product. Since these
methods are based on solving n2, equations they have a larger complexity O(n6), and
they do not explore the combinatorial aspects of the problem. Finally, Langenhop [9]
suggested a general method for inverting near singular matrices. As M() uniquely
solves a system of equations, this method can be utilized for the problem discussed
here, and then the orders of the poles are obtained as a by-product. However, for
computing the orders of the poles, our direct approach is much simpler.

After introducing some terminology in 2, we present the algorithm in 3. Section
4 is devoted to proving the correctness of the algorithm. In 5 we mention a possi-
ble generalization of our algorithm to nonlinear perturbations. In 6 we state some
background on Markov chains, and we use it in 7 for developing a series expansion
for r() around 0. Section 8 concludes the paper with a numerical example.

2. Terminology. A function f R+ --, R+ is called O(k) for some integer k
(positive, zero, or negative) if there exist two positive real numbers M1 and M2 such
that, for all > 0 small enough,

Mle < f(e) < Me.
If f() O(-k), then we say that f() is of order of magnitude k.

The following are immediate:

0() + 0() 0((,), 0() 0() 0(+-).
Consider G (V, E, E), a finite directed graph with a vertex set V, an edge set

E E E that may contain loops, and a distinguished vertex s V. G is strongly
connected; that is, it contains, for every i, j V a directed i- j path. We call edges
of Ec "e-edges" (epsilon edges) and those of Er "r-edges" (regular edges). These sets
are disjoint. A path in G is called an "r-path" if it consists of r-edges only (similarly
for an "r-cycle"). An "r-component" is defined to be a maximal strongly connected
subgraph of (V, Er). Note that an r-component may also be a single vertex. For a
subset C c V, we let i(C) {(i, j) e E[i e C, j C} be the set of its (outward-
oriented) boundary edges.

In terms of P(), which was defined in the Introduction, we define the following
graph G. Each vertex of V corresponds to a state. Each edge (i, j) E E is associated
with a transition probability pij(). If pij () O(1), then (i,j) Er, while, if pij ()
O(), then (i,j) Ee. If Pi() 0, then (i,j) E. Obviously, every e V satisfies

Ej[(i,j)eE Pij() 1.
Fix a state s S. Let mi() denote the expected time until s is first reached

when the initial state is i (m8() is the expected return time to s, given that it is also
the initial state). It is shown that mi() O(e-u(i)) for some integer u(i) that is zero
or positive. Our problem is to compute u(i) for all i V.

3. The algorithm. The algorithm computes u(i) for i s by first assigning
and revising temporary values and, finally, changing them to permanent. The set of
vertices with temporary values is denoted by T. In a final step, u(s) is computed from
the other values. In the course of the algorithm, a multigraph G’ (V’, Er, Ee) is
maintained. Then sets C c V’ are condensed into a single vertex c as follows: Edges
(i, j) e (C) are replaced by (possibly parallel) edges (c, j), and, similarly, edges in
(V \ C) are replaced by (possibly parallel) edges (i, c). Edges (i, j) such that i, j e C
are simply deleted. The correspondence of each edge in G’ to the original edge in G is
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maintained. The algorithm is stated next. A numerical example is given in 8. The
reader may wish to consider this example prior to reading the rest of the paper.

Input: G (V, Ee, Er).
Output: u(i), i E V.
Step 1 (Initialization).

Construct a graph G’ (Y’, E, E) from G by first setting G’ - G, and
then deleting all loops (i, i) E Ee and all edges going out of s. Set u(i) 0
and S(i) ,--- {i} for all/e V.

Step 2 (Elimination of loops).3
If G’ contains no loops, go to Step 3. Otherwise, let (i, i) E. Set Er
E \ {(i, i)}. If i({i}) N Er , set E - Er U ti({i}), E *-- E \ i({i}) and
u(i) ,-- 1. Repeat Step 2.

Step 3 (Condensation of cycles).
If G’ contains no directed r-cycles, go to Step 4.

Let C be (the vertex set in V’ of) such a cycle.4 Condense C into a single
vertex c.

Case (i). ti(C) Er : .
Set u(c) ,-- max{u(i)[i e C}.

Case (ii). i(C)c_ Ee.
Set u(c) .- 1 + max{u(i)li e C}.
Set V \

Set S(c) ,-- UecS(i).
Repeat Step 3.

Step 4 (Solution of the problem for r-acyclic graphs).
Set T - V’. Let u(j) max{u(i)li T}. (Break ties arbitrarily.) Delete j
from T (thus turning u(j) into permanent for j). For r-edges (i, j) where
T, set u(i) ,,-- u(j). For e-edges (i, j) where T, set u(i) ,- max{u(/), u(j)-
1}. If T , go to Step 5. Else, repeat Step 4.

Step 5 (Computation of u(i) i E V \ {s}).
(S(v’)lv’ V’} is a partition of Y. For each v E Y find v’ E Y’ such that
v e S(v’) and set u(v) u(v’).

Step 6 (Computation of u(s)).
Set u(s) ,--- max(max{u(i)l(s,i e Er},max(u(i)- ll(s,i e E}}.

4. Validation of the algorithm. In this section, we use the following notation;
we distinguish between states, which correspond to the initial Markov process, and
vertices v V, which correspond to the sets of states S(v); we also distinguish
between transitions, which correspond to the initial Markov process, and edges (i, j)
E U E, which correspond to moves of the process between vertices. It should be
emphasized that each edge (i, j) E is associated with a transition from a state in
S(i) to a state in S(j). It is possible, however, that an r-edge in V is associated with
a transition of a O() probability, since such changes are performed at Step 3, Case
(ii) in the above algorithm.

Let C denote an r-cycle (or an r-component) of G; We say for a state j that
j C whenever j S(v) for some v C. Also, let P*() -jl(i,j)(c)pij() be the
probability of an immediate exit from C, given that the current state i is in C. For

3 This step can be deleted; instead, loops will be considered as directed cycles in Step 3. It is
included here only to simplify the proofs below and, in particular, to guarantee that the inductive
assumption in Theorem 4.5 (i), below, holds.

4 Instead of r-cycles, we may choose r-components.
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a vertex v E V’ and for states i and j in S(v), let Qij(e) be the expected number of
visits in state j S(v) before first exiting S(v), given the current state is i S(v).
A similar notation is used for cycles instead of vertices. Note that, for simplicity, we
omit from the notation the cycle or the vertex. However, from the context, it is clear
which is the cycle or the vertex under consideration.

The following two lemmas give the orders of magnitude of the expected number
of visits in a state prior to an exit from a cycle. Their proofs are similar, and thus we
supply a detailed proof only to one of them.

LEMMA 4.1. Let C be an r-cycle in the original graph G. Suppose that 5(C)NEr. Then Qij () 0(1) for all i, j C.
LEMMA 4.2. Let C be an r-cycle in the original graph G. Suppose that 5(C)

Then Qij() 0(-1) .for all i,j C.

Proof. Let T() be the submatrix of P() representing transition probabilities in
an r-cycle C. It is well known that Q() (I- T(s)) -1. Hence, Qi(s) is a ratio
between two polynomials in and therefore it has an integer order of magnitude. Since
for all i, j C there exists an i- j r-path, the orders of magnitude of all the entries of
Q(s) are identical. Consequently, it is sufficient to prove that jec Qij(e) O(e-).
Indeed, since the exit probabilities from all states are at most O(s), the time to the
first exit from C (regardless of the current state) is stochastically dominated by a

geometric random variable whose expectation is O(-). Hence, jecQj() is at
least O(e-1). On the other hand, in order for jecQij() to be O(-k) for k >_ 2
there should be at least one j E C with this property. An r-path from j to an exit
state e C exists, however, and hence the number of visits to state e is also of the
order of magnitude k. This contradicts the fact that the number of visits to state e
is at most 1/Pe*( O(-).

The following two lemmas correspond to exit probabilities from a cycle C in the
original graph G. Basically, they show that the order of exit probabilities from various
states i C and via various pairs (i, j) 5(C) does not depend on the entering state.

LEMMA 4.3. For an r-cycle C in the original graph G, suppose that 5(C)NEr .
Then, for every current state in C, an exit from C occurs with probability O(1) for
every (i,j) e 5(C) Er and with probability 0() for every (i, j) e 5(C) Ee.

Proof. For a current state i, with (i,j) 5(C)N Er, the exit probability is,
of course, O(1). For all other states k in C, there exists an r-path from k to i,
making the probability of an exit through (i, j) also O(1) for any current state k. For
(i, j) 5(C) NEe, pick an arbitrary (g, h) i(C) Er. As there is an r-path from g
to i, it is easy to see that, conditional on an exit from (i, j) or (g, h), the exit is from
(i, j) with probability O(e). Extending that to conditioning on an exit completes the
proof.

LEMMA 4.4. For a cycle C in the original graph G, suppose that (C) c_ E. Let
(i,j) e 5(C). Then, regardless of the current state in C, exit occurs via (i, j) with
probability 0(1).

Proof. We prove that i is the exit state with probability O(1). The claim then
follows immediately by considering conditional probabilities. For i,j C, let Gij(e)
be the probability of exiting through j, given that i is the entering (or current) state.
If j, then

kEC
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and otherwise

kEC

Hence G() Q()diag(P*()) where diag(P*()) is a diagonal matrix whose ith
diagonal entry equals P/*(). Solving for G(), we obtain that Gij() Qij()P;(),
which is O(-)O() O(1) in the case where j is an exit state.

THEOREM 4.5. After each execution of Step 3,
(i) u(c) is the order of the expected sojourn time at S(c), regardless of the

current state in S(c);
(ii) if 5(C)Er (case (i)), then the conditional exit probability from S(c) is

O(1) for each transition associated with r-edges in 6(C), and 0() for those associated
with e-edges of 5(C), regardless of the current state in S(c);

(iii) if 5(C) c_ E (case (ii)), then the conditional exit probability from S(c) is

O(1) for each transition associated with edges in 6(C), regardless of the current state
in S(c).

Proof. The proof is by induction on the number of executions of Step 3. Lemmas
4.1-4.4 establish the claims of the theorem for the first execution. Next, we consider
an arbitrary execution assuming the theorem holds for the previous executions.

1. Let v E C be a vertex and let S(v) be a state. Also, let Hi(V) be the order
of the expected sojourn time at S(v) given i as the current state. By the induction
assumption, Hi(V) u(v) is independent of for every e S(v). We wish to next show
that Hi(C) is independent of for all i e C and that Hi(C) u(c) (the value generated
by the algorithm). Suppose that this is not the case. Following the r-edges defining
C, at least one corresponds to v,w e C, with ug(c) < Uh(C), where g e S(v) and
h S(w). Two possibilities exist.

(a) We have that Pgh(S) O(1). Considering this transition probability, we
obtain that O(-g(c)) _> O(1) O(e-h(c)) so ug(c) >_ Uh(C), a contradiction.

(b) We have that Pgh(e) O(). Since now the transition g --. h is associated
with an r-edge, g belonged to some cycle C that was condensed at some earlier
execution of Step 3, Case (ii). By the induction hypothesis on part (iii) of Theorem
4.5, the probability of an exit from C by an g h conditional on an exit from C, is
O(1). Again, it follows that O(-ug (c)) is at least O(1) O(-h()) O(-(c)), so
that u9(c >_ Uh(C), a contradiction.

2. Suppose that the Markov process initiates at C, and consider the clock that
runs only while transitions between vertices in C or outward of C occur (and thus
transitions between states belonging to the same vertex do not progress the clock).
This is not a Markov process, as the transition out of a vertex may depend on the
entering state. However, by the induction assumptions on parts (ii) and (iii) of the
theorem, the orders of these transition probabilities are independent of the entering
state. Thus, if C satisfies the condition of Case (i) (respectively, Case (ii)) in Step 3,
then, as in Lemma 4.1 (respectively, Lemma 4.2), the expected number of visits at
each of the vertices of C (in the new clock) until an exit from C is O(1) (respectively,
O(-1)). Thus, returning to the original clock, the expected time until an exit from C
(regardless of the current state in C) is O(1) O(e- max.c u(v)) (respectively, O(-)
O(--max.c u(v))), which is of the order of magnitude maxvEc u(v) (respectively, 1 +
max,ec u(v)). Indeed, this is the value computed by algorithm.

3. Parts (ii) and (iii) of the theorem are the counterparts of Lemmas 4.3 and 4.4.,
respectively, when considering the above-mentioned new clock. For a formal proof, the
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argument of these lemmas may be repeated, in addition to the need to condition on
the initial state in C. However, by the induction hypothesis, the orders of magnitude
are not a function of the entering state and hence the result follows. [:]

LEMMA 4.6. Step 4 of the algorithm determines the order of magnitude of the
time until absorption at s .for all vertices in the final graph.

Proof. Step 4 of the algorithm is reached when G’ contains no r-cycles. Also, note
that s can be reached from all vertices via an r-path. Since G’ has no r-cycles, then
regardless of the initial state, the expected number of moves between vertices until
the process reaches s is @(1). To see this, note that the vertices can be numbered in
such a way that an r-edge from vertex to vertex j exists only if i < j. In particular,
s obtains the maximum index. Hence the probability of moving backward is either
zero or 0().

Let m max{u(i)li E Y’}. Starting at a vertex j with u(j) m, each move to
new vertex contributes expected time until absorption of the order of magnitude of at
most m, with this value being achieved at least once. Since, in expectation, there are
(1) such moves, we conclude by a simple renewal argument that. the expected time
until absorption in state s is O(-m). Hence the algorithm determines the correct
values for those vertices that were first to be deleted from T. To see that, the order m
applies for those vertices from which j can be reached by an r-edge is now immediate.

Consider the case when an e-edge exists from vertex i to j (but no r-path from i to
j exists). There is an O() probability to enter j, and this contributes to the expected
time until absorption at state s, while initiating at state i a value of () O(-m)
(-(m-1)). As a larger order cannot be achieved, this is the order of time until
absorption at s that such a vertex has. These arguments extend inductively to other
vertices to prove the lemma.

COROLLARY 4.7. Steps 5 and 6 correctly determine u(i) .for all states i V.
Proof. The proof for s is immediate from Lemma 4.6 and part (i) of Theorem

4.5. Then the claim follows for s by a simple expectation argument.
Complexity of the algorithm. The complexity of the algorithm is dominated by

Step 3. This step can be executed in O(n2) time (cf. Fox and Landi [5]), so that
an O(n3)-time complexity obtains for a fixed target state and O(n4) when all target
states are required. We suspect, however, that sophisticated dynamic data structures
can be used to reduce this bound.

5. Generalization to a nonlinear perturbation. The algorithm can be ex-
tended to solve a more general problem. Let P(0) Rnn be a stochastic matrix
representing transition probabilities in a Markov chain. Let A(x) Rnn have zero
row-sums for x X. X is a set of positive real numbers that are not necessarily
integers. For all real , 0 < _< max, assume that P() P(0) + xx XA(x) are
stochastic matrices representing transition probabilities in irreducible Markov chains.
As before, we are interested in computing u(i), the order of magnitude of the expected
time to reach a given state s given an initial state i.

The edge-set of the graph G is now associated with the number kij denoting
the order of the transition probability from i to j. The value of kij is set to zero if
Pj(0) > 0, and in this case where (i, j) Er. Else, kj is set to the lowest index x
for which A(x) > 0, if such an index exists. Since the sum of the probabilities on
the outgoing transitions from a state is 1, there is at least one r-edge (i, j) for every
i E V. After deleting the edges, leaving s, it is true, as was obvious in the special case
above, that if G’ contains no r-cycle then there is an r-path from every s to s.

The following modifications are needed in the algorithm.
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Replace cases (i) and (ii) of Step 3 by the following lines. Set k min{kijl(i,j) e
ti(C)}. Set u(c) k+max{u(i)li e C}. Set kij .-- k-k for all (i,j) e (C). Modify
Er by adding to it edges (i, j) E i(C) that now have kij 0.

Replace Step 4. Let u(j) m{u(i)]i e T}. Delete j from T (thus turning u(j)
into permanent for j). For edges (i, j) where e T, set u(i) m{u(i), u(j)- kij}.
If T , go to Step 5. Else, repeat Step 4.

Replace Step 6. Set u(s) m{u(i)- ks(s, i) e E}.
It is obvious that the generalization of the problem is a natural one and that

it leads to a simpler presentation of the algorithm. We have chosen to present the
special ce of linear perturbation because of its more obvious applicability and also
because the proofs are somewhat simpler.

Another obvious extension of the problem is that in which the time from entrance
to a state to the next transition is state-dependent. In this case, numbers t(i) i V
are given, representing the order of the expected time from entrance to i till the next
transition. Hardly any modification is needed in the algorithm to account for this
ce. The only change is at the initialization step, where, instead of starting with
u(i) 0 for all/e V, we start with u(i) t(i) for all/e Y.

6. Background on Markov chains. Next, we briefly introduce some prelim-
inaries concerning Markov chains (see Meyer [12]). Let P e Rnn be a stochastic
matrix representing transition probabilities in the Markov chain. If P is irreducible
(or ergodic), then a unique positive probability vector r with r rP exists. It is
called the stationary distribution associated with P. The stochastic matrix P is also
associated a matrix M, which is the matrix of mean passage times; namely, Mij is the
expected time until the process first hits state j when it initiates at i. In particular,
Mii 1/ri. Denote by Y the deviation matrix of P. This is the unique matrix Y
satisfying the following three requirements:

(I- P)Y(I- P) I- P,

Y(I- P)Y Y,

Y(I- P) (I- P)Y.

Furthermore, for each pair of states and j,

(6.1)
Mjj

where ii 1 if j and tiij 0 otherwise. This relation between the matrices M
and Y implies also that Yj _> Y/j for all i and j. If P is aperiodic (or regular), then

Y- lim
N--cx)

where E is matrix whose rows coincide with r. This representation of the deviation
matrix gives its probabilistic interpretation. Also, Y [I- (P- E)] -1 E. Finally,
zero is an eigenvalue of Y with rY 0 and with Y1 0, where 0 (respectively, 1) is
a vector all its entries are 0 (respectively, 1).
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7. Series expansion for the stationary distribution. We now return to
nearly uncoupled stochastic matrices with linear perturbation as defined in 1-4.
Let r() be the stationary distribution of P(). Schweitzer [16] showed that, for all
> 0 small enough,

for some sequence {r(i)}=0 Also, r(i) r()U for some matrix U. Hence finding
r(0) is a key for a complete description of the series expansion of r().

To determine the terms of such a series expansion and, in particular, to find the
leading term, consider the identity r() r()(P(0)/ A). It is clear then that
{r()}0 solves the following systems of difference equations:

r() (I- P(0)) O,

and, for j 0, 1,...

r(+)(I- P(0)) r()A 0.

We refer to the above as the systems of fundamental equations. If P(0) is irre-
ducible, then the first set of equations r()(I- P(0) 0 (plus the needed normal-
ization) is sufficient to determine r(0) uniquely. However, if P(0) is decomposable,
then a larger number of sets of fundamental equations is needed to determine r()

uniquely, and the question of how many sets are needed to determine r() uniquely
arises. By having this value in advance, we can improve the naive approach of adding
a set of fundamental equations one at a time and solving the resulting system until a
unique (up to a normalization constant) r() emerges.

We argue that, for a decomposable P(0), the above question is related to the
question of mean passage times at P() for small values of s and their orders of
magnitude. Recall that M() and Y() are the mean passage time matrix and the
deviation matrix, respectively, of P(e). The following result is taken from Schweitzer

LEMMA 7.1. M(e) and Y(e) admit Laurent series expansion.
Proof. It is well known (see, e.g., Meyer [12]) that M() is the unique matrix in

Rnn satisfying (I-P())M() J-P(e)Mdg(), where J is a matrix, all its entries
are one, and Mdg() is a diagonal matrix whose diagonal coincides with the diagonal
of M(s). Solving for M(e), say by Cramer’s rule, then, for each i,j, Mij(e) is the
ratio between two polynomials in and hence it admits a Laurent expansion.5 This
completes the proof for M(). For the matrix Y(e) the result follows from the above
proof coupled with (6.1).

It is clear that Mj() O(-u) where ui is the order of the pole of M().
Thus this order can be computed via the algorithm presented in 3.

THEOREM 7.2. Let ui be the order of the pole of Mij(e) at zero. Similarly, let

vii be the corresponding order of yj(e).6 Then,

m.ax(uij ujj) max vii.
3 3

5 Moreover, the order of the pole is bounded by n since the polynomial in the numerator cannot
have a larger degree.

6 Note that, in the case of an analytic function, the order is zero.
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Proof. As for any irreducible P, the corresponding r and Y satisfy rY 0,
and, as Yjj _> Y/y, the maximal order of the poles over Yjj(e) Yj(e) coincides with
the corresponding maximization over Yj(e). The proof is now completed by relation

It was shown in Haviv and Ritov [7] that the maximal value over the order of the
poles of the entries of Y() at zero equals the minimal number of sets of fundamental
equations needed to determine r() uniquely, minus one.7 By Theorem 7.2, this value
can be computed from the orders of the poles at zero of the entries of M(). Thus we
have the following theorem.

THEOREM 7.3. The minimal number of sets of fundamental equations needed to
construct a system of equations whose corresponding solution to r() is unique (up to
a normalizing constant) is maxij (uij ujj) T 1.

8. An example. Let

P() P(0) + A
0100 0 -10 1
0100 1 -10 0
0 0 0 1 + 0 1 0 -1
0001 0 01-1

Recall that

Er {(i,j)lPij(O) > 0}, and Ee {(i,j)lAij > 0}.

This information is summarized by the following graph where r-edges are repre-
sented by bold arrows and e-edges by dashed arrows. See Fig. 1.

FIG. 1

The Markov chain associated with P(0) is has two independent chains (states 2
and 4, which are absorbing states) and two transient states (states 1 and 3). We pro-
ceed through the steps of the algorithm with the target state s 4. Edges emanating
form vertex 4 are ignored by the first part of the algorithm, so that we consider Fig. 2,
below.

The algorithm initiates with the values u(1) u(2) u(3) 0. There is only one
r-cycle: (2). All edges emanating from it are e-edges, so that Case (ii) occurs in Step
3. Hence u(2) is set to 1, and the next multigraph to be considered is Fig. 3.

Now there is an r-cycle (2,1). It is condensed to a vertex c. As all edges emanating
from it are e-edges, Case (ii) of Step 3 occurs again, and u(c)2 is set to 2. See Fig. 4.

7 In Schweitzer [17] it is stated that the maximal order of the poles is an upper bound for the
number of fundamental equations needed to determine r()
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Fro. 2

FIG. 3

At this stage, no more r-cycles exist, and the algorithm moves to Step 4. Then
the algorithm seeks the set of vertices currently having the largest value and makes
this order permanent. Thus u(c) 2 and T {3, 4}. Next, the algorithm seeks
vertices in T from which vertex c can be reached via paths that are constructed only
of r-edges. There are no such vertices in our example. Then it seeks those vertices
from which c can be reached in one step via an e-edge. Vertex 3 is such a vertex.
It gives it the value of 1, which becomes permanent in the next execution of Step 4.
Then T- , and the algorithm moves to Step 5. There, it sets u(1) u(2) 2 and
u(3) 1. Finally, in Step 6, Fig. 5, below, is considered.

Then u(4) 0 is computed. Thus ula 2, u2a 2, u34 1 and u44 0.
For state 3 as the target state, the algorithm obtains that u13 2, U23 2, U33

1, and ua3 1. The other values can be found by symmetry. Hence max{j(uij-ujj)
2, and three sets of fundamental equations, r() (I-P(0)) -0, r(1)(I-P(0)) r()A,
and r(2)(I P(0)) r(1)A, are required to obtain a system of equations in which the
r() component of a solution (r() r(1) r(2)) is unique (up to a normalizing constant).
As is solved in Haviv and aitov [7], r() (0, 1/2, 0, 1/2).

Acknowledgments. The authors thank Y. Ritov and P. J. Schweitzer for their
helpful observations.
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COMPARING QUEUES AND STACKS
AS MECHANISMS FOR LAYING OUT GRAPHS*

LENWOOD S. HEATH, FRANK THOMSON LEIGHTON$,
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Abstract. The relative powers of queues and stacks are compared as mechanisms for laying out
the edges of a graph. In a k-queue layout, vertices of the graph are placed in some linear order (also
called a linear arrangement), and each edge is assigned to exactly one of the k queues, so that the
edges assigned to each queue obey a first-in/first-out (FIFO) discipline. As the vertices are scanned
left to right, an edge is enqueued on its assigned queue when its left endpoint is encountered and is
dequeued from its queue when its right endpoint is encountered. In a k-stack layout, vertices of the
graph are placed in some linear order, and each edge is assigned to exactly ore of the k stacks so that
the edges assigned to each stack obey a last-in/first-out discipline. As the vertices are scanned left
to right, an edge is pushed on its assigned stack when its left endpoint is encountered and is popped
from its stack when its right endpoint is encountered.

The paper has three main results. First, a tradeoff between queuenumber and stacknumber
is shown for a fixed linear order of the vertices of G. In particular, for a fixed-order layout of a
graph G,

queuenumber stacknumber _> cutwidth/valence(G).

Second, it is shown that every 1-queue graph has a 2-stack layout and that every 1-stack graph has
a 2-queue layout. Third, in a surprising display of the power of queues, it is shown that the ternary
hypercube requires exponentially more stacks than queues. More precisely, an N-vertex ternary
hypercube has a (2 log3 N)-queue layout but requires f (N1/9-e) stacks, e 0, in any stack layout.
Also, some asymptotic bounds for the queuenumber of bounded-valence graphs are derived.

Key words, queue layout, stack layout, book embedding, graph embedding, ternary hypercube
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1. Introduction. A recurring theme in the study of computing mechanisms
compares and contrasts the relative powers of queues and stacks. In computabil-
ity theory, it is well known that two stacks endow an off-line finite-state control with
the full power of a Turing machine, whereas a single stack does not; in contrast, a
single queue suffices to yield the full power of a Turing machine. In quite another
domain, Tarjan [15] characterizes the numbers of queues or stacks needed to realize
given permutations with a network of parallel queues or stacks. In the case that the
entire permutation must be completely loaded into the queues or stacks, then com-
pletely unloaded, Tarjan shows, in a sense that he makes precise, that queues and
stacks are dual mechanisms for realizing permutations. In a similar vein, Even and
Itai [5] use queues and stacks to linearize graphs in much the way that we study
here. They relate the problem of realizing a permutation with a network of parallel
queues or stacks to the problem of coloring a permutation graph. (Given a permuta-
tion r: {1,..., n} -o {1,..., n}, its permutation graph has vertex set {1,..., n} and

Received by the editors December 29, 1990; accepted for publication (in revised form) July 18,
1991. This research was supported by National Science Foundation grants DCI-87-96236, CCR-88-
12567, and CCR-90-09953.

Department of Computer Science, Virginia Polytechnic Institute and State University, Blacks-
burg, Virginia 24061. Part of the research of this author was conducted while at the University of
North Carolina at Chapel Hill and at the Massachusetts Institute of Technology.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139.

Department of Computer and Information Science, University of Massachusetts, Amherst, Mass-
achusetts 01003.

398



COMPARING QUEUES AND STACKS 399

an edge (i,j) whenever < j and r-l(i) < 7r-l(j) or i > j and r-l(i) > r-l(j).)
In the case where loading and unloading may proceed simultaneously, the problem
of minimizing the number of queues required for a given permutation remains the
permutation graph coloring problem. In the same case, Even and Itai show that the
problem of minimizing the number of stacks required is equivalent to coloring a circle
graph, hence is NP-complete [7]. (A circle graph is the intersection graph of a set
of chords of a circle.) The focus of this paper is to contrast queue-based layouts of
graphs with stack-based layouts. Stack-based layouts have been studied extensively,
under the aegis of the problem of embedding graphs in books [1], [3].

Further motivation for the study of queue and stack layouts originates in the
DIOGENES design methodology [14], which is a proposal by one of the authors for
implementing fault-tolerant arrays of parallel processors. In DIOGENES, an array of
communicating processors is implemented in a conceptual line, and some number of
hard,ware queues and/or stacks pass over the entire line. The queues and/or stacks
implement the communication links among processors in such a way that faulty pro-
cessors are ignored, and all good processors are utilized. If the processors and their
connections are represented by an undirected graph, then the DIOGENES layout
problem is equivalent to a graph layout problem, where edges are assigned to concep-
tual queues and/or stacks.

A final motivation for this study is a problem arising in the scheduling of parallel
processors. Consider the following simple model of scheduling parallel computations
in an architecture-independent fashion; cf. [13]. We represent the computation to be
scheduled as a directed acyclic graph (dag) whose nodes represent the processes to be
executed and whose arcs indicate computational dependencies: a process-node cannot
be executed until all of its predecessors in the dag have been executed. Processes are
queued up in a first-in/first-out (FIFO) processor queue (PQ) as they become eligible
for execution; each idle processor "grabs" the process at the head of the PQ. Our
study focuses on the management of data in this scenario: where will the inputs
to process P be when P is "grabbed" by a processor? Our solution is to have the
PQ be coordinated with a data manager (DM), which itself is a collection of FIFO
queues: When a process terminates, it places its "outputs" on the queues of the DM
in such a way that when process P is "grabbed" by a processor, all inputs to P are at
the heads of the DM queues. Our queue-based graph linearization problem idealizes
this approach to the scheduling problem: The computation dag is the graph to be
linearized; the linearization process implicitly specifies the loading of the PQ; the
queues that control the linearization comprise the DM. Here we idealize the problem
even a step further by replacing the computation dag by an ordinary (undirected)
graph.

A k-queue layout of an undirected graph G (V, E) has two aspects. The first
aspect is a linear order of V (which we think of as being on a horizontal line). The
second aspect is an assignment of each edge in E to one of k queues in such a way that
the set of edges assigned to each queue obeys a FIFO discipline. Think of scanning the
vertices in order from left to right. When the left endpoint of an edge is encountered,
the edge enters its assigned queue (at the back of the queue). When the right endpoint
of an edge is encountered, the edge exits its assigned queue (and must therefore be at
the front of the queue). If a queue is examined at any instant, the edges in the queue
are in the order of their right endpoints, with the leftmost of those right endpoints
belonging to edges at the head of the queue.

More formally, a k-queue layout of an n-vertex undirected graph G (V, E)
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FIG. 1.1. Example graph G.

FIG. 1.2. 1-queue layout.

consists of a linear order of V, denoted a 1, 2,..., n, and an assignment of each
edge in E to exactly one of k queues, ql,’", qk. Each queue qj operates as follows.
The vertices of V are scanned in left-to-right (ascending) order. When vertex i is
encountered, any edges assigned to qj that have vertex as their right endpoint must
be at the front of that queue; they are removed (dequeued). Any edges assigned to q
that have vertex i as left endpoint are placed on the back of that queue (enqueued),
in ascending order of their right endpoints, k is the queuenumber of the layout. The
queuenumber of G, QN(G), is the smallest k such that G has a k-queue layout; G is
said to be a k-queue graph. The freedom to choose the order of V and the assignment
of E so as to optimize the queuenumber (or some other measure) of the resulting
layout constitutes the essence of the queue layout problem.

As an example of a 1-queue layout, consider the graph G in Fig. 1.1. A 1-queue
layout of G is shown in Fig. 1.2. The linear order of V is a, f, b, e, c, d. The order in
which edges pass through the single queue is

(a, f), (a, b), (f, b), (f, e), (b, e), (b, c), (b, d), (e, d), (c, d).

Note that edges having the same left endpoint enter the queue in an order determined
by their right endpoints. For example, edge (a, f) must enter the queue before edge
(a, b) since f is to the left of b.

Dually, a k-stack layout of graph G also has two aspects. The first aspect is

again a linear order of V. The second aspect is an assignment of each edge in E to
one of k stacks in such a way that the set of edges assigned to each stack obeys a

last-in/first-out discipline.
More formally, a k-stack layout of an undirected graph consists of a linear order

of V and an assignment of each edge in E to exactly one of k stacks, sl,--., sk. Each
stack sj operates as follows. The vertices of V are scanned in left-to-right (ascending)
order. When vertex i is encountered, any edges assigned to sj that have vertex as
their right endpoint must be on the top of that stack; they are removed (popped). Any
edges assigned to sj that have vertex as left endpoint are placed on the top of that
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FI(. 1.3. 1-stack layout.

stack (pushed), in descending order of their right endpoints, k is the stacknumber of
the layout. The stacknumber of G, SN(G), is the smallest k such that G has a k-stack
layout; G is said to be a k-stack graph. Unlike a queue layout, edges do not exit a
stack in the same order in which they enter it.

As an example, Fig. 1.3 shows a 1-stack layout of the graph G in Fig. 1.1. The
linear order of V is a, b, c, d, e, f. The order in which edges enter the stack is

(a, f), (a, b), (b, f), (b, e), (b, d), (b, c), (c, d), (d, e), (e, f).
The order in which edges exit the stack is

(a, b), (b, c), (c, d), (b, d), (d, e), (b, e), (e, f), (b, f), (a, f).
One goal of this study is to find graphs for which the queuenumber and stack-

number differ significantly. A second goal is to improve our insight into when queues
(stacks) are easier to use than stacks (queues). Some contrasts are found in the work
of Heath and Rosenberg [8] on queue layouts. 1-queue graphs, like 1-stack graphs,
have a characterization as a class of planar graphs. (We review this characterization
in 2.) However, while 1-stack graphs can be recognized in linear time, the recogni-
tion problem for 1-queue graphs is NP-complete. On the other hand, when the vertex
order of a layout is fixed, the minimum number of queues required for the layout is
easily characterized and found in polynomial time, while the problem of finding the
minimum number of stacks is NP-complete [5], [7].

The queuenumbers of a number of familiar classes of graphs are determined in [8],
with one exception. See Table 1. In all cases save one, the number of queues required
is no more than the number of stacks. The sole exception is the open problem of the
queuenumber of planar graphs. In the case of the complete bipartite graph Kin,n, the
queuenumber is determined to be exactly min([m/2], In/2]), while the best upper
bound known for the stacknumber is significantly higher, [(m + 2n)/4] [11].

In this paper, we obtain the following results comparing queue and stack layouts.
Initially, we find instances where the powers of queues and stacks are roughly equal.
We prove that every 1-queue graph has a 2-stack layout, and that every 1-stack
graph has a 2-queue layout. Moreover, we find that the asymptotic results for graphs
of bounded valence (maximum vertex degree) are identical for queues and for stacks.
These two results lead us to hope that, in fact, queues and stacks are equally powerful
graph-layout mechanisms, in the sense that every graph that admits a k-queue layout
admits an O(k)-stack layout, and vice versa. We prove that such equivalence results
cannot possibly be proved using the same linear ordering of graph vertices for both
the queue and stack layouts, by establishing a queuenumber-stacknumber tradeoff for
any fixed layout of a graph, as follows:

queuenumber stacknumber _> cutwidth/valence(G).
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TABLE 1
Queuenumbers of specijc graphs.

Graph class

Trees

X-trees

DeBruijn graph

Complete graph Kn

Complete bipartite graph gm,n

FFT network

Benes network

Boolean n-cube

Planar graphs

Queuenumber

Ln/2J

min(rm/2], Pnl2]

Stacknumber

1 [31

[31

[12]

Ln/2J [3]

(exact)

Unknown
(conjecture
bounded)

[11]

3 []

3 [6]_
n- 1 [3]

4 [16]

Moreover, by studying layouts of the ternary hypercube, we find that, in fact, no such
equivalence result exists! While an N-vertex ternary hypercube can be laid out with
2 log3 N queues, any stack layout requires t (N1/9-e) stacks, e > 0.

The organization of this paper is as follows. The second section reviews the
necessary results from [8]. Section 3 contains our queuenumber/stacknumber tradeoff
for fixed order layouts. In 4 we show that every 1-queue graph has a 2-stack layout,
and that every 1-stack graph has a 2-queue layout. Section 5 dualizes previously-
known asymptotic results for stack layouts to queue layouts. Section 6 contains the
ternary hypercube as an example of an exponential tradeoff between queuenumber
and stacknumber.

2. Basics. This section reviews some needed results from [8].
2.1. Fixed-order layouts. In this section, we fix an order a 1, 2,...,n of

V and examine the difficulty of minimizing the number of queues or the number of
stacks required to complete a to a layout. We concentrate on sets of edges that are
obstacles to minimizing the number of stacks or queues. A k-rainbow is a set of k
edges

such that

{ei (ai, bi), 1

_
_< k}

al a2 ak-1 ak bk bk-1 b2 bl;

in other words, a rainbow is a nested matching. A k-twist is a set of k edges

{ei (ai, bi), 1 _< i _< k}
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2.1. A leveled-planar graph.

such that

in other words, a twist is a fully intersecting matching.
A rainbow is an obstacle for a queue layout because no two nested edges can be

assigned to the same queue.
PROPOSITION 2.1 (see [8]). Suppose that a has a k-rainbow. Then there is no

queue layout of a with fewer than k queues. There exists a stack layout of a in which
all edges of the k-rainbow are assigned to the same stack.

A twist is an obstacle for a stack layout because no two intersecting edges can be
assigned to the same stack.

PROPOSITION 2.2 (see [3]). Suppose that a has a k-twist. Then there is no stack
layout of a with fewer than k stacks. There exists a queue layout of a in which all
edges of the k-twist are assigned to the same queue.

The largest rainbow in a determines the smallest number of queues needed in
a queue layout of a. In fact, a queuenumber-optimal layout of a can be found in
polynomial time.

THEOREM 2.3 (see [8]). If a has no rainbow of more than k edges, then there is
a k-queue layout for a. Such a layout can be found in time O(IE log log IVI).

2.2. A characterization of 1-queue graphs. Bernhart and Kainen [1] give a
characterization of 1-stack graphs.

PROPOSITION 2.4 (see [1]). G is a 1-stack graph if and only if G is outerplanar.
(An outerplanar graph is a planar graph having a planar embedding in which all

vertices appear on a common face.)
Heath and Rosenberg [8] show that the 1-queue graphs are also planar graphs

that have a particular kind of planar embedding. For completeness, we repeat their
characterization here.

Consider the normal Cartesian (x, y) coordinate system for the plane. For i an
integer, let i be the vertical line defined by ((i, Y) IY e R}. A graph G (V, E)
is a leveled-planar graph if V can be partitioned into levels V, V2,..., Vm and G can
be embedded in the plane in such a way that all vertices of V/are on the line gi, each
edge in E is embedded as a straight-line segment wholly between gi and gi+ for some
i, and the embedding is a valid planar embedding for G (i.e., no edges cross). Figure
2.1 shows a leveled-planar graph having three levels. Note that the leveled-planar
embedding of a leveled-planar graph is not unique. Henceforth, we assume that a
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FIG. 2.2. Drawing arches.

FIG. 2.3. A maximal arched leveled-planar graph.

valid (but arbitrary) leveled-planar embedding is given along with a leveled-planar
graph.

A leveled-planar embedding induces an order (the induced order) on V as follows.
As i takes the values 1, 2,..., m, scan line li from bottom to top. Label the vertices
1, 2,..., n as they are encountered. For 1 _< i _< m, let bi be the (bottom) first vertex
in level i, and let ti be the (top) last. Let si be the first vertex in level i that is
adjacent to some vertex in level i / 1, or, if there are no edges between levels i and
+ 1, let si ti. Consider augmenting G with new edges. A level-i arch for G is

an edge connecting vertex ti with some vertex j, where bi _< j _< min(ti 1, si). A
leveled-planar graph G, augmented by any number of arches, can be embedded in
the plane by drawing the arches around level 1; because of the leveling, the arches
do not cross. See Fig. 2.2, where edges (3, 5) and (6, 8) are arches. A leveled-planar
graph augmented by (zero or more) arches is called an arched leveled-planar graph.
The edges that are not arches are called leveled edges. An arched leveled-planar
graph that cannot be augmented with further arches or leveled edges is maximal. See
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Fig. 2.3 for an example. The above definitions for bi, si, and ti are used in 4 to refer
to vertices in arched leveled-planar graphs.

We can now state the characterization of 1-queue graphs.
THEOREM 2.5 (see [8]). A graph G is a 1-queue graph if and only if G is an

arched leveled-planar graph.

3. A queuenumber/stacknumber tradeoff. Let a 1, 2,-.-, n be a fixed
order of the vertices of G. Intuitively, the cutwidth of a is the maximum number
of edges cut by any line perpendicular to a. Formally, define the cut at vertex i,
1 <_ i <_ n- 1, to be the set of edges of G,

CUT(i)- {(j,k) ll <_ j <_ i < k _< n}.

The cutwidth of a is CW(a) maxi ICUT(i)I. The valence of G, denoted valence(G),
is the maximum degree of a vertex of G.

We develop a tradeoff between the queuenumber and the stacknumber of a using
the following result of Erdhs and Szekeres [4].

PROPOSITION 3.1. Let P be the sequence r(1),.-., r(n), where r is some permu-
tation of 1,..., n. Let a be the length of the longest ascending subsequence in P, and
let d be the length of the longest descending subsequence in P. Then ad >_ n.

The tradeoff is based on finding an interesting matching in the graph.
THEOREM 3.2. Let a 1, 2,..., n be a fixed order of the vertices of G. Then

(1) SN(a) QN(a) >_ CW(r)/valence(G).

Proof. Choose a vertex i, 1 _< _< n- 1, such that ICUT(i)I CW(a). CUT(i) is
the edge set of a bipartite graph H with valence(H) _< valence(G). Select a maximum
matching M C_ CUT(i) in H. The size of M is at least CW(a)/valence(G).

The left vertices of M give an order to the edges in M, and the right vertices
give some permutation r of that order. Let a and d be as required for Proposition
3.1. Then a gives the length of a longest similarly ordered sequence between left and
right vertices of M; therefore M contains an a-twist. By Proposition 2.2, SN(a) _> a.
Similarly, M contains a d-rainbow. By Proposition 2.1, QN(a) _> d. Finally, by
Proposition 3.1,

SN(r) QN(a) _> ad >_ IMI >_ CW(a)/valence(G).

The factor valence(G) in (1) is necessary. Consider the star graph G with vertex set
{1,2,...,n} and edge set {(1,i) 12 <_ i _< n}. Ifa 1,2,...,n, then SN(a)= 1,
QN(a) 1, CW(a) n- 1, and valence(G) n- 1.

4. Small numbers of queues and stacks. A graph G (V, E) is subhamil-
tonian if it is a subgraph of a planar graph G, and G has a hamiltonian cycle.
Bernhart and Kainen [1] provide a characterization of 2-stack graphs.

PROPOSITION 4.1 (see [1]). A graph G has a 2-stack layout if and only if G is
subhamiltonian.

We can bound the stacknumber of a 1-queue graph.
THEOREM 4.2. Every 1-queue graph has a 2-stack layout.
Proof. Let G (V, E) be a 1-queue graph having n >_ 3 vertices. By Theorem 2.5,

G has an arched leveled-planar embedding with some leveling of V, say V1,..., V,.
By Proposition 4.1, it suffices to show that G is subhamiltonian.
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Because the stacknumber of a graph equals the maximum stacknumber of any
of its biconnected components [3], we may assume that G is biconnected; so, in
particular, none of the levels V2,..., Vm-1 is a singleton. We may also assume that
G is a maximal arched leveled-planar graph. For each level i, add the vertical edges
(p,p + 1), bi _< p _< ti 1, that is, the edges that go along the line gi, connecting
consecutive vertices of V/. Let the resulting graph be G (V, Er). Clearly G is
planar; we claim that it is hamiltonian.

Note that, when IVI > 2, the (new) vertical edges on level together with the
arch (bi, ti) form a cycle on V. Call these edges the level-i cycle edges. These cycles
on levels are nested in the planar embedding. Our strategy is to connect each pair of
consecutive cycles by two leveled edges to obtain a hamiltonian cycle for G.

By an induction on m- i _> 1, we show that there is a particular kind of spanning
cycle for levels V, V+I,..., V,. The inductive hypothesis is that there is a cycle C
spanning levels V/,..., Vm such that all but one of the level-/cycle edges are in C; if
IVI 2, then C contains the edge (b, ti) (which is considered to be both a vertical
edge and an arch).

For the base case where i m- 1, there are three subcases. First, if IVml 1,
then let C be the spanning cycle

which contains all level-/ cycle edges except (t- 1, ti). Second, if IVml > 1 and
IVI 1, then i 1 (because of our assumption that G is biconnected), and G’ is
obviously hamiltonian. Third, if IVml > 1 and IVI > 1, then choose four vertices
p,p + 1,q,q + 1 such that p,p + 1 E V, q,q + 1 e Vm, and (p,q),(p + 1, q+ 1) E.
Because G is maximal and IVI > 1, ]Vml > 1, this choice is always possible. Let C be
the spanning cycle

p+ 1,’",ti, bi,’",p,q,’",bm, tm,"’,q+ 1,p+ 1.

All level-/cycle edges except (p,p + 1) are in the spanning cycle; if IVI 2, then
p- bi, p+ 1 ti, and (p,p+ 1) is in C.

For the purpose of induction, assume that there is a spanning cycle C satisfying
the inductive hypothesis for V/+I,-.., Vm. We extend the spanning cycle to a spanning
cycle C’ for V,..., Vm.

If 1 and IVI- 1, then choose some level-2 vertical edge (p,p / 1) that is in
C. Construct C’ from C by deleting (p,p / 1) and adding (1, p) and (1,p + 1). A
hamiltonian cycle for G results.

Otherwise, IV/I > 1. Let (x, y), x < y, be the level-(// 1) vertical edge (if any)
that is not in C. We wish to choose four vertices p, p / 1, q, q / 1 with the properties
p, p + 1 V, q, q + 1 V/+I, and (p, q), (p + 1, q + 1) E. If such a choice is possible
so that (q, q + 1) (x, y), then C can be extended to C’ by removing edge (q, q + 1)
and adding the path

q,p,...,bi, ti,...,p+ 1, q+ 1.

All level-/cycle edges except (p,p + 1) are in the spanning cycle; if IVI 2, then
p bi, p + 1 ti, and (p, p-t- 1) is in C.

Assume that the only choices for the four vertices force (q, q / 1) (x, y). (This
implies that either x or y is the only level-(// 1) vertex that is adjacent to more
than one level-/vertex. Thus either x bi+l or y ti+. If x bi+l, then every
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level-(// 1) vertex is adjacent to ti. If y ti+l, then every level-(/+ 1) vertex is
adjacent to si.) Fix one such choice. Because G is maximal, either (p,q + 1) E E
or (p / 1, q) E E. First, assume that (p + 1, q) E. Because the choice of q and
q / 1 was forced, we can conclude that q bi+l and p / 1 t. Furthermore, the
edges (j,q), si <_ j <_ p + 1 ti and (p + 1,j), b+l q <_ j <_ ti+l are all the
leveled edges between V and V+I. (b+l, t+l) is an edge in C. Replace it with the
path b+l, p,"", bi, t, t+l, yielding Cp. The result is a spanning cycle for V,. , Vm
satisfying the inductive hypothesis.

Now assume that (p, q + 1) E. We can conclude that q + 1 t+l and p s.
Furthermore, the edges (j,q + 1), si p

_
j <_ t and (p,j), b+l <_ j

are all the level edges between V and V/+I. (b+l, ti+l) is an edge in C. Replace it
with the path b+l, s,..., b, t, ti+l, yielding Cp. The result is a spanning cycle for
V,..., Vm satisfying the inductive hypothesis.

By induction, G’ has a hamiltonian cycle. The theorem follows.
Theorem 4.2 cannot be improved, in the sense that there are 1-queue graphs that

require two stacks. For example, the complete bipartite graph K2,3 is a leveled-planar,
hence 1-queue, graph, but it is not outerplanar, hence is not a 1-stack graph. Dually,
1-stack graphs need not be 1-queue graphs, but they never need more than two queues.

THEOREM 4.3. Any 1-stack graph has a 2-queue layout.
Proof. Let G (V, E) be a 1-stack graph having n _> 3 vertices. Then G is

outerplanar. We may assume that G is a maximal outerplanar graph. Then G has a
unique outerplanar embedding such that all its vertices are on the exterior face, and
the boundary of that face is the unique hamiltonian cycle C for G.

Level V as follows. Choose an arbitrary vertex, and label it vertex 1. Proceed in
a breadth-first manner from vertex 1. For each vertex v V, let ti(v) be the length of
a shortest path from vertex 1 to v. Let m 1 + maxvey 5(v). For 1 <_ i _< m, define

e v 1).

Then V1,..., V, is a partition of V. In each V, order the vertices bi,..., ti as they
are encountered in a counterclockwise traversal of C, beginning at 1. Ordering V
level by level, we obtain a linear order a 1, 2,..., n for V. We must show that
accommodates an assignment of E to 2 queues.

Let E C E be the edges between consecutive levels. We claim that no two edges
in E nest with respect to a. Suppose, to obtain a contradiction, that (p2, q2) E
nests inside (pl,ql) E E, pl < p2 < q2 < ql. Then 5(Pl) _< 5(P2) and 5(q2) _< 5(ql).
Since 5(ql) 5(pl)+ 1 and 5(q2) 6(p2)+ 1, we must have that ti(pl) 5(P2) and
5(ql) 5(q2). Then the vertices occur in one of the counterclockwise orders

(2) 1, pl, p2, q,

(3) 1,pl,q2,P2, ql,

(4) 1, q, pl, ql, p,

(5) 1, q2, ql,pl,p2.

In orders (2) and (3), any path from 1 to pl must pass through either pl or ql. Then,
however

5(pl) + 1 5(ql) _< 5(p2) 5(pl),

a contradiction. A similar contradiction follows for orders (4) and (5). By Theo-
rem 2.3, then, the order a allows us to lay out the edges in E using one queue.
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FIG. 4.1. A 1-stack, 2-queue graph.

Each edge in E- Et is incident on two vertices in the same level. Clearly, for
two edges in E- Ee to nest, they must be in the same level. Suppose that there
are two edges (Pl, ql), (P2, q2) E E- Et that nest, so that Pl,p2, ql, q2 E V and
pl < p2 < q2 < ql. Then, however, the counterclockwise order of the vertices is
1,pl,p2, q2, q. Since ti(p) ti(q) and any path from 1 to P2 must pass through
either p or ql, we have that 5(p) + 1 _< i(p2), a contradiction to i(p) 5(P2).
Therefore no two edges of E- E nest. By Theorem 2.3, then, the order a allows us
to lay out the edges in E- Et using one queue.

We have thus shown that the order a admits a 2-queue layout of G, as was
claimed.

Theorem 4.3 cannot be improved, in the sense that there are 1-stack graphs that
require 2-queues. For example, the graph in Fig. 4.1 is outerplanar, hence 1-stack,
but it is not an arched leveled-planar (1-queue) graph [8].

5. Asymptotics of bounded valence graphs. The results in 4 suggest, nat-
urally, the conjecture that every graph admitting a k-queue layout admits an O(k)-
stack layout, and vice versa. Perhaps the big-O constant is just 2. This conjecture
is supported by all the layouts of specific graphs in [8]; refer again to Table 1. Fur-
ther support for the conjecture comes from considering asymptotic bounds for graph
layouts, based on valences. Indeed, the results of Malitz [9], [10] dualize immediately
from stack layouts to queue layouts, as we now show.

The observation that twists are obstacles for stack layouts has been exploited to
obtain upper and lower bounds on stack number for d-valent graphs [9], [10]. The
proofs dualize to queue layouts, with rainbows replacing twists.

The first theorem contains a probabilistic upper bound on the queuenumber of a
graph as a function of its valence.

THEOREM 5.1. Let G be an n-vertex, m-edge graph. Then G has an 0 (m/2)
queue layout. In particular, if G has valence d, then G has an 0 ((nd)/2)-queue
layout.

Proof. Use the same argument as in Theorem 2.2 of [10], except replace completely
crossing (twist) with completely nested (rainbow). [:]

Call G regular if all vertices of G have the same degree. The next theorem contains
a probabilistic lower bound on the queuenumber of a regular graph of bounded valence
that leaves a significant gap with the upper bound of Theorem 5.1. In particular, there
are bounded-valence graphs of arbitrarily large queuenumber, though we do not know
an example of a sequence of such graphs.
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THEOREM 5.2. Most regular d-valent graphs on n vertices have queuenumber

Proof. Use the same argument as in Theorem 6.1 of [9], except replace completely
crossing (twist)with completely nested (rainbow).

6. An exponential queue/stack tradeoff. The results of the last two sections
give scenarios in which queues and stacks are mechanisms of roughly equal power
for laying out graphs. The evidence for the conjecture made in 5 is strong. The
obvious approach to try to prove the conjecture is to generalize the transformations
in Theorems 4.2 and 4.3. However, in both theorems, the transformation from a
queue (respectively, stack) layout to a stack (respectively, queue) layout transforms
the vertex order in a way that depends on the original queue (respectively, stack)
layout. This does not yield the desired generalization, however, because, for a general
multiqueue (respectively, multistack) layout, the order transformations are different
for each queue (respectively, stack), hence not consistent for all queues (respectively,
stacks).

In fact, it is not just the approach that fails. The conjecture is false, at least
in one direction! To wit, there is a family of graphs whose stack requirements are
exponentially greater than their queue requirements, as we now show.

The vertices of the ternary n-cube TC(n) (or, simply, the ternary hypercube)
comprise all strings of length n over the alphabet (0, 1, 2}. The edges of TC(n)
connect all triples of vertices of the forms xOy, xly, and x2y into a triangle (i.e., a
copy of K3). Hence TC(n) has N 3n vertices connected in n3n-1 triangles.

The family of ternary n-cubes, n >_ 1, requires exponentially more stacks than
queues.

THEOREM 6.1. TC(n) admits a queue layout using 2n queues but requires
t(N1/9-) stacks in any stack layout, for any > O. TC(n) does admit an
O ((N log N)/2)-stack layout.

To prove this tradeoff, we need two lemmas.
The first lemma appears in Chung, Leighton, and Rosenberg [3]. The depth-n

sum of triangles graph T(n) has vertices

and edges

i.e., it consists of n disjoint triangles.
LEMMA 6.2 (see [3]). Let the vertices ofT(n) be ordered so that the a ’s all appear

in a block to the left of the bi ’s, which all appear in a block to the left of the ci ’s. Then
this layout of T(n) requires at least n/3 stacks.

The second lemma is the ternary hypercube version of a Boolean hypercube pack-
ing lemma due to Chung et al. [2]. The proof in the ternary case is sufficiently different
from the binary case that we give it in full.

LEMMA 6.3 (packing lemma for ternary hypercubes). Let G be an m-node sub-
graph of the ternary hypercube with average degree 2d. Then m IV(G)I >_ 3d. In
other words, the number of edges within G is no more than m log3 m.
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Proof. (All logarithms in this proof are base 3.) We proceed by induction on the
dimensionality of the hypercube, the inductive hypothesis being

2m log rn >_ Z dega(v)’
v

where degG(v is the degree of the vertex v in the graph G.
The base case being easily verified, let us extend the induction. First, partition

the hypercube across some dimension, thereby partitioning G into three subgraphs:
G1 of size ml _> 1, G2 of size m2

_
ml, and G3 of size m3

_
m2. (If there is no

dimension across which G may be thus partitioned, then G is a subgraph of a Boolean
hypercube. The result then follows by [2].) These three subgraphs are interconnected
as follows. We have s{1,2} _< ml edges connecting G1 and G2, s{1,3} _< ml edges
connecting G1 and G3, and s{2,3} _< m2 edges connecting G2 and G3.

Our inductive hypothesis allows us to conclude that, for i 1, 2, 3, counting only
edges in each

2mi logm >_ Z degi (v)
v

Z degG(v) s{i,j} s{i,k},
v

where j and k are chosen so that i, j, and k are distinct. Therefore, summing over
all nodes of G and applying the bounds on the s{i,j}’s, we get the inequalities

< + +m
v

+2 (s{1,2} / 8{1,3} -" 8(2,3})
__< 2(ml log ml / m2 log m2 + m3 log m3)

T4ml + 2m2.

Because of these inequalities, our claimed result follows from verifying that the fol-
lowing inequality holds whenever m3 _> m2 _> m

_
1"

(ml + m2 + m3) log(m1 + m2 + m3) >_ ml logml + m2 logm2

+m3 log m3 + 2ml + m2.

Let us simplify notation by setting m2 am1 and m3 bml, so that b >_ a _> 1.
Substituting, we obtain that

(ml + m2 + m3) log(m1 + m2 + m3) ml log ml + m2 log m2 + m3 log m3

+ml log(1 + a + b)

+amllg( l+a+b)a
+bmllog(l+a+b)b

Our task thus reduces to verifying that

log(l_t_a_t_b) Talog(l-t-aTb) / b log > 2 / a
a b
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whenever b _> a _> 1 This is equivalent (via exponentiation) to verifying that

(1 + a 4- b) (l+a+b) _> 9 (3a)a bb.

We have equality when a b 1, so we concentrate on the case where a b _> 1.
The inequality becomes

(1 4- 2a) l+2a _> 9 (3a2) a or ((1+2a) (1 4-2a)2

>9.
3a2

Both of the factors on the left-hand side are easily seen to be increasing functions of
a. Since there is equality when a 1, the inequality holds for all a _> 1.

It remains to show that, for a >_ 1 fixed and b >_ a varying, the inequality holds.
Rewrite the inequality as

(1 + a + b)+a+b
bb

_> 9 (3a) a

The inequality holds when b a by the preceding paragraph, and the left-hand side
is easily seen to be an increasing function of b. This completes the proof. 0

We now give the proof of Theorem 6.1.
Proof. We can lay TC(n) out inductively, using 2n queues, as follows. Lay out

consecutively 3 copies of TC(n- 1), using 2(n- 1) queues, all copies in the same
order. Call them copy A, copy B, and copy C, from left to right. Now assign one new
queue for the A-C edges and one new queue for the A-B edges and the B-C edges.
The easy details are left to the reader.

On the other hand, we claim that any way of linearizing TC(n) must use (Na)
stacks, for any a < . The argument reduces the sum-of-triangles layout from [3] to
the current problem. Note that when TC(n) is linearized, there are nN/3 centers of
triangles among the N vertices (if a triangle has vertices u, v, w, and they appear
in that order in the linearization, then vertex v is the center). Focus on an integer
K N3a, and partition the given arbitrary layout of TC(n) into disjoint windows of
size K. Some one window W must contain at least nK/3 center vertices (note that,
in this count, we allow a single vertex to be the center of many triangles). We want to
bound (from above) the number of triangles of TC(n) that have a center in window W
and also have another vertex in W. When this happens, say that the "other" vertex
(i.e., the noncenter) spoils the triangle. We obtain the desired bound by determining
the largest possible number of edges that could connect vertices within W (i.e., that
do not exit W). By the packing lemma, at most 3anK edges have both endpoints
in window W. Each such edge can spoil at most one triangle. Hence W contains at
least (1/3 3a)nK centers of unspoiled triangles.

Let S be the set of unspoiled triangles with centers in W. Define a graph H with
vertex set S in which two triangles (vertices of H) are adjacent exactly when they
share a vertex in TC(n). Any triangle shares a vertex with at most 3(n- 1) other
triangles. Therefore H has maximum vertex degree at most 3(n-1) and must contain
an independent set S’ c S of cardinality

IS’I>- 3(n-1) 4-1
> nn

Hence S’ consists of at least ( -a)K disjoint unspoiled triangles with centers in W.
Fix a < . The result now follows by Lemma 6.2.
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A stack layout of TC(n) using O((Nlog N) 1/2) stacks follows immediately from
Theorem 2.2 in [10]. Since the proof of that theorem is nonconstructive, it does not
provide an explicit stack layout of TC(n). D

The exponential magnitude of this tradeoff is certainly a surprise. Compare this
result to the fact that the queuenumber [8] and stacknumber [3] of the Boolean n-cube
are both O(n). A substantial tradeoff in the opposite direction has eluded us. In fact,
we do not even have a candidate family of graphs that might be difficult for queues,
while easy for stacks, in the same sense that the sum of triangles is difficult for stacks,
while easy for queues. We conjecture that there is no such family.

Acknowledgments. The authors thank Sandeep Bhatt, Fan Chung, Sriram
Pemmaraju, and Andrew Reibman for helpful conversations. The authors also thank
the anonymous referee for a number of suggestions that improved the exposition.
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A COMBINATORIAL APPROACH TO
BIORTHOGONAL POLYNOMIALS*
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Abstract. It is proved that biorthogonal polynomials are characterized by the recurrence re-
lations whose coefficients are related in a certain way. On the basis of these recurrence relations
for biorthogonal polynomials, biorthogonal polynomials are interpreted as weights of sets of certain
paths in the line, and the moments of the linear functional involved as weights of sets of certain paths
in the plane. This interpretation is a generalization of Viennot’s interpretation of general orthogonal
polynomials.

Key words, biorthogonal polynomials, orthogonal polynomials, recurrence relations, weighted
paths
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1. Introduction. Let L be a linear functional on the vector space of polynomials
in x. Let w(x) be a polynomial in x of degree d, for some positive integer d.

We consider two sets of polynomials, (Rn(X)}n>O, (Sn(x)}n>O, such that Rn(x)
is a polynomial in x of degree n and Sn(x) is a polynomial in w(x) of degree n. (So
S,(x) is a polynomial in x of degree dn.) These two sets of polynomials are said to
be biorthogonal with respect to a linear functional L if

=0 ifm n,
(1.1) L(Rm(x)Sn(x)) = 0 if m n.

DEFINITION 1.1. Polynomials {R,(x)}n>o and {S(x)}>0 satisfying (1.1) are
called biorthogonal polynomials.

If w(x) -x, then biorthogonal polynomials become ordinary orthogonal polyno-
mials.

If the linear functional L is given by the integral with respect to a weight function
p(x) over an interval [a, b], the above equation (1.1) can be rewritten as

fab {=0 ifm n,
(1.2) Rm(x)Sn(x)p(x) dx : 0 if m n.

The biorthogonal polynomials in (1.2) were studied by Didon [Di] and Deruyts
[De]. They considered the cases where w(x) xd and studied examples for weight
functions xa-l(1- x)-1, the weight function for the Jacobi polynomials on (0, 1).
Deruyts also studied the case in which the weight function was x’e-x on (0, c), the
weight function for the Laguerre polynomials. Deruyts showed the existence of d + 2
term recurrence relations in [De].

More recently, in 1951, Spencer and Fano [SF] introduced the case where w(x)
x2, p(x) xae-x in carrying out calculations involving penetration of gamma rays
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through matter. In 1958, Preiser [Pr] asked when biorthogonal polynomials, for
w(x) xd, could be solutions of third-order differential equations. He proved that
the case where w(x) x2 was the only instance.

Konhauser, without knowing the results in [De], studied the general properties
of biorthogonal polynomials in [Kol]. He developed a theory of general biorthogonal
polynomials similar to that of orthogonal polynomials. He gave, among other things,
necessary and sufficient conditions for the existence of the biorthogonal polynomials
with a given weight function, and the existence of recurrence relations. Some of his
results were given in [De], for the case where w(x) xd.

Another direction of development was performed by Rossum [Ro]. Rossum stud-
ied (formally) biorthogonal polynomials for the case where w(x) xd in (1.1) and
gave a sufficient condition for the existence of (formally) biorthogonal polynomials
with respect to the linear functional whose moments are given. Using this condition,
he showed that the weight functions for the Jacobi polynomials, the Bessel polynomi-
als, and the Laguerre polynomials have a pair of biorthogonal polynomials for every
positive integer d.

In the pursuit of a recent trend to combinatorially explain as much as possible,
Viennot [Vil], [Vi2] studied a combinatorial interpretation of general orthogonal poly-
nomials. He gave a model for general orthogonal polynomials on the basis of three-term
recurrence relations and proved many properties of general orthogonal polynomials by
combinatorial methods.

In this paper, we first prove that biorthogonal polynomials in the sense of (1.1)
are characterized by the recurrence relations whose coefficients are related in a certain
way. On the basis of these recurrence relations for biorthogonal polynomials, for the
case where w(x) xd, we interpret biorthogonal polynomials as weights of sets of
certain paths in the line, and the moments of L as weights of sets of certain paths in
the plane. This interpretation is a generalization of Viennot’s interpretation of general
orthogonal polynomials, since the case where w(x) x gives Viennot’s interpretation
of orthogonal polynomials.

2. Recurrence relations. We begin with a known theorem [De], [Kol], The-
orem 2.1, about recurrence relations that are satisfied by any pair of biorthogonal
polynomials and prove the characterization theorem (Theorem 2.2) of biorthogonal
polynomials in terms of recurrence relations.

THEOREM 2.1. Let {Rn(X)}n>_O, {Sn(X)}n>_O be biorthogonal polynomials defined
as in Definition 1.1. Then there exist recurrence relations of the form

n+d

w(x)Rn(x) bn,iRi(x)
i--n--1

and
n-b

 (xlS (x)
i-n-d

where the coejficients bn,i and n,i are functions of n but not of x.

Proof. Since w(x) is a polynomial of degree d,

n-d

i--O

for some coefficients Cn,iS.
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If we multiply this by Sn-i(x), for i > 1, and apply L, then biorthogonality gives

L(w(x)Rn(x)Sn_i(x)) c,,n-iL(Rn_i(x)S,_i(x)).

On the other hand, since w(x)Sn-i(x) is a polynomial of degree n- i + 1 in w(x), by
biorthogonality, we have that

L(w(x)Rn(x)Sn_i(x)) O.

Hence we obtain that c,,,_i 0, for i > 1.
By similar arguments, we can get the recurrence relations for (S,(x)}n>o. [:]

In the following theorem, we consider recurrence relations where the coefficients
of R+d(X) and S+l(X) are 1. In this way, we lose little in generality and gain much
in simplicity.

THEOREM 2.2. Let d be a fixed positive integer and w(x) a fixed polynomial of
degree d. Let (Rn(x)}n>_O, (Sn(X))n>_O be the sequences of polynomials satisfying the
following recurrence relations:

-.dT1(a) R,+d(X) w(x)Rn(x)- z.i=l ai,n+d-iRn+d-i(X), for all integers n >_ O, and
.for 0 <_ i < d, Ri(x) is a polynomial in x of degree i, and R_I (x) O; and

x-dT1(b) Sn+ (x) w(x)Sn(x) z_,i= i,n+-iS,+-i(x), for all integers n >_ O, and
S_d(Z) S-d+I(X) S_I(x) -O, and So(x) 1.

Then (Rn(x)},>o and (Sn(x)},>o are biorthogonal if and only if
ad+,n 0, for all integers n >_ O,

and, for k- 1, 2,-.. d-t- 1,
n-k-2

Ok,n ad-k-t-l,nTk-1 11 ad-l,i
i--n

for all integers n >_ 0

(we assume that ao,n 1). We note that the biorthogonality determines the linear

functional uniquely.
Proof. The idea of proof is very simple. We apply recurrence relations and

biorthogonality repeatedly to see what conditions are implied and needed.
(=) Let L be the linear functional with respect to which (Rn(x)}>o and

(Sn(x)}n>O are biorthogonal. We may assume that L(1) 1. We want to get re-
lations between a’s and a’s from the biorthogonality of {Rn(x)}n>_O and {Sn(X)}n>_O,
using the above recurrence relations. This can be done without much trouble. Refer
to [Ki] for details.

(=) Suppose that

n-k-2

Ok,n ad-k-l,n-k-1 II ad-l,i.
i--n

Define a linear functional L by L(1) 1 and L(R,(x)) 0 for n > 0. We can show
that {Rn(x)},>o and {Sn(x)}n>O are biorthogonal with respect to L. Again, refer to
[Ki] for details.

According to this theorem, any sequence {Rn(x)}n>O ({Sn(x)}n>O, respectively)
of polynomials satisfying appropriate recurrence relations has a companion sequence
{S,(x)}n>0 ({R,(x)},>0, respectively) with which it is biorthogonal. The above
theorem is the basis of the combinatorial interpretation in the following section. Note
that, in Theorem 2.2, ifw(x) x, then Rn(x) Sn(x) and {Rn(x)},>o are orthogonal
polynomials [Ch], [Sz].
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3. Combinatorial interpretation. In this section, we give a combinatorial
interpretation of a pair of biorthogonal polynomials (R(x)}n>O, (Sn(x)}n>o, when
w(x) xd for a fixed positive integer d. For simplicity of the interpretation, we
assume that Rn(x)’s, Sn(x)’s are monic. So we want to give a combinatorial proof of
the following theorem.

THEOREM 3.1. Let {Rn(x)}n>_o, (S,(x)}>o be the sequences of polynomials
satisfying the following recurrence relations:

(a) R+() R() ’+-z_i=l ai,,+d-iRn+d-i(X), for all integers n >_ O,
R-l (X) O, and, for 0 <_ k <_ d- 1,

k

Rk(x) Xk Z ai,k-iRk-i(X);
i--1

(b) S+(x) xdS(x) V"d+ Ol.i,n+l--in+l--i(X) for all integers n > 0 andA..i--1

S-d(X) S-d+ (x) S_ (x) 0, and So(x) 1,

where ad+l,n 7 O, for all integers n >_ O, and, for 1 <_ k G d + 1,

nTk-2

Ok’n ad-k4rl’nnUk-1 II ad-bl,i,
i--n

for all integers n >_ 0

(we assume that ao,n 1). Then {Rn(x)}n>O and {Sn(x)}n>o are biorthogonal.
Proof. This is Corollary 3.1, which is proved combinatorially, rn
To prove Theorem 3.1 combinatorially, we must have a combinatorial interpre-

tation of {Rn(x)}n>O, {Sn(x)}>o and moments of the linear functional L, which
satisfies L(1) 1, and L(Rn(x)) 0 for n _> 1. We define R,(x) as the weight of the
set of certain paths from 0 to n, Sn(x) as the weight of the set of certain paths from
0 to dn and L(xn) as the weight of the set of certain plane paths from (0, 0) to (n, 0).

3.1. Interpretation of Rn(x) and S,(x).
DEFINITION 3.1. Let Tn be the set of paths from 0 to n with the following

weighted segments:

k

Xd

k k+d

X

0

fork_>0, i-1, 2,..., d+l,

for k>0,

for 1, 2,.-. d- 1.

DEFINITION 3.2. Let S be the set of paths from 0 to dn with the following
weighted segments:

dk d(kTi)

Xd

dk d(k-l)

for k >_ 0,

for k > 0.

i 1, 2,-.. d + 1,
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w w
DEFINITION 3.3. We define a weight function v by v( w, where

is one of the above segments.
Let T be a path in TEn or Sn. Suppose that T consists of segments T1, T2,.. Tt

in this order. Since the weight sequence of T, (v(T1), v(T2),... v(Tt)), determines T
uniquely, we may represent T as a sequence of weights.

DEFINITION 3.4. Let T (Wl, W2,’’", Wt) be a path in Tn or Sn. Then v(T),
the weight of T, is defined by v(T) Hi=I Wi.

We now define RE(x), Sn(x) as weights of nn, S, respectively.
DEFINITION 3.5. For all n > O, RE(X) v(T), S(x) v(Sn).
LEMMA 3.1. RE(X), Sn(X) defined in Definition 3.5 satisfy the recurrence rela-

tions in Theorem 3.1.
Proof. The proof is obvious from the definition of Tn and S.
EXAMPLE 3.1. Let d 3. Then R (x2,-al,2,x3,-ad,6,-a3,1o) is a path in

73 and v(S) ---a,2ad,6a3,ox5. (See Fig. 1.)

X2
--al,2 x3

--a4,6 --a3,10
$ @ $

0 2 3 6 10 13
FIG. 1. A path in 7P13.

x3 -c2,2 x3 -a,5,-(,9 x3) is a pathEXAMPLE 3.2. Let d 3. Then S (x3,
in -11 and v(S) -c2,2c4,5c1,9x12. (See Fig. 2.)

X3 X3 X3 X3
--O2,2 --(3/4,5 --O1,9

0 3 6 12 15 27 30 33

FIG. 2. A path in $11.

3.2. Interpretation of moments. We define moments as weights of the sets of
moment paths in the plane. Before we define moment paths, we need some preliminary
definitions.

Let 79dE be the set of paths in the plane from (0, 0) to (dE, 0) with the following
steps: For nonnegative integers j, k, (see Fig. 3).

(1) Steps from (dj, dk) to (d(j + 1),dk) with weight ,k,
(2) Steps from (dj, dk) to (d(j + 1), d(k + 1)) with weight 1,
(3) Steps from (dj, d(k + 1)) to (d(j +i-1),dk) with weight ai,k, for i

2, 3,’", d-4-1.
Notation. Let ai,n 1 for n < 0. Then we can define ak, for negative integers

n as follows:
(a) For k-- 2, 3,... d,

n+k-2

(k,n ad-kTl,nTk-1 II ad+l,i
i--n

n+k-2

ad-kTl,n+k-1 II ad+l,i
i--0

for all integers n > -k + 1

if-k+ 1 <n<0;
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(d(j + 1), d(k + 1)) (dj, d(k + 1))

Oll,k

(dj,’dk) (d(j -+"1), dk) (d(j + 1), dk) (d(j + 2), dk) (d(j + 3), dk)

FIG. 3. Steps for Pdn.

(b) For k d + 1,

n+d-1

OdTl,n 11 ad+l,i

n+d-1

for all integers n _> -d 4- 1

H ad+l,i, if-d+ 1 _< n < 0.
i--O

We now want to define T’dr+k, the set of paths from (0, 0) to (dn 4- k, 0) for
k 1, 2,... d- 1. To achieve this goal, we need some steps with length k mod d.

For each ordered pair (i,k) such that 1 < i <_ d, -i + 1 <_ k < 0 or i d + 1,
-d 4- 1 _< k < 0, let the step

(i,k

(dl,O) (dl+d(kTi)Tk,O)

be a horizontal step of length d(k + i 1) + d + k. Let P be a path in T’dn. Then,
by attaching a horizontal ai,k to P at the end, we get a path from (0, 0) to

(dn + d(k + i 1) + d + k, 0). Let P ai,k denote this new path. We define 7dn+k by

dn+k
d+l

U { p * ai,-d p E dn-d(k-d-bi-1)},
i=d-k+l

for 0 < k < d and n >_ O,

where :P0 consists of a point path and Pdn O, for n < 0.
w w

We define a weight function v by v( w, where is one of the
steps used in defining paths in

Let P be a path in 7:’n. Suppose that P consists of steps P1, P2,’", P, in
this order. Since the weight sequence of P, (v(P1),v(P2),... ,v(P,)) determines P
uniquely, we may represent P as a sequence of weights. Let pi v(Pi). Then we
identify P with (pl,p2,"" ,p,). It is necessary, however, that we distinguish the
underlying path of P from the weight sequence of P.

EXAMPLE 3.3. Let d 3. Then P (1, hi,l, 1, al,2, a4,1,a2,0) is a path in [:)24
and v(P) 01,101,204,102,0. P * (R3,-1 (1, 01,1, 1, 01,2, 04,1,02,0, 03,-1) is a path in
29 and v(P. 03,-1) --01,101,204,102,003,-1. (See Fig. 4.)

Now we want to introduce moment paths. We define the set Mn of moment paths
by Mn Jr>0 A/[,, where jI is defined inductively as follows: We let .Mn
and assume that Az[-1 is defined for some r > 0. Let M (w,... wi, Wi+l,... w)
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C1,2

01,1

0 C3,-I

6 9 12 15 18 21 24 29

FIG. 4. P*c3,-1.

be an element in jr-1 such that wi 1, Wi+l 1. Suppose that win Ojl

Wi+l j2,k2 for some jl, j2, kl, k2 such that k < k2 -F j2 1. Then we say that
wi+ w) is a variant of M, where w ,+. Here we considerWl W

this variant a weighted path whose underlying path is that of M, but the weight of
the ith step is changed. We say that a step h an augmented weight if its weight is
changed. We define to be the set of all the variants of elements in -1.

Note that (1) for given M (Wl, w2,..., wt) n, there is a unique path in
Pn that can be the underlying path of M, (2) except for finite number of
r’s, (3) the step with weight 1 h weight 1 always.

DEFINITION 3.6. Let M (Wl, w2,... w) n. We say that wi is the weight
of the ith step in M. We define v(M), the weight of M, by v(M)

EXAMPLE 3.4. Let d 3. Let M (1,a,,l,a,2,a,l,a2,0,3,-) be a path
in P29 9. Then there are two variants of M, which belong to 9: M
(1, a,, 1,a,a,a,,2,0,aa,-), M2 (1,a,, 1,a,2,aa,,2,,3,-). We find that
M2 h two variants, which belong to9 (see Fig. 5), shown below:

(1, 1,1 1, i,2 04,2, C2,1 C3,--I).

o 3

CI,I

|__l
O3,-

6 9 12 15 18 21 24 29

FIG. 5. One of the two variants of M2.

3.3. Interpretation of biorthogonality. We now want to explain the biorthog-
onality of (Rn(x)}n>0, {Sn(x))n>o combinatorially. We find a combinatorial involu-
tion on a weighted set, which is weight-preserving-sign-reversing outside its fixed set.
Using this involution, we establish the biorthogonality of (R,(x)},>o,
combinatorially. Our approach is same as Viennot’s [Vil], [Vi2] to orthogonal poly-
nomials, but our involution is more complicated than his. We omit the construction
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of the involution here and refer the readers to [Ki] for details. The weighted set that
we work with is a set of triples, which is defined as follows.

DEFINITION 3.7. For any triple (1, m, n) of nonnegative integers, let A,m,n be
the set of all triples (M, S, R) such that S is a path in Sin, R is a path in 7n and M
is a moment path in Jdl+p(S)-t-p(R), where p(S) denotes the power of x in v(S) and
p(R) the power of x in v(R). Put a weight v on A,m,n by

v((M, S, R)) v(M)(S)(R),

where (S)-- v(S)lx_l, (R)- v(R)lx_1.
Let L be the linear functional defined by L(xn) v(In), for all n >_ 0. It is

not obvious that this is the linear functional with respect to which (Rn(x)}n>O and
(Sn(x) },>o are biorthogonal. This fact is a corollary of Lemma 3.2. We state Lemma
3.2 and its corollary without a proof. We must define some functions to do this.

Let M (w0, Wl,..., w) denote a moment path in 24n. For each i, 0 _< i <_ t,
(wi, Wi+l,... w) is called a tail of M. We define a function g on A/In by

g(M)
the smallest i s.t. wi 1,

if M (w0) where w0 cU,k, for some
k<0,
otherwise.

We define a function h on Jn by

1(M) ( i

oc,

/ k, if g(M) < c and Wg(M Oli,k for some i, k,
if g(M) oc.

Note that, if g(M) < , then g(M) is the number of the consecutive steps with weight
1 in the beginning of M. Finally, we define a function h2 on .A4n by

] -d / k, if w aj,k, where j =d / land -j +1 _<k _< 0,
h2(M)

the largest i s.t.(cd+l,i, Od-t-l,i-d,’’’, Od-t-l,k) is a tail of M, otherwise.

LEMMA 3.2. For any triple (/, m, n) of nonnegative integers,

L(xdtSm(x)Rn(x))
M,S,R)EF....

where Ft,m,n is the set of all triples (M, S, R)
n 2d, p(S) =dm and p(R) n.

Proof. See [Ki] for a complete proof.
The case where 0 in Lemma 3.2 gives the biorthogonality of (Rn(x))n>O and

COROLLARY 3.1. For any pair (m, n) of nonnegative integers,

O,
L(Sm(x)Rn(x))

O,

Proof. We must show that/,m,n O if 0. See [Ki] for a complete proof.
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THE PROBLEM OF COMPATIBLE REPRESENTATIVES*

DONALD E. KNUTH AND ARVIND RAGHUNATHAN

Abstract. This paper attaches a name to a natural class of combinatorial problems and points
out that the class includes many important special cases. One special case, a simple problem of
placing nonoverlapping labels on a rectangular map, is shown to be NP-complete.

Key words, backtracking, coloring, compatibility, independent sets, mapmaking, matching,
NP-complete, preclusion, radio communication
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1. Introduction. Many combinatorial tasks can be formulated in the following
way: Is there a sequence (xl,x2,... ,xn) such that xj E Aj for all j, and xj is com-
patible with xk for all j < k? Here A1, A2,..., An are given sets, and "compatibility"
is a given relation on A t_J A2 t.J tJ An.

This problem is NP-hard in general. For example, if all sets Aj are the same,
and if compatibility is a symmetric, irreflexive relation, a sequence of compatible
representatives is nothing but an n-clique in the compatibility graph.

The problem of coloring a graph G with c colors is another NP-hard special case
of the general compatibility question. Let Aj be the the set of pairs { (j, 1),..., (j, c)},
and say that (j,a) is compatible with (k,b) if either a b or vj is not adjacent
to vk in G, where the vertices of G are {v,..., vn}. Then a sequence of compatible
representatives is essentially a c-coloring of G. Therefore the problem is NP-hard for
all c > 3.

On the other hand, the compatibility problem also has important special cases
that are efficiently solvable. If the compatibility relation is "", then a solution
sequence (x,..., xn) is traditionally called a system of distinct representatives [4] [3,
Chap. 5], and the problem of finding such systems is well known to be equivalent to
bipartite matching. Indeed, if the compatibility relation is the complement of any
equivalence relation, a sequence (Xl, x2,..., Xn) of compatible representatives exists
if and only if there is a matching of cardinality n in a bipartite graph on the vertices
{v,..., vn, cl,..., Cm}, where {Cl,..., Cm} are the equivalence classes, and we have
the adjacency relation vj ck if and only if Aj contains an element of class ck.

Another nice special case is equivalent to identifying increasing subsequences of
a permutation. Let rl... r, be a permutation of {1,..., m}, and let A be the set of
pairs {(j, 1),..., (j, m)}. Say that (j,a) is compatible with (k, b) if and only if j < k
and 7re < 71"b. Then a compatible sequence ((1, a),..., (n, an)) is equivalent to an
increasing subsequence (gel, 7ran) of rl rm.

The example in the prevous paragraph illustrates that compatibility need not be
a symmetric relation. But the sets Aj are pairwise disjoint, and, in that case, we could
just as well assume that compatibility is symmetric and reflexive, since our definition

*Received by the editors June 13, 1989; accepted for publication (in revised form) August 7,
1991.
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of compatible representatives makes it immaterial whether elements xj of Aj and xk
of Ak are compatible, unless we have j < k.

There are, however, important special cases in which compatibility is asymmetric.
Consider, for example, a scheduling problem in which Aj is a set of tasks that can
be done at time j, and where xj is compatible with xk only when task xj does not
require the prior completion of xk.

Cartographers face an interesting case of the general compatibility problem when
they attach alphabetic labels to dots on a map. Let A represent the possible ways to
place the name of city j, and let xj be compatible with xk when positions x and xk
do not overlap each other or otherwise mislead a potential reader. Then a good map
should be a solution to the problem of compatible representatives.

Note that the cartographic problem makes sense even if the sets Aj are infinite.
The task of placing disjoint labels is a fairly natural question of combinatorial geometry
that does not appear to be a special case of any other well-known problem.

In light of this discussion, it seems worthwhile to add the problem of compatible
representatives to the class of "combinatorial problems that deserve a name," and to
investigate heuristics and additional special cases that prove to have efficient solutions.

2. Simple special cases. We have noted that the compatibility problem is
equivalent to bipartite matching when incompatibility is an equivalence relation. The
problem also has a polynomial-time solution when compatibility is transitive. Let
B1 A1, and for j > 1 let

Bj { y e Aj 2x e B:i_ (x compatible with y)}.

Then the compatibility problem has a solution if and only if B is nonempty. We can
decide this in at most -]=2 [[A_[[ [[A[[ steps.

Another noteworthy special case occurs when each set Aj contains at most two
elements. Then the compatibility problem is equivalent to an instance of 2SAT: We
can assume that Aj {vj, Fj }; the clauses are (Pj V Pk) for every pair of literals such
that j < k and aj is incompatible with

In general, if each [[Aj[[ _< k and k >_ 2, the problem reduces directly to an
instance of kSAT in which each literal occurs positively just once. The literals are
(j, a) for a E Aj, and the clauses are

V (j,a), forl_j_n;
nEAj

(j, a) V (k, b), for 1

_
j < k

_
n and a incompatible with b.

Conversely, any instance of kSAT with m clauses reduces to the compatibility
problem of finding representatives (xx,... ,Xm), with xj a member of the jth clause
and with two literals compatible if and only if they are not negatives of each other.

The general compatibility problem with finite sets Aj can also be reduced to an
independent set problem in a natural way. Consider the graph G with vertices (j, a)
for a E Aj, having edges

(j, a) (j, b),
(j, a) (k, b),

if a b;
if j < k and a is incompatible with b.

Then G has an independent set of size n if and only if the compatibility problem has
a solution.
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Therefore we obtain simple solutions of the compatibility problem when there is
a simple solution to the corresponding independent set problem. One such case occurs
when compatibility is a symmetric relation that satisfies the following condition: If
i < j < k and the elements ai, a:i, ak are mutually compatible, then (1) every element
of Ai is compatible with either aj or ak; (2) every element of Aj is compatible with
either a or ak; (3) every element of Ak is compatible with either a or aj; and (4) every
element not in Ai U Aj Ak is compatible with either ai, aj, or ak. In such a case,
the graph G is claw-free, and we can use Minty’s algorithm [7] to find a maximum
independent set.

GrStschel, Lovsz, and Schrijver [2, Chap. 9] have compiled a survey of cases
where the independent set problem is known to have a simple solution.

3. Another hard case. A very special case of the general mapmaker’s problem,
alluded to in the introduction, proves to be NP-complete.

Consider a set of integer points pl,..., pn on the plane. We wish to find integer
points xl,..., xn with the following properties for all j k:

Ixj-PJl--1; Ix:i Pk > l IXj xk >_ 2

(Motivation: Each x is the center of a 2 2 square in which a "label" for point pj
can be placed. The label at xj should be closer to pj than to any other point; distinct
labels should not overlap.) We call this the lFL problem, for "MI::TAFONT labeling,"
because it arises in connection with the task of attaching labels to points in diagrams
drawn by METAFONT [5, p. 328].

Solutions to the 14FL problem can conveniently be represented by showing each
point pj as a heavy dot and drawing an arrow from pj to xj for each j; at most four
possibilities exist from each of the given points. For example, it is easy to see that a
cluster of four adjacent points can be labeled in only two ways:

There is no way to attach a label to the middle point in a configuration like

because each of the four positions adjacent to that point is too close to one of the
other given points. The MFL problem provides an amusing pastime for people who are
sitting in a boring meeting and who happen to have a tablet of graph paper on which
to doodle.

The general IFL problem is clearly in NP. To show that it is NP-complete, we
observe first that there are only two solutions to the problem
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namely, the two solutions for four-point clusters given earlier, using the same orienta-
tion in each cluster. Thus we can construct large chainlike tree networks of four-point
clusters, for example,

in which there are only two solutions, "positive" and "negative." This construction
provides a way to represent the values of Boolean variables in a satisfiability problem.

We can now use Lichtenstein’s theorem that planar 3ShT is NP-complete [6]. An
instance of planar 3ShT is a set of variables vl,..., vn arranged in a straight line,
together with a set of three-legged clauses above and below them, where the clauses
are properly nested so that none of the legs between clauses and variables cross each
other. We can always put the clauses into a rectilinear configuration such as

V3 V4 V5 V7 V8 V9

which corresponds to Lichtenstein’s "crossover box" [6, Fig. 5].
We construct an instance of IFL from a given instance of planar 3ShT by represent-

ing the vertical legs for each variable as chains of four-point clusters; this guarantees
that each variable has one of two values, corresponding to the common orientation of
all its clusters. We can easily stretch out the diagram so that there is no interference
between the variables except at places where three legs of a clause come together in a
horizontal segment.

It remains to specify the representation of the clauses. By symmetry, we need
only describe the representation that appears above the variables. Each horizontal
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section of a comblike clause in the upper portion is represented by a configuration of
the form left arm right arm

with 6/+4 dots in the left arm and 6m+4 dots in the right arm, for some and m. (The
three triples at the bottom connect to clusters that represent variables, as explained
below. Those clusters occur at positions that are congruent mod 6; the arms of a
comb stretch out so that they reach the variables appropriate to the clause.)

In each group of three dots at the bottom of this construction, the arrow for the
middle dot must go either up or down. All three middle arrows cannot go up, because
that forces

-5-:,

and there is no way to attach an arrow to the middle dot in the second row.
However, there are solutions in which any one of the middle arrows goes down.

For example, we can choose

or

and there is a third solution that is essentially a mirror image of the first.
We can place four-point clusters below a row of three dots in such a way that a

downward arrow on the top middle dot forces an orientation on the clusters, but an
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upward arrow on the top middle dot forces nothing:

By choosing one of these junction configurations for each variable in the clause, de-
pending on whether the variable is negated, we obtain an instance of IFL that has a
solution if and only if the given planar clauses are satisfiable.

4. Backtracking. We have now proved that MFL is NP-hard. However, in prac-
tice, a solution or proof of nonexistence can often be found quickly by backtracking,
using the idea of "preclusion" introduced by Golomb and Baumert [1]. When a trial
value xj is selected from Aj, it precludes all selections of other xk that are incompat-
ible with it; precluded values can be (temporarily) removed from Ak. The problem of
compatible representatives is precisely the abstract general setting that supports this
notion of preclusion.

Golomb and Baumert suggest choosing xj at each stage from a currently smallest
set Aj whose representative has not yet been chosen. If we are simply looking for a
solution, instead of enumerating all solutions, it would also be worthwhile to select
elements that preclude as few others as possible.

For example, if an element of Aj does not preclude any others, we can set xj
equal to that element without loss of generality. If x E Aj precludes only one element
y Ak and no others, and if we find no solution when xi x, then we can set Xk y
without loss of generality.

5. Further work. A recent paper by Simon [8] considers the assignment of
channels to transmitters in a radio communication system. This is another case of a
compatibility problem, rather like the mapmaker’s problem, because nearby transmit-
ters must not broadcast on the same channel. Simon presents a polynomial-time ap-
proximation scheme that is guaranteed to find at least a fixed fraction of the optimum
number of compatible channels. This suggests that useful approximation schemes for
other instances of the general compatibility problem might remain to be found.
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Abstract. A derivation in a transformational system such as a graph grammar may be redundant

in the sense that the exact order of the transformations may not affect the final outcome; all that
matters is that each transformation, when applied, is applied to the correct substructure. By taking
advantage of this redundancy, we can develop an efficient encoding scheme for such derivations. This
encoding scheme has a number of diverse applications. It can be used in efficient enumeration of
combinatorial objects or for compact representation of program and data structure transformations.
It can also be used to derive lower bounds on lengths of derivations. It is shown, for example,
that f(n log n) applications of the associative and commutative laws are required in the worst cae
to transform an n-variable expression over a binary associative, commutative operation into some
other equivalent expression. Similarly, it is shown that f(n log n) "diagonal flips" are required in
the worst case to transform one n-vertex numbered triangulated planar graph into some other one.
Both of these lower bounds have matching upper bounds. An O(n log n) upper bound for associative,
commutative operations was known previously, whereas here an O(n log n) upper bound for diagonal
flips is obtained.

Key words, graph grammar, graph transformations, associativity, commutativity, diagonal
flips, triangulations
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1. Introduction. The object of this paper is to study succinct representations
of derivations in transformational systems. To model transformational systems, we
use graph grammars [2]. Roughly speaking, a graph grammar consists of a finite set
of productions {L --, R}. (Section 2 gives a precise definition of the form of graph
grammar that we use.) Each production L -. R consists of a connected graph
L, called the left side of the production, and a graph R, called the right side of the
production. A production L --, R is applicable to a graph G if G contains a subgraph
isomorphic to L. The production is applied to G by replacing an occurrence of L in
G by a copy of R. (There may be more than one way of applying a production to G,
since G may contain more than one copy of the left side.) A derivation is a sequence
of graphs G Go, G1, G2,..., Gm- G such that each G is obtained from G_I by
applying one production once. The derivation transforms graph G into graph G. A
particular application of a production during a derivation is called an action.

Let F be a fixed graph grammar, and let G be a fixed starting graph of size n.
Consider the collection R(G,F, m) of all graphs obtainable from G by derivations
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of length m or less. Our main result is an efficient method of encoding any graph
in R(G, F, m). To encode any such graph, use O(m / log (ran)) bits. (In most cases
of interest, m > n, and the second term in this bound is zero.) This bound is an

improvement by a logarithmic factor over the obvious bound of O(mlog s), where
s _> n is the size of the largest graph occurring in the derivation [9]. This logarithmic
improvement is crucial in obtaining the tight lower bounds discussed below.

Our encoding represents an equivalence class of derivations obtained by permuting
commutative applications of the productions. The efficiency of such an encoding arises
from the fact that there may be many derivations equivalent to any given one, a fact
that follows from the localized nature of applications of the production rules. For
simplicity, we formulate our result in the setting of labeled undirected graphs; it
holds for more general combinatorial structures such as hypergraphs and simplicial
complexes, however.

Our result has a number of general and specific applications, both theoretical and
practical. Our main theoretical application is in demonstrating the existence of pairs
of graphs that are far apart, in the sense that any derivation of one graph of the pair
from the other must take many actions. If N(G) is a lower bound on the number of
graphs derivable from a graph G of size n, then there is a graph G such that any
derivation of G’ from G has length 2(logN(G)- n). This is because our encoding
scheme implies that the number of graphs derivable from G by derivations of length
m or less is at most c+’, for some constant c that depends only on the grammar
and not on m and n.

Our first application involves transformations of arithmetic expressions. Consider
the collection of fully parenthesized expressions of n variables over an associative, com-
mutative binary operation. A move consists of applying either the commutative law
(exchanging two subexpressions that are combined by the operation) or the associa-
tive law (erasing a pair of matching parentheses to put three expressions at the same
level, and adding a new pair of parentheses to alternatively regroup this triple). We
show that, given any n-variable expression E, there is an equivalent expression whose
distance from E in this metric is (n log n). This solves an open problem of Culik and
Wood [1], who obtained a matching upper bound. Thus the worst-case distance be-
tween two equivalent expressions is (n log n). This contrasts with the corresponding
bound of 2n O(1) if commutativity is not allowed [6].

As a second application of our lower bound, we consider the collection of num-
bered triangulations of the plane, transformed by the "flip" operation. This operation
removes an edge, thereby creating a quadrilateral face, and replaces it with the other
diagonal of the face. A flip is only allowed if it does not create a multiple edge.
Our encoding method proves that there exist pairs of n-vertex triangulations that are
(n log n) flips apart. We show, furthermore, that this bound is tight by giving a
method for converting any n-vertex triangulation into any other in O(n log n) flips.
This improves the previous O(n2) upper bound of Wagner [8].

We envision several other applications of our technique. First, it can be used
to efficiently encode graphs or other combinatorial structures that are close to a
given one (in the sense of being obtainable by a small number of transformations).
Such encodings may be useful in situations that require the representation of multiple
versions of a structure, as in program transformation systems and other applications of
persistent data structures [3]. Second, it provides a way to enumerate graphs of various
kinds that are generated by graph grammars or other such transformational systems.
By enumerating our encodings rather than enumerating sequences of productions, all
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of the desired graphs are generated, but with far fewer redundant copies of isomorphic
graphs.

The remainder of this paper consists of five sections. In 2 we give a precise
formulation of graph grammars and graph grammar derivations, describe our encoding
scheme for derivations, and use this to prove upper bounds on the number of graphs
obtainable by short derivations. Section 3 gives several refinements and improvements
of our method. Sections 4 and 5 show how the encoding scheme applies to prove our
lower bound results for expressions and plane triangulations. Section 6 contains our
upper bound on the distance between plane triangulations; it is independent of the
rest of the paper.

2. Encoding graph derivations. We are concerned with graphs that are undi-
rected and of degree at most b (a fixed constant independent of n). Each end of each
edge is labeled with an integer called an edge-end label. The edge-end labels incident
on a vertex are distinct and between 1 and b inclusive. It is useful to be able to refer
to half of an edge. Each such half-edge has one end vertex from the original edge,
and one edge-end label. We allow the graph to have multiple edges between the same
pair of vertices, and even to have self-loops. (It is easy to modify our construction to
disallow such structures, although doing so would only weaken our lower bounds.)

A graph grammar (usually denoted by F) is a finite set of productions
(Li Rili 1, 2,...}. The ith production is comprised of three parts: Li, the left
side of the production; Ri, the right side of the production; and --i, the corre-
spondence of the production. The three parts of a production have the following
characteristics:

Li: This is a connected, undirected, edge-end labeled graph, with degree bounded
by b. Strictly speaking, L is not a graph, because it has a set of half-edges
that have only one end vertex. The one end vertex of each half-edge that
is attached to a vertex of Li has an edge-end label.

Ri: This is also a graph with edge-end labels, and half-edges, of which it has
the same number as Li.

--i: This is a one-to-one map between the half-edges of Li and those of Ri.
The production Li i Ri applies to a graph G if G contains a set of vertices S

such that G(S) (the subgraph induced by S in G) is isomorphic (including edge-end
labels) to Li. The induced subgraph G(S) is most simply defined by retaining half of
every edge incident to a vertex in S. The half-edges of G(S) come from the edges of
G with one endpoint in S and one not in S. The production is applied by replacing
this occurrence of Li in G by Ri, where each half-edge of Ri is attached to a half-edge
of G- G(S) just as the corresponding half-edge of Li was attached. Sections 3 and 4
give examples of specific graph grammars.

.Each vertex occurring in an Li has a unique position number from the set
(1,2,... ,c}, where c is the total number of vertices in all left sides. The position
numbers are used to uniquely specify a vertex in a production. The vertices of each
Ri are also numbered 1, 2,... within each production. These numbers are the right
position numbers.

A derivation is a sequence of graphs G Go, G,..., Gm G such that each
Gi is obtained from Gi_ by applying one production once. An action is a particular
application of a production during the derivation. The derivation transforms G into
G. The length of such a derivation is m, the number of actions in it.

We construct a pair of functions ENCODEG,r and DECODEG,r. The function
ENCODEv,r takes a derivation D that transforms G into some other graph G and
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returns a string of symbols from the alphabet (0, 1, 2,..., c} of length n + r. m.
Here n is the number of vertices of G, m is the length of the derivation D, c is the
number of vertices in left sides of F, and r is the number of vertices in the largest
right side of F. This sequence is called the encoding of the derivation. The function
DECODEG,r takes as input such an encoding and returns the graph G. That is,
DECODEa,r(ENCODEa,r(D)) G’.

For our purposes, it is useful to think of the process of applying a production
as destroying vertices (the ones that are matched to the vertices of Li) and creating
new and different ones (the ones introduced by R). The actions of a derivation D of
length m are numbered 1, 2,..., m in the order in which they occur. Each vertex that
is created during the derivation can be identified uniquely by specifying the number of
the action that created it and the position number of the vertex in Ri that created it.
This is the name of the vertex. The required vertices of an action are the vertices that
are destroyed by it. An action is said to be ready at some time during a derivation if
all of its required vertices exist at that time. Readiness implies that the entire copy of
L that is to be replaced (including all of its edges and half-edges) is present as well.

LEMMA 2.1. Consider a derivation D that transforms G into G’. If the actions

ofD are reordered in any way so that each production is ready when it is applied, then
the new derivation also transforms G into G’.

Proof. By induction, it is sufficient to prove that, if at and at+l (two consecutive
actions of D) are such that none of the required vertices of action at+l is created by
at, then, if these actions are swapped, the resulting derivation also transforms G into
G’. Since either order is allowed, we know that those vertices created by at are not
used by at+l and those created by at+ are not used by at. It follows that the actions
commute, since they do not involve any of the same vertices.

We can now give an explicit algorithm for computing the encoding of a derivation
D. First, the actions of D are numbered, the vertices of the derivation are named,
and the required vertices of each action are computed.

Our encoding algorithm assigns to each vertex of the derivation a unique number.
First, the vertices of G are numbered {1, 2,..., n} in an arbitrary order. (The same
ordering must be used by the decoding procedure described below.) The remaining
vertices are numbered in conjunction with the construction of a canonical derivation
D’, which is a reordering of the actions of D.

The actions of the canonical derivation D’ are computed one at a time. At any
time, it is easy to determine which actions are ready; these are the ones whose required
vertices exist. Let q be the ready action that destroys the lowest-numbered vertex
among all ready actions. This action is the one chosen to be the next action of D’.
This action is applied to the graph, and the vertices created by it are now numbered
consecutively starting after the largest vertex number used thus far. (If several vertices
are created by q, they are numbered in the order of the right position numbers in the
right side of the production that created them.)

After computing the canonical derivation D’, the algorithm proceeds to compute
a label for every vertex that occurs in the derivation. The label of a vertex v is zero if v
is not destroyed by any action in the derivation. Otherwise, it is the position number
of the role played by v in the production that destroys it. The desired encoding is a
list of, at most, n+ r.m labels of all the vertices in increasing order by vertex number.

We can now describe the decoding procedure. This algorithm takes the graph G
(with vertex numbers that agree with those of the encoding procedure), the grammar
F, and the encoding (the list of labels), and determines G’. The procedure works
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by constructing the canonical derivation D’, from which it is easy to get G’. As in
most data compression/decompression methods, the decoding algorithm mimics the
behavior of the encoding algorithm step by step.

The crucial fact concerning the labels of the vertices existing at any time dur-
ing the canonical derivation is that from these it is possible to determine exactly
which actions were ready at the corresponding stage of the encoding process. This is
accomplished by the following matching procedure.

If a vertex v has a nonzero label, the label determines i, the production that
eventually destroys v, and also the role v plays in this production. For each such
vertex, check its neighborhood to see if it is isomorphic to Li (including edge-end
labels). This check is easy, since we know which vertex of Li must match v, Li is
connected, and that there are edge-end labels to follow. (Recall that the edge-end
labels incident to a vertex are disjoint.) If such a subgraph is found, then the labels
of these vertices are checked to see if they match the position numbers of the roles
that they are supposed to play in the proposed action. If all of these tests are passed,
then the action is ready.

LEMMA 2.2. The matching procedure determines the ready productions that ex-
isted at the corresponding stage of the encoding process.

Proof. If an action is ready, then the matching procedure certainly finds it because
the vertices corresponding to the left side of the ready action will exist and are labeled
in a way consistent with all the conditions checked above.

On the other hand, suppose that the above check is satisfied starting from some
vertex v. Let i. be the production indicated by the label of v, and let S be the set of
vertices that form the subgraph isomorphic to Li. We claim that, in any continuation
of this derivation, all vertices of S must be destroyed simultaneously by a single action.
Since all these vertices are destroyed by one action, this action must now be ready.

It remains to show that all vertices of S must be destroyed simultaneously. Con-
sider the first action a in some continuation of the derivation that destroys some
vertex w of S. Since a is the first action involving the vertices of S, at the moment
action a is applied, all of the vertices of S exist (and have the same labels). From the
vertex w, the matching algorithm described above constructs the set S. There is no
other possible matching pattern involving w. Therefore the action a destroys all the
vertices of S simultaneously. 0

Now, given that we know the ready productions and the numbering of the vertices
of the current graph, it is easy to find q (the next production of Dr) because it is the
ready action that destroys the lowest-numbered vertex. This action is applied to
the graph. The vertices created by it are numbered sequentially (as in the encoding
procedure) and are labeled as specified by the encoding. This step is repeated to
determine all of the productions of Dr. The process terminates when there are no
ready productions.

The following theorem, which bounds the number of graphs obtainable from a
given one as a function of the length of a derivation, is a consequence of our encoding
scheme.

THEOREM 2.3. Let G be a graph of n vertices, F be a graph grammar, c be the
number of vertices in left sides of F, and r be the maximum number of vertices in any
right side of a production of F. Let R(G, F., m) be the set of graphs obtainable from G
by derivations in F of length at most m. Then IR(G, r, m)l < (c + 1)+.

Proof. Encode the derivation using the scheme described above. The length of
the encoding is, at most, n -t- r. m symbols. This encoding can be padded with zeros
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so that its length is exactly n / r.m. (This does not interfere with the decoding
process, since it is self-terminating.) The alphabet is of size c / 1, so the number of
such encodings is (c / 1)n+r’m. Each graph reachable by m or fewer actions is the
outcome of applying the decoding procedure to one of these encodings. Therefore the
number of such graphs is, at most, the number of such encodings. 0

3. Generalizations and improvements. This section describes various exten-
sions and improvements to our encoding scheme, most of which are used later in this
paper.

3.1. Encoding short derivations. Our encoding scheme can be modified to
make it more efficient when the length of the derivation is short compared to the size
of the starting graph. In this case, most of the labels of the vertices of the initial
graph are zero. The more efficient encoding specifies which vertex labels are nonzero
and only includes labels for these in the vertex label list. Let k be the number of
vertices that have nonzero label in the initial labeling of G, and let m, n, r, and c be
defined as above. Then the size of this encoding (in bits) is

[log n] + [log2 (nk)] + (k + mr)[log(c + l)]

The first term is for bits to encode k, and the second term encodes the subset of
vertices with nonzero labels.

THEOREM 3.1. It holds that

log ,R(G, F, m), O(log (:) + m),

where R(G, F, m) is the number of 9raphs obtainable by derivations of len9th at most
m in grammar F starting from a graph G of n vertices. (If m > n, then log (,) is
interpreted as zero.)

-n thenFrog Theorem 2.3 shows that log IR(G, r, m)l O(n + m). f r m >
O(n 4- m) O(m) O(log (2) 4- m). If r.m <_ 1/2n, then we use the above encoding
scheme. Since each action causes, at most, r vertices of G to have nonzero labels, we
know that

k<_r.m<_ 1/2n.
It follows that

(k + mr)[log2(c + 1)] O(m)

and that

(;)log _< log
n _< log r log

Finally, we know that log2 n <_ log2 (n). The theorem follows from these inequalities
and the bound on the number of bits used by the efficient encoding scheme.

3.2. Leaders and followers. The labels on the set of vertices destroyed by an
action contain redundant information. For example, each label of this set has sufficient
information to determine which production is the one that destroys all of them. There
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is a way to eliminate this redundancy and thereby reduce the size of the encoding in
most cases.

The new encoding algorithm begins by computing the standard encoding de-
scribed above. It then applies a map f to each symbol of the encoded string, giving
the new encoding. It remains to define the map f.

Let one vertex of each Li be chosen to be the leader, and let all the other vertices
be followers. For each Li, choose a spanning tree. (This can be done, since each left
side is connected.) For each follower vertex v, let DIR(v) be the value of the edge-end
label of the v end of the first edge on the path (in the spanning tree) from v to the
leader of Li. (In other words, starting from any vertex in Li, following the DIR(.)
direction repeatedly leads to the leader.)

The map f is defined as follows (IFI is the number of productions of F, and v(x)
is the vertex of a left side with position number x):

0 ifx =0,
f(x) if v(x) is the leader of Li,

IFI / DIa(v(x)) if v(x) is a follower.

The decoding algorithm must be modified to accommodate this new encoding.
The only difference is in the matching step, which is revised as follows. For each
vertex v that is a leader, check its neighborhood to see if it is isomorphic to Li. If
such an isomorphic subgraph is found, then the labels of these vertices are checked
to see if they are all followers, and, if a directed edge is drawn from each follower w
in the direction of DIR(w) (which is the label of w minus IFI), then the result is a
directed spanning tree rooted at v. If all of these tests are passed, then the action is
ready.

We now must verify that Lemma 2.2 still holds, that is, that the sets of vertices
satisfying the new matching procedure above exactly correspond to the ready actions.
The first part of the proof remains easy; any ready action of the original derivation
results in a match in the above procedure. On the other hand, a match also indicates
that the corresponding action is ready. Let S be the set of matched vertices. Starting
from any follower vertex w S, the entire set S can be constructed uniquely. Simi-
larly, from the leader vertex v of S, the set S can be uniquely constructed. This is a
sufficient condition to guarantee that all vertices of S are destroyed simultaneously,
which (as shown above) is the condition that we need to prove that the action is ready.

It may be possible to further reduce the alphabet size by making use of the
flexibility that exists in choosing which spanning tree to use on each left side. The
number of labels can be reduced from IFI / b + 1 to IFI / d + 1, where d is the number
of different directions used in the directed spanning trees of the left sides.

The leader-follower technique applies in any situation in which there is a produc-
tion with more than one vertex on the left side. It may decrease the size of the label
alphabet, but it can never increase it. If the technique applies, then it can be used in
conjunction with the next technique to further reduce the alphabet size.

3.3. Eliminating the zero label. Suppose that, for any graph occurring in a
derivation using F, there exists a way of labeling it with nonzero labels, so that no
production is ready. Then the zero label can be eliminated. The encoding procedure
must be modified slightly to eliminate the zero labels, while the decoding procedure
remains the same.

We now describe how the encoding procedure is revised. First, compute the label-
ing of all the vertices as before. The vertices with zero labels are exactly those that are
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eventually in G’, the final graph of the derivation. These are called the terminal ver-
tices. Compute the labeling of G’ with nonzero labels, so that no production is ready.
For each terminal vertex, replace its label with that terminal label just computed in
G’.

It is easy to see that this works by reviewing the proof of Lemma 2.2. The proof
only differs at the point where it is shown that if the labels match the pattern of
some left side Li, then the production i applied to that set of vertices S is ready. The
crucial statement is that, if this situation occurs, then all the vertices of S must be
destroyed simultaneously. This is still true. All of the vertices cannot be terminal
ones, since their labels admit the application of a production. The set cannot be
comprised of both nonterminals and terminals because then the nonterminals would
never be allowed to change. Therefore all the vertices of S must be nonterminals, and
the previous argument shows that the production is ready.

Note that in any situation in which the leader-follower technique applies, we can
eliminate the zero label. This is done by labeling all the terminal vertices as followers.

3.4. Tags. It is sometimes useful to carry extra information along during a
derivation. (Sections 4 and 5 give examples of this.) To accommodate this, we
allow each vertex to have a tag associated with it. Each production also supplies an
arbitrary function that is used to define the values of the tags of the vertices created
in terms of the tags of the vertices destroyed. Because the tags are computed locally
(as a function only of tags of the vertices on the left side of the production), the
commutativity that we have exploited in constructing our encoding is still present.
Therefore our encoding method and theorems apply to tagged graphs without any
changes.

4. Expressions over an associative, commutative operation. Let X
{xl, x2,..., Xn} be a fixed set of variables, let @ be a binary operation, and let En
be the set of fully parenthesized expressions over (9 in which each variable xi occurs
exactly once. We consider the problem of estimating how many applications of the
associative and commutative laws are required to transform any expression in En into
any other.

To make this problem somewhat more concrete, we restate it as a problem on
binary trees. Our binary tree terminology is that of Knuth [5]. Let Tn be the set
of full binary trees with n external nodes, numbered 1, 2,..., n. Any permutation of

(n 1) (2nn_--12) [4]. We permit two1, 2,..., n is allowed; thus ITnl- n!(2nn__-2)
transformations of a tree T E Tn: a twist, in which the left and right subtrees of
a specified internal node are exchanged, and a rotation, in which an internal node
changes places with one of its children while symmetric order in the tree is preserved.
(See Fig. 4.1.) The problem is to estimate the minimum number of twists and rotations
needed to transform any tree in T into any other. We denote this number by Rn.

This problem is equivalent to the expression transformation problem. The iso-
morphism (also shown in Fig. 4.1) between expressions and trees is the standard
one--an external node labeled i corresponds to the expression "xi"; an internal node
corresponds to the expression (Et @ Er), where E and Er are the expressions cor-
responding to the left and right children of the node. A twist corresponds to the
application of the commutative law; a rotation, to an application of the associative
law.

Culik and Wood [1] derived an O(n log n) bound on R. We derive a matching
D(n log n) bound. (Culik and Wood actually worked with a slightly different trans-
formational system, but their result applies to our system, and vice versa.)
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twist
x x

x2 x x2 x3

((Xl(X2X3))OX4) (X40(Xl(X21X3)))

X1

X X3

FIG. 4.1. Illustrating a twist and a rotation.

These transformations can be represented as productions in a graph grammar.
The graphs that we consider differ slightly from the above binary trees. To transform
a tree into the corresponding graph, add an extra node of degree one, called the
superroot, and connect it to the root of the tree. The edge-end labels of the three
edges incident to an internal node are 1, 2, and 3, for the edges connecting the node
to its left child, right child, and parent, respectively. (The superroot is the parent
of the root.) The n + 1 edge-ends that are incident on vertices of degree one are
irrelevant, since these are never involved in any production. The vertices of degree
one are tagged with a name that is carried along during the derivation. Figure 4.2
shows an expression tree and the corresponding graph.

superroot

X2 X3 X

4.2. A tree and its corresponding graph.
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The grammar to represent this process has three productions: one for a twist,
one for a left rotation, and one for a right rotation. These productions are shown in
Fig. 4.3.

FIG. 4.3. The productions for a twist and rotations. The correspondence between the half-edges
is obtained by pairing the topmost edges and walking clockwise simultaneously around the left and
right diagrams.

From Theorem 2.3, it immediately follows that, starting from a tree with n ex-
ternal nodes, the number of trees reachable in m or fewer twists and rotations is, at
most, 62n+2m+l The leader-follower technique can be used to prove a tighter bound.
By choosing the upper vertex of the left side of each rotation to be the leader, and
the other to be the follower, the label alphabet size is reduced to 5. The zero elimi-
nation technique now applies. This reduces the alphabet size to 4, and the bound to
42n/2m/l. This can be further improved by specializing the encoding and decoding
procedures for this application. We do not need to encode the labels for the n leaves
or the superroot because these are not involved in any actions. This improves the
bound to 4n/2m-1. The total number of bits needed to encode any tree derivable in
m or fewer moves is, at most, 2n / 4m- 2.

We summarize this result in the following theorem.
THEOREM 4.1. For any expression E of n variables:

1. The number of different arithmetic expressions obtainable by m applications
of the commutative and associative laws starting from E is, at most, 22n/4m-2;

2. There exists an expression E’ such that the number of operations required to
transform E into E’ is D(n log n).

Proof. Part 1 follows from the prior discussion. Part 2 follows from the fact that
there are (n-1)! (2n_2) expressions obtainable starting from E. To obtain all of them
in m moves, we must have that

22n+4m-2 >_ (n--1)!12:--
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2n + 4m- 2 fl(n log n),

m gt(n log n)

5. Numbered plane triangulations: A lower bound. A numbered plane
triangulation (henceforth, just called a triangulation) is an undirected graph embed-
ded in the plane, all of whose faces are triangles and whose vertices are numbered
sequentially from 1. We denote by P the set of all n-vertex triangulations. A flip
of an edge in a triangulation is the operation of removing an edge, thereby forming a
quadrilateral face, and adding the other diagonal of the face. (See Fig. 5.1.) A flip is
allowed only if it does not introduce a multiple edge.

FIG. 5.1. A flip in a triangulated graph and the corresponding operation in the dual graph.

Let F be the minimum number of flips needed to convert any n-vertex trian-
gulation into any other. We wish to estimate F. It is easy to establish that Fn is
O(n2); Wagner [8] gave a construction. We show in 6 that Fn is O(n log n); in this
section, we use our succinct encoding approach to prove that Fn is (n log n).

There is no upper bound on the degree of a vertex in a plane triangulation.
Therefore, to apply our technique, we work in the space of planar graphs that are
dual to plane triangulations. In such a graph, every vertex has degree 3. (Each
vertex of the dual graph (a face in the original graph) maintains as a tag the set of
vertex numbers of the vertices in the original graph to which it is incident. These
tags along with the dual graph are sufficient to reconstruct the original numbered
plane triangulation. This observation is required to get a reliable upper bound on
the number of reachable numbered plane triangulations.) The edge-end labels of the
initial graph are chosen arbitrarily, subject to the constraint that walking one step
clockwise around a vertex increases the label by 1 (modulo 3). This ordering of the
edge-end labels encodes the embedding of the plane triangulation.

There are several different ways to represent sequences of diagonal flips as deriva-
tions in a graph grammar. One way is shown in Fig. 5.2.

This method uses two productions: one for doing the flip, and the other for
preparing the edge-end labels to allow the flip. Each flip in the original derivation
may correspond to as many as five actions: two to cycle the edge-end labels on one
end, two for the other end, and one for the actual flip. A sequence of m flips becomes
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FIG. 5.2. Two productions for representing flip sequences as graph grammar derivations.

a sequence of as many as 5m actions. A plane triangulation of n vertices has 2n- 4
faces. Therefore the dual graphs in which the derivations take place have 2n- 4
vertices. The number of vertices in left sides of productions (c) is 3, and the number
of vertices in the largest right side (r) is 2.

We can now apply Theorem 2.3 to bound the number of n node numbered plane
triangulations reachable in m flips by 42n+lm-4. This implies that, for any triangu-
lation P, at most 42n+10m-4 distinct triangulations can be obtained by doing m or
fewer flips. Since P, contains at least (n- 3)! triangulations (there are this many
different sorted wheels; see 6), there must be at least two triangulations, and indeed
many pairs of triangulations, that are (n log n) flips apart; that is, Fn (n log n).

The bound on the number of reachable configurations can be tightened signifi-
cantly by the use of a different graph grammar. This grammar is shown in Fig. 5.3.

Because this grammar includes each of the six ways that the ends of the edge to be
flipped can be labeled, there is a one-to-one correspondence between diagonal flips in
the plane triangulation and applications of one of the productions to the dual graph.
Using the leader-follower trick and eliminating the zero label reduces the number
of different labels to 9. Each production creates two new labels, so our improved
encoding scheme proves that the number of graphs reachable in m moves is at most
92n/2m-4.

Leader vertices can be avoided entirely. An encoding without leaders can be made
to work by using the convention that a production involving a pair of adjacent vertices
is ready if and only if their labels mutually point at each other. (That is, following
the DIR(v) edge from v leads to w, and following the DIR(w) edge from w leads
to v.) To verify that the zero label (indicating a terminal vertex) is not necessary, we
must show that there exists a labeling of any planar graph of degree 3 with follower
labels such that no pair of adjacent vertices point to each other. This can be done as
follows. If the graph is a tree, choose a place in the middle of some edge, and make
all the vertices point away from this. If the graph has a cycle, choose the labels of
the vertices on the cycle to point consistently around it. Now choose a subset of the
remaining edges, so that these edges plus the cycle form a subgraph with all of the
vertices and exactly one cycle. (This is a spanning tree with one extra edge.) The
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FIG. 5.3. Six productions give a tighter bound on flip distance.

follower label on a noncycle vertex points toward the cycle along the path in the tree.
This gives the required match-free labeling. This argument bounds the number of
reachable configurations by 32n+2m-4.

The set of configurations reachable in m or fewer flips is not changed if we do not
allow a sequence to make a flip, then immediately make another flip that cancels it
out. This observation means that of the nine possible labelings of the pair of vertices
resulting after a move, we can restrict our attention to eight of them. This improves
the bound to 32n-48".

We summarize the results of this section in the following theorem.
THEOREM 5.1. For any plane triangulation T of n vertices, the following hold:

1. The number of different plane triangulations obtainable by m or fewer flips
starting from T is, at most, 32n-48m;

2. There exists a plane triangulation T such that the number of flips required
to transform T into T is (n log n).

6. Numbered plane triangulations: An upper bound.
THEOREM 6.1. Let G1 and G2 be two n-vertex numbered plane triangulations

(with no multiple edges). If n >_ 5, then there is a sequence of O(nlogn) diagonal
flips that transforms GI into G2 in such a way that there are no multiple edges in any
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intermediate state.
Proof. We show that any such triangulation G can be transformed into a par-

ticular canonical form called a sorted wheel in O(n log n) diagonal flips. Using this
transformation, we can transform G1 into the sorted wheel, then transform the sorted
wheel into G2 (using the transformation in reverse).

A wheel of n _> 5 vertices is a planar graph that has two special vertices called
hubs and n- 2 other vertices called rim vertices. There is an edge from each hub to
each rim vertex (these are the spokes). There are n- 2 other edges in the graph, and
these form a simple cycle through all of the rim vertices. There is a unique way of
embedding the wheel in a sphere.

A sorted wheel of n vertices is a wheel with labeled vertices embedded in the
sphere. The hubs are labeled 1 and n, and the vertices of the rim are labeled
2, 3,..., n- 1 in clockwise order when viewed from hub 1.

We first consider the special case of n 5. Any graph G of five vertices satisfying
the hypotheses of the theorem is a wheel. We show this by first applying Euler’s
formula, which implies that G must have six triangular faces and nine edges, and
that the sum of the degrees of the vertices is 18. No vertex can have degree two,
because then its two neighbors would be connected by two different edges, which
violates the assumption that G has no multiple edges. Furthermore, no vertex can
have degree greater than four. It follows that the multiset of the degrees of the vertices
is {3, 3, 4, 4, 4}. The three vertices of degree four must be attached to all the other
vertices in the graph. This accounts for all of the edges incident on the vertices of
degree three, which therefore must not be neighbors. It follows that the graph is a
wheel in which the vertices of degree three are the hubs, and the vertices of degree
four are the rim.

We finish the proof for n 5 in two stages. First, we show that we can make
vertices 1 and 5 the hubs of the wheel. Second, we show that if the resulting structure
is not the sorted wheel (it must be its mirror image), then it can be transformed into
the sorted wheel.

If vertices 1 and 5 are on the rim, then a diagonal flip of the edge between them
makes them the two hubs. If 1 is a hub and 5 is on the rim, then we flip the edge
between the other two rim vertices creating a configuration where both 1 and 5 are
on the rim, which we handle as above. A similar technique suffices if 5 is a hub and
1 is on the rim.

Figure 6.1 shows how the mirror image of the sorted wheel of five vertices is
transformed into the sorted wheel by the application of five diagonal flips.

We are now ready to consider the case where n _> 6. The transformation of the
graph G into a sorted wheel is broken up into three phases: constructing a Hamiltonian
circuit, transforming the Hamiltonian circuit into a wheel with hubs 1 and n, and
sorting the rim of the wheel. These three steps are described in the following three
sections.

6.1. Constructing a Hamiltonian circuit. By Tutte’s theorem on planar
graphs [7] (and by a theorem of Whitney [10]), any 4-connected planar graph has
a Hamiltonian circuit. The graph G under consideration is 3-connected, since it is
planar, triangulated, and has no multiple edges. Unfortunately, it may not be 4-
connected. If it is not 4-connected, then it must have a separating triangle; that is,
a triangle whose removal separates the graph. We show how to transform the given
graph G into one that has no separating triangles by making O(n) diagonal flips. This
completes our construction of the Hamiltonian circuit.
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FIG. 6.1

The graph G is given to us embedded on a sphere. We choose a face arbitrarily
and map the embedding on the sphere to an embedding on the plane such that the
chosen face is infinite. Each separating triangle of G partitions the faces and remaining
vertices of G into two components. The interior component is the one not containing
the infinite face. Let I1 be the set of faces interior to a separating triangle T1, and let
I2 be the set of faces interior to a separating triangle T2. Either I1 and I2 are disjoint,
or satisfy I c I2 or I2 C I. It follows from these relations that there must always
be a set of innermost separating triangles, i.e., those that do not contain another
separating triangle in their interior.

Our algorithm for eliminating separating triangles works from innermost separat-
ing triangles outward. A diagonal flip operation is applied to an edge of one of the
innermost separating triangles. The chosen edge is any one that does not introduce
a new separating triangle. We prove below that there always exists such an edge. It
follows immediately that this algorithm eliminates all of the separating triangles in
O(n) diagonal flips because each flip reduces by at least one the number of edges that
are in separating triangles.

It remains to show that there is always an edge of an innermost separating triangle
such that if that edge is flipped then no new separating triangle is created. The
following case analysis shows this. Consider an innermost separating triangle with
vertices a, b, and c. Let d be the vertex inside the triangle such that triangle (a, b, d)
is empty. (There must be such a vertex since triangle (a, b, c) is a separating triangle,
and there must be something inside of it.) Similarly, there must be a vertex e outside of
triangle (a, b, c) such that (a, b, e) is an empty triangle. Figure 6.2 shows the situation.

We assume that flipping edge (a, b) creates a new separating triangle and show
that flipping one of the other edges does not create one. We know that the separat-
ing triangle that was created by flipping (a, b) must be (d, c, e), and that (d, c) and
(c, e) are edges of the original graph. Triangles (a, d, c) and (b, d, c) must be empty;
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e

b

otherwise, (a, b, c) would not be an innermost separating triangle. We now know that
the structure of the graph near triangle (a, b, c) is as shown in Fig. 6.3.

e

b

,FIG. 6.3

Since the graph has at least six vertices, we know that there must be another
vertex f outside of triangle (e, b, c) such that (b, f, c) is an empty triangle. Now it is
clear that flipping edge (b, c) cannot create a separating triangle. This completes our
construction of a Hamiltonian circuit.

6.2. Transforming the Hamiltonian circuit into a wheel with hubs 1 and
n. Given that there is a Hamiltonian circuit, we can regard the graph as consisting
of a cycle and two triangulations of an n-gon, one on each side of the cycle. By
definition, a triangulation of a polygon has no interior vertices. A coning triangulation
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of a polygon is one in which all of the interior edges of the polygon are incident to
the same vertex. We use several facts about diagonal flips in triangulations of a
polygon [6].

FACT 1. Any triangulation of an n-gon can be transformed into the coning trian-
gulation with all edges incident on a vertex v by making at most n- 2 diagonal flips,
each of which increases the degree of v by one.

FACT 2. Any triangulation of an n-gon can be transformed into any other in at
most 2n 4 diagonal flips.

FACT 3. In any triangulation of an n-gon, there is a vertex v such that v is
incident to only two edges, and those are the boundary edges that connect v to its two
neighbors around the polygon.

Call the two triangulations of the n-gon that comprise the current version of G
the top triangulation and the bottom triangulation. Let v be a vertex such that Fact
3 holds for v in the top triangulation. Now we can apply Fact 1 to vertex v in the
bottom triangulation to transform that triangulation into a coning triangulation to
vertex v. This process will never introduce multiple edge because all the new edges
added to the bottom side of the triangulation are incident to vertex v, which has no
edges on the top side. The situation is depicted in Fig. 6.4.

FIG. 6.4

We now change our definition of the top and bottom sides. We view vertex v
as belonging to the interior of the bottom side, which is a hub with n- 1 spokes
connecting v to all other vertices. The top side becomes a triangulation of an (n- 1)-
gon. At least one of vertices 1 or n is on this (n- 1)-gon. Without loss of generality,
assume that 1 is on this (n- 1)-gon. (If 1 is not on this polygon, then the following
construction can be fixed by swapping the roles of n and 1.) Now we transform the
triangulation of the (n- 1)-gon (the top side) into a coning triangulation to vertex 1.
The result is shown in Fig. 6.5.

We now flip edge (v, 1) and move 1 into the top side. The result is a wheel with
hubs 1 and v, as shown in Fig. 6.6.

It remains to transform this wheel into one with vertices 1 and n as the hubs.
If v n, then we are done; otherwise, it only remains to replace v by n. We begin
by flipping any edge around the rim of the wheel, resulting in the situation shown in
Fig. 6.7.

Now we retriangulate the bottom (n- 1)-gon, so that it is a coning to n. Then
we flip edge (n, 1) and move n into the bottom half to give the triangulation shown
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FIG. 6.5

FIG. 6.6

in Fig. 6.8.
This construction works without creating multiple edges, as long as the rim of

the wheel is always at least of size four. This is certainly the case, since n _> 6.

6.3. Sorting the rim of the wheel. We first give a sequence of four flips that
can exchange any pair of adjacent vertices around the rim of the wheel. Figure 6.9
shows this sequence. This works as long as the number of vertices on the rim is at
least 4.

If 6 _< n _< 15, we can use repeated transpositions to sort the wheel. We henceforth
assume that n >_ 16. A double wheel is a wheel with two rims, as shown in Fig. 6.10.

The number of vertices in the top rim differs from the number in the bottom rim
by at most one. Furthermore, all the edges in the region bounded by the two rims
cross from one rim to the other.

We now show how to use O(n) diagonal flips to transform a double wheel into a
single wheel. We call this transformation a merge step. The merge allows us to form



446 D.D. SLEATOR, R. E. TARJAN, AND W. P. THURSTON

FIG. 6.7

Fro. 6.8

any ordering of the vertices around the rim of the wheel subject to the constraint
that the order is consistent with that defined by the orderings on the two rims of the
double wheel. That is, if we traverse the rim of the wheel in clockwise order (from
the point of view of, say, vertex 1), then the traversal encounters all the vertices that
came from the bottom rim (top rim) of the double wheel in the same cyclic order
in which they occurred in the bottom rim (top rim) of the double wheel. A more
intuitive way to think of this process is to imagine two decks of cards (the double
wheel) that are shuffled into one (the rim of the wheel). This is also analogous to the
way a merge-sorting algorithm combines two sorted subfiles into a sorted file.

We can also apply the merge step in reverse (an unmerge) to split a wheel into a
double wheel. A wheel can be sorted by applying a sequence of [log2(n-2) unmerge-
merge pairs. (Observe that a merge sort can be implemented using these primitives.
Each pass of the sorting algorithm through all of the data corresponds to one of the
unmerge-merge pairs.)

It remains to show how to implement the merge step (never introducing multiple
edges) in O(n) diagonal flips. An edge (i, j) is called an amicable edge if (1) i is on
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2 flips

2 flips

FIG. 6.9

FIG. 6.10
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FIG. 6.11

one side of the rim of a double wheel and j is on the other side, (2) the quadrilateral
obtained by removing edge (i, j) has one edge on each rim of the wheel and two
edges crossing from one side of the rim to the other, and (3) the other vertex of the
quadrilateral on the same side of the rim as i is counterclockwise from i (with respect
to 1). Figure 6.11 shows an amicable edge (i,j).

In any double wheel there must be an amicable edge. By flipping three edges in
the vicinity of an amicable edge, we can create an (n- 2)-gon such that the edges on
the outside of the polygon do not connect any pair of vertices of the polygon. When
this operation is applied to the above diagram, the result is shown in Fig. 6.12.

It is now the case that we can apply any algorithm for retriangulating the (n-2)-
gon between the two rims without fear of creating multiple edges.

We can apply this technique three times to transform a double wheel with one
triangulation between the rims into a double wheel with any other triangulation be-
tween the two rims. Let (i, j) be an amicable edge of the initial double wheel. Let
(k, l) be an amicable edge of the desired final triangulation. (These pairs of vertices
may or may not be disjoint.) Let x and Xc be two neighbors on the top rim of the
wheel such that xc is a counterclockwise neighbor of x, and neither x nor xc is i, or
k, or a counterclockwise neighbor of either i or j. Since the length of the rim is at
least 7, there must be such a pair. Define y and yc similarly on the bottom rim.

To transform the triangulation between the rims from any one to any other, we
first cut the double rim at amicable edge (i, j), as shown in Fig. 6.12. We then
retriangulate the region between the two rims such that (x, y) is an amicable edge.
Then we close up the cut of amicable pair (i, j) and open up the one for amicable
edge (x, y). We then retriangulate the polygon between the rims, so that the pair
(k, l) becomes an amicable edge. We then close up the cut at amicable edge (x, y)
and open up the cut at pair (k, 1). Now we triangulate the (n- 2)-gon as specified by
the desired final triangulation between the rims. Closing up the cut at amicable pair
(k, l) completes the construction of the desired triangulation between the rims. This
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FIG. 6.12

FIG. 6.13

process can never introduce any multiple edges, and it uses O(n) diagonal flips.
As the desired triangulation between the rims, we choose any one such that there

is an edge joining each pair of vertices that are adjacent on the rim of the desired
wheel. It is easy to see that there must be such a triangulation between the rims.

The last step of the process is to convert such a double wheel into a single wheel.
Figure 6.13 illustrates how this is done. The highlighted edges are those of the rim of
the wheel.
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This step does at most one flip for each vertex of the rim of the wheel and
completes the merging process. This also completes the proof of the theorem.

COROLLARY 6.2. Let G1 and G2 be two n-vertex numbered plane triangulations
(possibly with multiple edges). There exists a sequence ofO(n log n) diagonal flips that
transforms GI into G2 in such a way that no flip ever creates a self-loop.

Proof. An easy case analysis proves the result for n 4. We show that multiple
edges can be eliminated by flipping them one at a time. This takes only a linear
number of flips, since each edge is flipped at most once. The corollary result follows
by applying Theorem 6.1 to the graphs obtained by eliminating the multiple edges
from G and G2.

We now prove our claim that if any multiple edge in a plane triangulation is
flipped, the number of multiple edges is reduced. Let el and e2 be a pair of edges
between vertices v and w in a plane triangulation. The cycle (e, e2) divides the
vertices (except v and w) into two disjoint sets: those on one side of the cycle and
those on the other side. Neither of these two sets can be empty, since every face of
the graph is a triangle. If either edge e or e2 is flipped, it is replaced by an edge that
connects a vertex on one side of the cycle to one on the other side. Since before the
flip there were no edges between vertices in these two sets (they are separated by a
cycle), the edge created by the flip cannot be a multiple edge.
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Abstract. This paper is concerned with pair-splitting sets in AGk(m, q), the design obtained from the
points and k-fiats in AG(m, q). A pair-splitting set is a set of parallel classes R, R2, Rs such that there
is no pair of distinct points a, b such that a, b are contained in a common k-fiat of each of the s parallel classes.
It is easy to prove that a lower bound on s is m (m k)]. The main result of this paper is to prove that this
lower bound is always achievable for any choice of m, q, and k, where 0 =< k =< m 1. The concept of pair-
splitting sets arises naturally out of the problem of finding roots in GF(q’) of a polynomial over GF(qm). The
connection between the two concepts is briefly discussed.

Key words, finite fields, affine geometry, factoring polynomials
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1. Introduction. The purpose of this paper is to study several different aspects of
parallelism in AG(m, q), the affine geometry of dimension rn and order q. The results
obtained have direct application to the problem of finding roots of polynomials over
GF(qm). We describe the connection between these concepts later in this section.

For definitions and results in design theory and geometry that are not explicitly
stated, refer to Beth, Jungnickel, and Lenz 3 ]. Let D AGk(m, q) be the design obtained
from the points and k-flats in AG(m, q). AGk(m, q) is a resolvable design with one
resolution given by the natural parallelism in the geometry. Let T Rl, R2, Rs }
be a set of s resolution classes of D. We define a transversal of T to be a set W
{ BI, B2, Bs }, where Bi E Ri, <= <= s, is a k-flat. Let fl(W) f3 wB denote the
common intersection of all blocks in the transversal. We call T a 2-splitting set (or pair-
splitting set) if, for every transversal Wof T, 12(W)I < 2. A set of parallel classes T* is
called an optimal 2-splitting set if IT*[ =< TI for every 2-splitting set T of D. The
following theorem is a special case of a more general result, which was proved in 7 ].

THEOREM 1.1. Let D AG(m, q) and let T be an optimal 2-splitting set in
D. Then

rn 2m
_<lrl__<

m-k- m-k"

A 2-splitting set that meets the lower bound in Theorem 1.1 is called a perfect 2-
splitting set. A 2-splitting set T that satisfies T[ [m/(rn k)] is called a quasi-perfect
2-splitting set. The next theorem follows easily.

THEOREM 1.2. There exists a perfect pair-splitting set in AGm- l(rn, q).
We note that the results of Berlekamp [2 give a method for finding such sets.

Additional results on 2-splitting sets in AGm_ l(m, q) can be found in [8 ]. The main
result of this paper is the following theorem.
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THEOREM 1.3. There exists a quasi-perfect pair-splitting set in AGk(m, q), and
there exists a perfect pair-splitting set ifm k divides m.

The proof of this result is given in 4. In 2 we prove a few basic results on 2-
splitting sets and set up some terminology. Section 3 considers the orbit structure of
parallel classes of k-fiats under the action of a certain group. Section 5 contains a gen-
eralization. Section 6 gives a direct construction for optimal pair splitting sets (for all
q,m,k).

We conclude this section by giving a brief overview of the connection between 2-
splitting sets and finding roots of polynomials over GF(qm).

Letf(x) be a degree n polynomial over : GF(qm), which has n distinct roots in
:. There is a natural correspondence between the elements of GF(qm) and the points in
AG(m, q). With each block B in AGk(m, q), we form the polynomial

(x)= ]-I (x-).

Clearly, the degree of B(x)is q, and B(x)is an affine polynomial (see Berlekamp [1]
for definitions). Let T {R, R2, Rs} be a 2-splitting set in AG(m, q). It follows
from the definition of 2-splitting set that at least one of

gcd(f(x),B(x)), B 6 Ri, <-_ s

is nontrivial. Repeating the process with each nontrivial factor with degree greater than
one eventually produces all of the roots off(x). Since no pair of roots off(x) can be
contained in each block of a transversal, every pair of roots off(x) must be separated
by some parallel class in the 2-splitting set. The results in Berlekamp 2 and van Oorschot
and Vanstone [8] study the preceding procedure for the case where k rn 1. This
paper generalizes some of the ideas to arbitrary values of k.

2. Some basic results on pair-splitting sets. We begin by noting that AG=(m, q)
contains

[m] =(qm--1)(qm-l--1)’’’(qm-+l--1)
k q

(qk_ )(qk-1_ 1)’" "(q--

parallel classes, a vast number. We show that a quasi-perfect pair-splitting set can always
be selected from any orbit of parallel classes under the action of a suitable group, which
narrows the number of parallel classes to be considered to at most (qm )/(q ).
To accomplish this, we must first introduce some notation.

Since any two m-dimensional vector spaces over GF(q) are isomorphic, we can
identify the underlying vector space ofAG(m, q) with the field : GF(qm). Then each
a :* induces a collineation ofAG(m, q) by defining (x) ax. We usually write
a instead of , not distinguishing between the field element a and the induced multi-
plicative automorphism . Thus all multiplicative automorphisms ofAG(m, q) form a
group G isomorphic to :*, and thus to the cyclic group of order qm 1. We call each
orbit of parallel classes of k-fiats under the action of G a multiplicative orbit of parallel
classes or, more simply, a k-orbit. Our main result is that any k-orbit (for all k, m,
and q) contains a quasi-perfect pair-splitting set ofAGk(m, q). We note in passing that
the use ofthe group G is a common tool in finite geometry (e.g., proving Singer’s theorem
6 (see also 3 and Hirschfeld 4 or its affine analogue (see Jungnickel 5 )).

We now characterize the pair-splitting sets contained in multiplicative orbits; these
are referred to as multiplicative pair-splitting sets.
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LEMMA 2.1. Let 3 be the k-orbit determined by a k-dimensional linear subspace
V of IF GF(qm) over GF(q). Moreover, let , "Y2,’", 7s be distinct elements in

* and let i ,y:, <= <- s. Theparallel classes determined by V’y1, V’y2, V3’s
form a pair-splitting set ofAGk(m, q) ifand only ifthe subspace U (B1, 2, )
is not contained in any ofthe k-flats in 3.

Proof. Assume first that V-l, V-2, , V-s determines a pair-splitting set. Then

(1) V’yi {0}.
i=1

Assume, if possible, that U (/31,/32, C/s) is contained in V6 for some 6 e : *. Then
U/ -1 _-< V, and thus/3i/ -1 V, _-< _-< s, or, equivalently, 6 -1 V’i, -< _-< s, which
contradicts ). Therefore U is not contained in any k-flat in 3.

Conversely, assume that U is not contained in any k-flat in 3. If V’, V’2,
V’ys do not determine a pair-splitting set, then there exist a, b : (a 4: b), which are in
the same coset of V’i for all < < s Thus 0 4: a b fs V3’i i.e.
(a b),:, (a b)/3i V for =< s. However, (a- b)U (a- b),
(a b)/32, (a b).) V, which gives the contradiction U V(a b) -. This
completes the proof, ff]

It should be clear that the situation of Lemma 2.1 arises if and only if none of the
flats in the multiplicative orbit of U are contained in any k-flat in 3. This leads us to
the following terminology. We say that a d-orbit is skew to a k-orbit 3 if any only if
no d-flat in is contained in any k-flat in 3. Lemma 2.1 immediately implies the
following result.

THEOREM 2.1. Let 1 be a k-orbit in AG(m, q). Then the smallest size sofa pair-
splitting set contained in equals the smallest dimension d ofa d-orbit , which is skew
to 3.

Theorems 1.1 and 2.1 give the following corollary.
COROLLARY 2.1. Let 3 be any k-orbit ofAG(m, q). Then the smallest dimension

dfor which a d-orbit skew to 1 exists satisfies the inequality

d>=I m

mk

As already mentioned, it is our goal to show that we always have equality in Corollary
2.1. Before doing so, we briefly study the k-orbits of G, as this seems not to be in the
literature.

3. Multiplicative orbits in AG(m, q). In this section we want to consider the possible
sizes of k-orbits in AG(m, q). We recall the following simple but important lemma.

LEMMA 3.1. Let m, k, and q be positive integers. Then (qm 1, qk q
with d (m, k). (Here (x, y) denotes the greatest common divisor ofx and y.)

As in the previous section, let : GF(qm) and let G be the group of multiplicative
automorphisms ofAG(m, q) induced by =*. Clearly, - 6 =* fixes a parallel class of k-
fiats in AG(m, q) if and only if fixes the linear k-space in this parallel class. Every 6

GF(q)*, however, fixes every linear subspace, and thus the stabilizer of a parallel class
always contains a (cyclic) group of order q 1; so the largest conceivable orbit size is

(qm--1)/(q--1)=qm-+qm-2+ +q+l.

We call a k-orbit regular if it has this maximal size. We now give a construction that
produces orbits of smaller size in the case where (k, rn) > 1.
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CONSTRUCTION 3.1. Let c 4:1 be a common divisor ofk and m. Then g: GF(qm)
contains the field GF(qC), and thus gZ’GF(qc) determines the affine space
AG(m/c, qC), which is naturally contained in AG(m,q) (since any i-fiat of
AG(m/c, qC) is also a ci-flat ofAG(m, q)). In particular, choose a linear k/c-space
V in g:: GF(qC); clearly, each 3’ GF(qC) * fixes V, and thus V determines a k-orbit of
AG(m, q), which has a stabilizer of order divisible by q- and thus has size <=
(qm 1)/(qC 1).

LEMMA 3.2. Let 90 be any k-orbit ofAG(m, q). Then the stabilizer ofgO in G has
order qC for some common divisor c ofk and m; moreover, 1 is the orbit ofa k/c
space in AG(m/c, q), as in Construction 3.1.

Proof. Let H be the stabilizer of 9. Then H is the stabilizer of any linear subspace
Vcontained in 90. Since G acts regularly on :*, we see that H acts semiregularly on both
:* and V\ { 0 }. Thus HI is a common divisor of qm and qk 1, i.e., a divisor of
qa_ with d (m, k) by Lemma 3.1. Now consider 6, 3" 6 fir* f3 H. Since

Vi= V and V3"= V,

then V(6 + 3") V6 + V3" V + V V, provided that 6 + 3" 4: 0. Similarly, V(63")
V, and so H tA 0 } is closed under sums and products and so is a subfield of GF(qm).
It now follows that [HI qC for some positive integer c and that c divides d. Finally,
since the cyclic group :* contains a unique subgroup of order qC 1, i.e., GF(q)*, we
see that Vis invariant under GF(qC) * and thus is, in fact, a k/c-space in AG(m/c, q).
This completes the proof. E]

THEOREM 3.1. The size ofa smallest k-orbit in AG(m, q) is (qm 1)/(qd 1),
where d (m, k). We call such orbits minimal.) There exist k-orbits ofsize (qm )/
qC )for every common divisor c ofm and k, and these are the only orbit sizes.

Proof. By Construction 3.1, there exist k-orbits with a stabilizer in G oforder divisible
by q 1. This is the precise order of the stabilizer if and only if the orbit belongs to a
k/c-space ofAG(m/c, qC) that is not a k/cf-space ofAG(m/cf, qcf) for any common
divisor f4:1 of k/c and m/ c. To simplify notation, put l k/c, n m/ c, and r qC.
It then suffices to show the existence of an/-space U ofAG(n, r) that is not an l/p-space
of AG(n/p, r) for any common prime divisor pof n and l. Now let p, Pe be the
common prime divisors of r and l and put I4/. GF(r) for 1, e. Then, W
W + + We is an h-subspace ofAG(h, r), where h <= p + + p <= Pi Pc,
and Wcontains the 1-subspace U0 GF(r). It is easy to check that h =< n l (since l <
n and since p... Pe divides both and n). Thus we may select an (l )-space
U that is disjoint from IV; then U U0 + U is an/-space satisfying U f3 W U0. We
claim that U is the desired/-space. Assume that U is in AG(n/p, rP), where p Pi is a
prime dividing both n and l; then U is fixed under GF(r)*. Since U0, this implies
that Wi U, a contradiction. E]

These results allow us to make the following observations.
THEOREM 3.2. Every k-orbit ofAG(m, q) is regular ifand only if(k, m) 1. Every

k-orbit ofAG(m, q) is either minimal or regular ifand only ifd m, k) is a prime. If
k divides m, then AG(m, q) contains a unique minimal k-orbit.

Proof. The first two assertions are immediate from Theorem 3.1. If k divides m,
any minimal orbit belongs to a 1-space of AG(m/k, q) by Lemma 3.2. Since G is
transitive on such spaces, we get the last assertion.

More generally, given any specific pair of positive integers m, k, we may recursively
determine the exact number of orbits of any possible size by using the lattice of divisors
of d (m, k). We give the following example.
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Example 3.1. Let k 2d and m nd, where n is odd, and assume that d pp’ is
the product of two distinct primes. By Theorems 3.1 and 3.2, every minimal orbit has
size (qm 1)/(qa 1) and belongs to a 2-space of AG(n, qa). Thus the number of
minimal orbits in this case is

n] (qa_ 1)/(qm- 1)=(qan-1)- 1)/(q2a- 1).O’pp ffd
2 ud

Every orbit of size (qm )/(qP belongs to a k/p-space in AG(m/p, qP), which is
not a 2-space ofAG(n, qa). Thus we have % such orbits, where

%= 2p’ qp- 2 qe

similarly, we obtain the number %, of orbits of size (qm )/(qP’ ). Finally,
the regular orbits belong to k-spaces of AG(m, q), which are neither k/p-spaces of
AG(m/p, qP) nor k/p’-spaces ofAG(m/p’, qP’). This gives al regular orbits, where

+ (q- 1)/( -1).a
k q 2p’ qp 2p q, 2 q

It should now be clear how the divisor lattice of d can be used to compute the
numbers of orbits of the various possible sizes, in general. For our purposes, however, it
does not seem worthwhile to produce a general result along these lines. Note that the
first part of Theorem 3.2 corresponds to Lemma 4.2.6 of Hirschfeld [4]; our proof,
however, is somewhat simpler (being coordinate-free).

4. Skew and covering multiplieative orbits. We now prove our main results.
THEOREM 4.1. Let 1 be any k-orbit ofAG(m, q), where <- k <= m 1, and let

d be any positive integer satisfying m >= d >- m/(m k). Then there exists a d-orbit of
AG(m, q), which is skew to 3.

Proof. The assertion is trivial if d > k. If d k, there are distinct multiplicative k-
orbits (as d k 4: 1, m ), and, again, the assertion is obvious. Thus assume that
d _-< k 1. Let V be a linear k-space contained in . Then any d-orbit that is not skew
to contains a linear d-space U contained in V. Thus the number of d-orbits not skew
to 3 is bounded from above by the number [d]q of d-spaces contained in V, and it
clearly suffices to show that the total number of d-orbits exceeds []q. Now AG(m, q)
contains exactly []q linear d-spaces, and each d-orbit has size at most (qm )/
(q (as seen in 3 ). Hence there are at least (q ’ ]q/(qm d-orbits, and we
want to show that

>(qm- 1)
d

(2) (q 1)
d q q

(q- 1)(qm-- 1)(qm-2- 1)’’’(qm-d+

or, reordering terms,

qm-1_ qm-2_
(3) qk__ qk-l_

-1)

> (qk 1)(qk- 1__ 1)...(qk-d + -1),

qm-d+l_
qk-d+2_

qk-d+_
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However, (qm-1-a )/(qk-a > qm-k-1 for a 0, d 2, and thus the
left-hand side of (3) is larger than qm-k-)d-1). Also, the fight-hand side of (3) is
smaller than qk-d+l, and thus it suffices to show that

(m-k- 1)(d- 1)>=k-d+ 1.

It is easily deduced that this inequality is equivalent to our hypothesis d >= m/(m k),
which finishes the proof.

Together with Corollary 2.1 and Theorem 2.1, we now have the following result.
THEOREM 4.2. Let 3 be any k-orbit ofAG(m, q), where <= k <= m 1. Then the

smallest integer dfor which a d-orbit skew to 1 exists is d m/(m k)] Equivalently,
the size ofa smallest multiplicative pair-splitting set contained in 1 is d.

Theorem 4.2 guarantees the existence of a quasi-perfect multiplicative pair-splitting
set ofAGk(m, q) (in any arbitrary k-orbit), but unfortunately does not provide us with
an efficient way of finding such a set. This matter is discussed further in 6. We can
easily construct such sets explicitly in some special cases, shown below.

Example 4.1. Assume that m 2nk, where k is odd; by Theorem 4.2, we have that
d 2. Since 2 and k divide m, choose the k-orbit represented by V GF(qk), and
let U be the 2-space U GF(q). Since any image of U (under " :*) is invariant
under GF(q) * and since GF(q) does not contain GF(q), we see that the 2-orbit
belonging to U is indeed skew to 3: no U’ can be contained in GF(qg). Using a primitive
element w of GF(q’)*, we may describe U and V explicitly, as follows:

U 0 } O ( wt(qm 1)/(q2- 1)1i. 0 < =< q2 2 },
V { 0 U { otqm- 1)/q- 1)i. 0 <= <- q- 2 },

and a corresponding pair-splitting set is given by V and
We conclude with a remark. From a geometric point of view, we might also be

interested in the question of covering a given d-orbit by a k-orbit ; that is, each d-
flat in should be contained in some k-flat in 3. Of course, this can be done for any
k >= d, trivially. However, we might ask for which k every k-orbit covers . Clearly, this
holds for every k satisfying d < rn /(rn k), i.e., k > (rn (d )) /d, by Corollary 2.1.
On the other hand, if d >= rn/(rn k), then Theorem 4.1 guarantees the existence of
some d-orbit ’ that is not covered by all k-orbits. We now show that here, in fact, no
d-orbit is covered by all k-orbits. Let the d-orbit be represented by the d-space U.
Clearly, each k-orbit coveting contains a k-space V containing U. Thus the number
of k-orbits coveting is at most the number of k-spaces containing U, which is equal
to [m-dk-a]q. Again, the total number of k-orbits is at least (q )[’]q/(q ), as each
k-orbit has size =< (qm )/(q ). Thus it suffices to show that

m qm> -),(4) (q 1)
k k-d q

which can be proved as the corresponding inequality in the proof of Theorem 4.1" after
substituting and reordering, (4) is seen to be equivalent to

qm-_ qm-d+l_ qk-a+l_
(5) qk_ qk-a+ 2_ >

q--1

which is exactly the same expression as in the proof of Theorem 4.1; hence (4) holds for
d >= m/(m k), or, equivalently, k =< (m(d- 1))/d. We have proved the following
theorem.
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THEOREM 4.3. Let be a positive integer, where <= d <= m 1. Then every d-
orbit ofAG(m, q) is covered by every k-orbit ifand only ifk > (m(d- ))/d.

5. A generalization. In applying pair-splitting sets to the factorization ofpolynomials,
we might sometimes be able to guarantee that all the roots of the polynomial under
consideration are contained in a given/-space L of :. It then would be sufficient to
assure that L can be split. More formally, a set S of s parallel classes of k-spaces of
AG(m, q) is said to be a pair-splitting set relative to L if and only if no two elements a,
b L are in a common k-flat in each ofthe s parallel classes in S. This amounts to saying
that the restriction of S to the pairwise balanced design ’ induced by AGk(m, q) on L
is a pair-splitting set for ’. As in the proof ofTheorem 1.1, we then get the next lemma.

LEMMA 5.1. Any pair-splitting set ofAGk(m, q) relative to an l-space ofAG(m, q)
contains at least l/(m k)q parallel classes.

Now denote by L* the set L* L\ { 0 }. The proof ofLemma 2.1 can be modified
to show the following result.

LEMMA 5.2. Let Vbe a k-dimensional linear subspace of : GF(qm) over GF(q),
and let L be an l-space. Moreover, let 3’1, 3’2, 3"s be distinct elements in :*, and let
i 3’7, for <= <= s. Then the parallel classes determined by F3"1, V3"aform a
pair-splitting set relative to L ifand only ifthe subspace U ([31, [32) is not contained
in any ofthe k-spaces F6- L *.

Thus we must replace the orbit 3 of parallel classes under G (determined by V)
by the smaller "partial orbit" of parallel classes under (L*)-l. (Note that this notion is
no longer independent ofthe choice ofthe representative k-space V, and thus the geometric
terminology of skew orbits given previously does not make much sense for our gener-
alization!) Note also that neither the/3i nor the 3"; are restricted to elements in L*. We
now prove an analogue of Theorem 4.2.

THEOREM 5.1. The size ofa smallest pair-splitting set in AGe(m, q) relative to an
l-space L is precisely d l(m k)q.

Proof. In view of Lemma 5.1, it suffices to construct an example with exactly d
parallel classes. Thus choose a k-space V. In view ofLemma 5.2, we must find a d-space
U such that U6 V for all 6 L*. As in the proof of Theorem 4.1, there are at most
[ ]q d-spaces U violating this condition. On the other hand, there are [’]q d-spaces in
AG(m, q), which give rise to at least (q )[’]q/(q "partial orbits" with respect
to L*. (Note that different partial orbits might even overlap!) Thus it suffices to
show that

(6)

or, equivalently,

>(qt- 1)(q-l)
dq a

qm_ qm-d+
>
ql_

(7) qk---_ qk-d+ 1_ q--

which is seen to be true, as in the corresponding argument in the proof of Theorem
4.1.

6. A construction for optimal pair-splitting sets. In this section we describe a pro-
cedure for constructing a pair-splitting set ofm/(m k)] parallel classes in AGk(m, q).
We begin by stating a simple observation.

LEMMA 6.1. A set R oft parallel classes in AGe(m, q) is a pair-splitting set ifand
only if the linear subspaces contained in these classes have only the zero element in
common.
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The proof is straightforward and is omitted.
To find k-dimensional linear subspaces that have only the zero vector in common,

we use the orthogonal complement of a subspace. The orthogonal complement of a k-
dimensional subspace S is the set of all vectors orthogonal (under the standard inner
product) to all vectors in S. This subspace is denoted S+/- and has dimension m k.

LEMMA 6.2. The linear subspaces W1, W2, Wt have only the zero vector in
common ifand only ifk) W - contains a basisfor AG(m q)i=1

Proof. It is clear that, if $1 and $2 are linear subspaces and S1
_

$2, then_
Suppose that WI, W2,’", W have only the zero vector in common, but

U =1 W { does not contain a basis. Then tO ti=l W =_ S, where S is a linear subspace
of dimension m 1. Since W{ S, =< =< t, then S

_
W. S+/-, however, has

dimension one, contradicting the fact that fqti--1 Wi {0)o
Conversely, suppose that U= W{ contains a basis. If ;= W,.= S, then

U= W{ =_ S+/-, which implies S 0 ) [

As an immediate consequence of the preceding two lemmata we have the following
result.

COROLLARY 6.1. A set R oft parallel classes in AG(m, q) is pair-splitting ifand
only if the orthogonal complements of the linear subspaces in R contain a basis for
AG(m,q).

Let us first consider the case where m k divides m, and let a m/(m k).
GF(qm- k) is an (m k)-dimensional subspace S ofAG(m, q). Select a basis/31,/32,
/ for GF(qm) over GF(qm-). Now 13iS, -< <= a are (m k)-dimensional sub-
spaces of AG(m, k). It readily follows that t_J’= iS contains a basis for GF(qm) or
AG(m, q). By Lemma 6.2, {(/S) +/-, (/2S) +/-, .., (C/aS) +/- } is a set of k-dimensional
linear subspaces having only the zero vector in common. It follows from Lemma 6.1
that the translates of these spaces give a set of a parallel classes in AG(m, q) that form
a pair-splitting set.

Now suppose that (m k) does not divide m. Let m a(m k) + b, where
0 < b < m k. Consider an a(m k)-flat H in AG(m, q). It is isomorphic to
AG(a(m k), q), and hence, by the results of the previous paragraph, we can find a
set S of a subspaces of dimension m k that contain a basis for H. Since b < m k, it
is a simple matter to select a subspace U of dimension (m k) such that (t-Jws W) tO
U contains a basis of AG(m, q). It now follows from Lemmas 6.1 and 6.2 that there
exist (a + parallel classes in AG(m, q) that form a pair-splitting set. This set is
optimal.

We can modify the preceding construction in the case where m k m to produce
a pair-splitting set in a multiplicative orbit. As before, select a basis 1, 2, a for
GF(qm) over GF(qm-k). Let Li be the one-dimensional subspace generated by 3i. Let
L{ be the (a )-dimensional orthogonal complement of Li over GF(qm-l). Now
f3= L (0 }, and, because (L } are a hyperplanes in AG(a, qm-k), they lie in a
Singer cycle. Hence there exist elements in GF(qm-k), "Y1, "Y2,’", "Ya such that
{ (LL =< =< a "Yi L { =< =< a }. This set gives rise to a pair-splitting set in a
multiplicative orbit ofAG(m, q). The optimal pair-splitting sets that were constructed
in the preceding paragraphs are not necessarily contained in a multiplicative orbit. To
find a near optimal pair-splitting set from a single orbit, we might take a probabilistic
approach.

Suppose that 0 is a k-orbit in AG(m, q). Consider the probability P of randomly
selecting a d-orbit that is skew to . An upper bound on the number of d-orbits not
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skew to is [ ]q and a lower bound on the number of d-orbits in the entire space is
["d]q/((qm 1)/(q 1)). Hence

-P=< <
q (q-l) dq

This and Theorem 2.1 show that the probability ofselecting d [m/ m k) ] + linearly
independent elements whose inverses give rise to d parallel classes in 9 that form a
splitting set is P > q-i(m-k). Hence the probability of randomly selecting a splitting
set that is close to optimal is good. It can be shown that it can be determined whether a
set of parallel classes is pair-splitting, in time polynomial in the dimension of the space.
This is based on the facts that division of affine polynomials by affine polynomials is
more efficient than division of ordinary polynomials and that intersections of k-fiats can
be found by computing the greatest common divisor of the corresponding polynomial
representations 9 ].

7. Conclusion. The results of this paper answer what we believe to be several in-
teresting geometric questions and show that methods previously used for factoring poly-
nomials over extension fields can be generalized from the use of hyperplanes to the use
ofk-fiats. In particular, the paper demonstrates that the trace function used by Berlekamp
2 is not fundamental to the factoring technique he proposed.

The concept of a pair-splitting set can be generalized [7 to an arbitrary resolvable
or near-resolvable block design. In the general case, the exact size of an optimal pair-
splitting set is unknown. Moreover, there is no known efficient procedure for either
finding such a set or for checking whether a given set of parallel classes is pair-splitting.
In contrast, the results of this paper are surprisingly strong but seem to depend critically
on the rich geometric and algebraic structure of the afflne spaces.
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LAPLACIAN PERMANENTS OF TREES*
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Abstract. Let Tbe a tree on n vertices. The Laplacian matrix L(T) is the difference ofthe diagonal matrix
of vertex degrees and the adjacency matrix. The main result of this article is that, for "almost all" trees T, there
is a nonisomorphic tree T’ such that per L(T) per L(T’). The proof follows the approach taken by Schwenk
in [New Directions in the Theory ofGraphs, F. Harary, ed., Academic Press, New York, 1973, pp. 275-307].
The ditficulty is finding a single pair of "super" trees from which to start. The search for this pair was greatly
facilitated by a new algorithm for computing Laplacian permanents of trees. This algorithm is also reported.
Finally, the algorithm is used to establish inequalities for per L(T).

Key words, algorithm, cospectral, permanent, tree, Laplacian matrix
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Let T (V, E) be a tree with vertex set Vand edge set E. Denote by d(v) the degree
ofvertex v, and by D(T) the n n diagonal matrix ofvertex degrees. Then the Laplacian
matrixis defined by L(T) D(T) -A(T), where A(T) is the symmetric 0-1 adjacency
matrix. The Laplacian matrix has been the object ofconsiderable recent study stimulated
in part by Fiedler’s algebraic connectivity [6] and in part by applications in chemistry
5 ], 9 ], 13 ], statistics 4 ], and parallel algorithms for sparse matrix computations 14 ].

Strictly speaking, L(T) depends on some ordering of V. It is for this reason that
we typically study not L(T) itself, but some function of L(T) that is invariant under
permutation similarity. The permanent is one such function. Work on per L(T) is re-
ported, e.g., in ], 2 ], 8 ], 12 ], 17 ], 18 ]. After a promising start, this work seems
to have stalled, perhaps due to the notorious computational intractability ofthe permanent
[7], [10], [16].

In a talk at the April 1990 Lisbon Workshop on Multilinear Algebra, Brualdi men-
tioned a matrix "contraction" that was useful in 3 ]. We use these contractions to produce
a (fast) graph-theoretic algorithm for computing the permanent of L(T) directly
from T.

ALGORITHM. Let T (V, E) be a tree on two or more vertices.
Step 1. Initialize.

(a) Define p(v) d(v), v V.
(b) Define q(e) 1, e E.

Step 2. Contract.
(a) Choose a pendant vertex x and let e { x, y } denote the (unique) edge

incident with x.
(b) Replace p(y) with p(x)p(y) + q(e).
(c) For each edge e’ incident with y, replace q(e’) with p(x)q(e’).
(d) Eliminate vertex x and edge e.

Step 3. Finished? If y is the only remaining vertex, go to Step 4. Otherwise, go to
Step 2.

Step 4. Answer: per L(T) p(y).
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Proof. Let B be any k k matrix and suppose that some column ofB has just two
nonzero entries, say, a and b. Since our interest is in computing the permanent, we may
assume that

B= b
0

where u and w are (k submatrices and C is a (k 2) (k submatrix. A
"contraction" of B is a (k )-square matrix

It follows from the Laplace expansion theorem for permanents and the multilinearity of
the permanent function that per (B) per (B#).

We now turn to L(T) D(T) A(T). Since T is a tree, L(T) is acyclic--only
diagonal products corresponding to matchings contribute to the permanent. That is, only
permutations whose disjoint cycle factorizations consist entirely of 1-cycles and 2-cycles
need be considered. In particular, per L(T) per (B), where B D(T) + A(T). The
algorithm corresponds to repeated contractions on B. Initially, the (v, v)-entry of B is
p(v) d(v), v e V, and the (vl, v2)-entry is either q(e)= or0, depending on whether
e { v l, v2 ) is an edge.

Choose some pendant vertex x and its (only) neighbor y. We interpret B as a
matrix obtained from B by eliminating the row and column corresponding to x and
modifying the row corresponding to y. After the first iteration, it is clear that the new
value of p(y) (in B) is what it should be. Note, however, that only the entry in row y
corresponding to e’ has been multiplied by p(x). The entry in column y corresponding
to e’ remains unchanged. Thus B is not symmetric. However, its rows and columns are
indexed by the remaining vertices; the (v, v)-entry is p(v), and, for any edge e
{ Vl, v2 }, the product ofthe (v, v2)-entry and the (v2, Vl)-entry is q(e). We now replace
B with B and iterate again.

Consider an intermediate stage. In the tree, we eliminate what will have become a
vertex-edge pendant pair (x, e). In matrix B, we eliminate row and column x and mod-
ifying row y, where { x, y) e. The (y, y)-entry of(the new) B is the sum ofp(x)p(y)
and the product of the (x, y)-entry and the (y, x)-entry of B, i.e., p(x)p(y) + q(e).
Exactly one ofthe two entries corresponding to e’ is multiplied by p(x), namely, the one
in row y. Thus the product of the two entries in B corresponding to e’ is the (new)
value of q(e’). (Note that both the (v, v2)-entry and the (v2, vl )-entry ofB are zero if
v, v2 } is not an edge.) E]

Example. Figure illustrates an implementation ofthe algorithm. The correspond-
ing matrix result is

0 0 0 0 -1 0

0 -1 0 0

0 0 -1 2 -1
0 0 0 -1 3
0 0 0 0 -1

60.
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4 2 5
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4 11
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FIG.

Of course, we may save time, e.g., by contracting all the original pendants at once. This
is done in Fig. 2. Indeed, Figs. and 2 illustrate the smallest pair of nonisomorphic trees
with the same Laplacian permanent. There is another such pair on 8 vertices, 5 pairs on
9 vertices, and 15 pairs among the 106 trees on 10 vertices. We now present the main
result of this article.

THEOREM 1. Let tn be the number of nonisomorphic, unlabeled) trees on n vertices.
Let sn be the number ofsuch trees Tfor which there exists a nonisomorphic tree T’ such
that per L(T) per L( T’). Then limn-. (s/t) 1.

Proof. Since the publication of[15 ], results of this kind are proved in two stages.
In the first stage, we find a single pair of nonisomorphic trees with certain properties. In
the second stage, we appeal to Schwenk’s probabilistic result that almost all trees have a
prescribed (finite) branch. Our proof is no exception. Figure 3 shows two trees, each
with a (single, pendant) vertex marked with the letter "A ." In either case, ifthe algorithm
is employed with the design to "finish up" at vertex A, in the penultimate step, p(y)

2 1/\4 2

3 6 3

3 19

FIG. 2
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A

tree T1 tree T2

FIG. 3

837 and q(e’) 135. It follows not only that the permanent is 972 in both cases, but,
more importantly for us, it is achieved in the same manner. Suppose now that T is some
tree with a large number of vertices. Suppose further that T has some vertex "A" with
a branch isomorphic to the tree T1 in Fig. 3. Form tree T’ by replacing this branch with
the tree T2. It is evident from the algorithm that per L(T) per L(T’). By 15, Thm.
7], "almost all" trees have a branch isomorphic to T1.

Because L(T) is positive semidefinite, it follows from the Hadamard theorem for
permanents 11 that

per L( T)>=h( T) I-[ d(v).

In fact, it was proved in [2] that per L(T) >= 2h(T), with equality if and only if T
gl,n- 1, the "star." However, the Hadamard theorem for permanents establishes that
per L(T) >= I-I p(v) at every stage of the algorithm. For example, see the following
theorem.

THEOREM 2. Let T (V, E) be a tree on n >= 3 vertices. For each v V, define
r( v to be d( v plus the number ofpendant vertices adjacent to v. Then

per L( T)>= I-I r(v).
vrV

Proof. Contract all the original pendant vertices and apply the Hadamard theorem
for permanents.

Note, in Fig. 2, that 2h(T) 32, while the bound in (1) is 54. In fact, we claim
that the bound given by is always better than 2h(T), unless T is the star. To see this,
consider a longest path in T 4: KI,,- 1, beginning and ending at pendants u and w, say.
Suppose that x and y are the (distinct) vertices adjacent to u and w. Let dl d(x),
d, d(y), and d2 through d,_ be the degrees of the remaining vertices. Since r(x)
2dl- landr(y)=2d2- 1,

per L(T) >= I-I r(v)
vV

>= (2dl 1)(d2...d, 1)(2d, 1)

>= 4h(T) 2(dl + d,)(d2""d, 1) +

> 2h(T)

because dl >= 2 and d, >= 2 imply that (dl + d.) <= dl dn. [--]

THEOREM 3. Let T (V, E) be a tree. Suppose that v V, has degree d
d( v) > 2. Suppose that one ofthe branches at v is a path with pendant vertex u. Ifw is
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per 280 per 256
(a) (b)

w

per 352
(c)

FIG. 4

adjacent to v on a branch other than this path, then per L(T’) > per L(T), where T’ is
the tree obtainedfrom T by deleting edge { v, w } and adding a new edge u, w }.

(We observe that moving a branch only part way out a path may decrease the
Laplacian permanent. See Fig. 4.)

Proof. The tree T is illustrated in Fig. 5 (a). Suppose that the path contains k edges.
Employ the algorithm to prune away all but w from the branch of T at v containing w,
and so arrive at Fig. 5 (b). Pruning away the path from vertex v and then taking off w
results in Fig. 5(c), where a 1, a2 3, and a+ 2a + a_ . Similarly, tree T’ is
illustrated in Fig. 6(a). First, prune away all but w from the branch of T’ at u containing

(a) (b)

(c)

a,dp + a,_p + a,q

FIG. 5
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U W

(a)

2
q p

d-1

.11t#’’

(b)

/
(d- 1)(b+p + bq) + bp+ b,_,q

(c)

FIG. 6

w to arrive at Fig. 6 (b). Then prune away the path from vertex v to obtain Fig. 6(c),
where b 1, b2 2, and bj./ 2bj + bj_ . It remains to show that

(2) akp < bk / p + bq
and

(3) adp + a lp + aq < d- 1)( bk / lp + bq) + bp + b q.

Since bg +1 ak + bg, (2) is immediate. Using this and the similar identity a+
b + + b, we may show that (3) reduces to the inequality 2 < d. v1

COROLLARY (see [2, Thm. 2.5]). Let T be a tree on n vertices. Then
per L(T) -< per L(Pn), with equality ifand only if T Pn.

Proof. Any tree on n vertices may be transformed into the path P by a succession
of modifications, as described in Theorem 3. V1
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THE 1/3-2/3 CONJECTURE FOR 5-THIN POSETS

GRAHAM BRIGHTWELLf AND COLIN WRIGHT

Abstract. The /3-2/3 conjecture says that, in any finite poset that is not totally ordered, vertices x and
y can be found such that the proportion of linear extensions of the poset in which x is above y lies between

3 and 2 3 inclusive. In this paper, the conjecture is established in the case where every element of the poset
is incomparable with at most five others. The proof involves the use of a computer to eliminate a large number
of cases.

Key words, posets, linear extension, /3-2/3 conjecture

AMS(MOS) subject classification. 06A 10

1. Introduction. Throughout this paper, (X, <) denotes a partially ordered set
(poset). Unless otherwise stated, the underlying set X is assumed to be finite. A linear
extension of (X, <) is a total order -< on X such that x -< y whenever x < y. We adopt
the convention that the symbol < indicates a partial order, while -< indicates a total
order. If x and y are elements of (X, <), the probability P(x -< y) that x is below y is
defined to be the proportion of linear extensions -< of (X, <) in which x -< y. In
particular, ifx < y, then P(x -< y) 1. A fair amount is known about the behaviour of
this probability (see, for instance, Brightwell [1], or the survey articles by Graham [4 ],
Rival [8], and Winkler [10]), but one particularly appealing conjecture has remained
unresolved.

CONJECTURE (The / 3-2 / 3 conjecture). Let (X, <) be a partial order that is
not a total order. Then there exist distinct elements x, y ofX such that

1/3 <= P(x "< y) <= 2/3.

The example ofthe poser with three elements and one relation shows that the bounds
1/3 and 2/3 cannot be improved.

Conjecture was apparently first formulated by Fredman in about 1975 but did
not appear in print until 1984 (Linial [7 ]). In that paper, Linial proved that the result
is true for posets of width 2. Some further progress has been made since: Kahn and Saks
5 showed that the weaker version of Conjecture with 3 / and 8 / replacing / 3
and 2/3 is true, and Brightwell 2 established the conjecture in the case where (X, <)
is a semiorder. Very recently, Fishburn, Gehrlein, and Trotter 3 proved the conjecture
for height partial orders. Also, Koml6s [6 proved the qualitative result that, as the
width of a height poset tends to infinity, the minimum of I1/2 Pr (x -< Y)I, for
elements x, y ofthe poset, tends to zero. More information on Conjecture can be found
in the survey article by Saks [9].

For k a positive integer, we say that a poset (X, <) is k-thin if every element ofX
is incomparable with at most k other elements of X. The purpose of this paper is to
prove the following result.
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THEOREM 2. Let (X, <) be a 5-thin partial order that is not a total order. Then
there exist distinct elements x, y ofX such that

1/3 =< P(x -< y) <- 2/3.

In other words, we prove Conjecture in the case where (X, <) is 5-thin. To be
more accurate, we describe a computer program whose termination (without finding a
counterexample) would imply this result. We also assure the reader that we have run
the program, and that it did terminate without finding a counterexample.

It is perhaps worth noting here that Theorem 2 is a strong indication that Conjecture
is true. Indeed, if a poset (X, <) is a counterexample to the /3-2/3 conjecture, every

element tends to be fairly firmly fixed at a particular level in a linear extension; thus
every element tends to be incomparable with few others. This is, ofcourse, only a heuristic
argument, and we would hesitate to suggest that Theorem 2 is actually a step toward a
proof of Conjecture 1. We expand on this later.

2. Theory. If (X, <) is a poset with no pair of elements x, y such that 1/3 -_<
P(x M y) =< 2 / 3, then we say that the poset (X, <) satisfies the / 3-2 / 3 condition. Thus
Conjecture states that the only finite posets that satisfy the /3-2/3 condition are the
total orders. We note that the definition of probability used here can be extended to the
class of infinite posets that are k-thin for some k, and that there are infinite posets that
are not total orders and yet satisfy the /3-2/3 condition. See Brightwell for details.

Clearly, if (X, <) satisfies the /3-2/3 condition, then the relation "0, defined by
x "<0 y whenever P(x -< y) > 2/3, is a total order, in fact, a linear extension of(X, <).
We often wish to emphasise the role of this linear order, so we also make the follow-
ing definition. If "<0 is a linear extension of the poset (X, <), we say that the pair
((X, <), "<0) satisfies the 1/3-2/3 condition if P(x -<y) > 2/3 whenever x "<0 Y.
(Note that, if((X, <), "<0) and ((X, <), "<l) both satisfy the 1/3-2/3 condition, then
"<0 "<.)

Before we start, we make one trivial but important simplification. We claim that,
to prove Theorem 2, we may assume without loss of generality that the poset (X, <) has
at least two minimal elements. Indeed, suppose that the result is false, and let (X, <) be
a counterexample with the minimum number ofvertices. If(X, < has a unique minimal
element x, then deleting it from the poset leaves us with a smaller counterexample, a
contradiction.

Our next step is to find circumstances in which we can conclude that various posets
do not satisfy the /3-2/3 condition. One of our main tools in this direction is a lemma
that can be found in Brightwell [2]. To state this result, we need some additional ter-
minology.

Suppose that x and y are incomparable elements of a poset (X, <). An up-separator
for (x, y) is an element u of X that covers x and is incomparable with y. Similarly, a
down-separator for (x, y) is an element covered by y and incomparable with x. An
element ofX is a separator for (x, y) if it is either an up- or a down-separator.

Intuitively, separators for (x, y) are elements whose presence in Xforces x to appear
below y in a high proportion ofthe linear extensions. For instance, if u is an up-separator
for (x, y), then u is below y in many linear extensions, which forces x to be below y
also. The next lemma supports this intuition. For a proof, see Brightwell [2 ].

LEMMA 3. Ifthepair ((X, <), "<0) satisfies the 1/3-2/3 condition, then,for every
pair (x, y) of incomparable elements with x "<oy, we have either (i) a separator u for
(x, y) such that x o u o y, or (ii) at least two separators for (x, y).
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Let (X, <) be a finite poser, and let "<0 be a linear extension of(X, <). Ifx and y
are incomparable elements of X with x "<0 Y, say, then x and y are 2-separated (in
((X, <), "<0)) if either there is a separator u for (x, y) with x "<o u "<0 Y, or there are
at least 2 separators for (x, y). The pair ((X, <), "<0) is said to be 2-separated if every
pair of incomparable elements is 2-separated in ((X, <), "<0). Thus Lemma 3 says that
every pair ((X, <), "<0) satisfying the 1/3-2/3 condition is 2-separated.

Unfortunately, there are posets that are 2-separated in some order, yet do not satisfy
the 1/3-2/3 condition. Figure 1, below, shows a particularly simple example.

Our strategy for proving Theorem 2 is roughly as follows. We are given a poset
(X, <) 5-thin, with at least 2 minimals), and we wish to prove not only that it does not
satisfy the 1/3-2/3 condition, but also that no poset having a down-set isomorphic to
(X, <) can satisfy the condition.

To be more accurate, we define a configuration to be a triple ((X, <), F, "<0),
where (X, <) is a finite poset, F is a down-set of X, and (o is a linear order on F
extending < IF. We say that a configuration ((X, <), F, "<o) is 2-separated if, whenever
x and y are elements ofF with x "<o Y, then x and y are 2-separated in (X, <). Also, for
k a positive integer, we say that the configuration is k-thin if (X, <) is k-thin.

If (Y, <’) is a poset and -< is a linear extension of (Y, <’), then ((Y, <’), -< is a
continuation of the configuration ((X, <), F, "<o) if the following three conditions are
satisfied:

(i) (Y, <’) contains (an isomorphic copy of) (X, <) as a down-set,
(ii) All elements of Y incomparable with an element ofF are in X,
(iii) -< IF "0"
A configuration is discardable if there is no continuation of" it satisfying the /3-

2 / 3 condition.
LEMMA 4. Erery configuration that is not 2-separated is discardable.
Proof. Suppose that the configuration ((X, <), F, "<0) is not 2-separated, and let

x and y be a pair ofelements ofFthat are not 2-separated in (X, < ). Then these elements
are not 2-separated in any continuation, since any separator must be incomparable with
either x or y. Hence, by Lemma 3, no continuation satisfies the /3-2/3 condition, and
the configuration is discardable. []

We prove Theorem 2 by producing a finite list of discardable configurations such
that every pair ((Y, <’), -< ), with the poset 5-thin, having at least two minimals, and

FIG. 1. A 2-separated poser.
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the pair 2-separated, is a continuation of some configuration in the list. Clearly, the
existence of such a list, together with Lemma 4, would imply that the only 5-thin posets
satisfying the 1/3-2/3 condition are total orders.

(Observe that there is no such finite list if we omit the condition that there be at
least two minimals. To see this, let Yn be the poset formed by taking a total order on n
elements, and adding two incomparable elements above everything else. Now, ifwe have
any finite list of configurations that does not include a chain (in particular, a finite list
ofdiscardable configurations), then some Yn fails to be a continuation ofany configuration
in the list.)

The example in Fig. shows that we cannot produce such a list ifour only technique
for demonstrating a configuration to be discardable is based on 2-separation. Accordingly,
our next step is to describe another method of showing configurations to be discardable.

Let (( Y, <’), -< be a continuation of a configuration ((X, <), F, "<0), and let K
X\F. We can partition the set oflinear extensions of( Y, <’) according to which elements
ofK come below the highest element ofX in the linear extension.

For any linear extension -< of (Y, <’), define

V(’) {xeK: x , yforsome yF}.

Now set {V___ K: V= V(-<)for some linear extension -< of(Y, <’)},and Ovto
be the event V( -< V, for V e U. Then, for every pair x, y of incomparable elements
of F, we have that

The point of this is that the various P(x -< Yl v) depend only on (X, <), as every
linear extension of(Y, <’) satisfying v is specified uniquely by a pair -<’, -< ") of linear
orders, where -<’ is a linear extension of < [VtA V in which the highest element is an
element ofF, and -<" is a linear extension of <’It-F- v. Note also that U depends only
on (X, <), as it consists of all the down-sets V of K such that there is some element of
F incomparable to everything in V.

Therefore, if there is some continuation (Y,<’) of the configuration
((X, <), F, "<0) that satisfies the 1/3-2/3 condition, then there is a probability vec-
tor (P(v))w. such that the sum (.) is greater than 2/3 whenever x "<o Y. In other
words, if there is no such probability vector, then the configuration is discardable.

For a given configuration ((X, <), F, "<0), let ((xi, Yi)),P= run through
all pairs of incomparable elements of F with xi "<oYi. The array of values
(P(xi " Yilv))= 1,Ve *’ can be considered as a matrix P Ply. We have seen that the
configuration is discardable if there is no probability vector av with Pivav > 2/3. The
theory of linear programming shows that this is the case precisely when there is a prob-
ability vector bi such that b fPv -< 2/3. Translating back, we are seeking a probability
vector (hi),P.= such that

p

Iie(xi (, YlOv) <= 2/3
i=

for every Ve U. We call such a vector b a witness for the configuration. Ifa configuration
has a witness, it is discardable.

To summarise, what we have shown is that the following result implies
Theorem 2.
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a b c d e

3 2

FIG. 2. A discardable configuration.

THEOREM 5. There is afinite list ’ ofconfigurations with thefollowing properties:
(a) Every 5-thin poset (Y, <’) with at least two minimals, which is 2-separated in

an order -<, is a continuation ofsome configuration in ’;
b Every configuration in has a witness.
With the aid of a computer, we have indeed found such a list, consisting of some

38,372 configurations, thus proving Theorem 2.

3. An example. In this section, we give an example of a discardable configuration.
Figure 2, above, shows a poset (X, <). The five elements labelled 1, 5 comprise

the down-set F, with the labelling indicating the linear extension "<0. The configuration
((X, <), F, "<0) is 2-separatedmfor instance, c and d are two separators for (3, 4),
and and e act as separators for (2, 3). It can also be checked that the configuration
is 5-thin.

Note that every element ofK a, b, c, d, e } is incomparable with just one element
of F. Therefore the possible sets V( -< are subsets of { x e K x incomparable with n },
for n 3, 4, 5. Henceq/= {, {a}, {b}, {a, b}, {c}, {d}, {c, d}, {e} }.

Taking V= {a} as an example, v ffta is the event that a-< 5-< b.
There are eight linear extensions of F t.J a } consistent with v, namely, those with
5 top, then a, then the other four elements in some legal order. Thus we calculate
P(1 -< 2l,I’v)= 3/4, P(2 -< 31v)= 5/8, P(3 -< 4l,I’v)= 1/2, P(4 -< 5lv)= 1,
and P(3 -< 51v)= 1.

Table 1, below, gives the probabilities for a selection of these relations, conditioned
on other events v.

TABLE

j25 3/5 1/2 1/2 11/20
a} 5/8 1/2 31/48
b 5/8 1/2 31/48
a, b 5/8 1/2 31/48
c} 5/8 0 31/48
d} 5/8 0 31/48
c, d 5/8 0 31/48

{e} 0 1/2 7/12

V P(2 -< 3 ’I’v) P(3 -< 4 ’I’v) P(4 -< 51v) Combined
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The final column of this table gives the value

1/2P(2 -< 31v) + 1/2P(3 -< 4 I’I’v) + P(4 -< 5 Iv).

As is evident, this is less than 2/3 for every V tr. Therefore the probability vector
(1/2, 1/3, 1/6) acts as a witness for this configuration. The interpretation is that the
convex combination

1/2P(2 -< 3)+ 1/2P(3 -< 4)+ P(4 -< 5)

is less than 2/3 in any continuation ofthe configuration; so, in any continuation, at least
one of the three probabilities is less than 2/3.

4. The program. In this section, we give a very brief description ofthe programming
methods used to find the list &t’ mentioned above. A much fuller account, including a
listing of the programs used, appears in [11].

The basic approach is to try to "grow" a counterexample. Thus, given a configuration,
we try to find a witness for it. If we fail, we add another "layer" of vertices to the top of
the configuration, in all possible ways subject to the conditions that our configuration
be 5-thin and 2-separated. This gives us a list of new configurations, and we try to prove
that each of these is discardable by finding a witness. Each time we do find a witness for
a configuration, that configuration can be added to our list

A priori, there is no reason why this process should terminate: we might be able to
add new layers indefinitely, even if Theorem 2 is correct. However, if we can continue
indefinitely, then we would be constructing a "one-way infinite" 5-thin poser satisfying
the 1/3-2/3 condition, and it seems unlikely that such a poset can exist if Theorem 2
is true. In practice, we are eventually left with no new configurations, which suffices to
prove Theorem 5, and hence Theorem 2. In fact, we have even shown a little more. We
say that a poset is locallyfinite if there are only finitely many elements in each interval
(z x < z < y). Our method proves that, if a locally finite 5-thin poser with a minimal
element satisfies the /3-2/3 condition, then it is a total order.

We now describe the procedure we adopt for finding our list &t’ of configurations,
as in Theorem 5. The account below is somewhat simplified, and we have omitted certain
simplifying checks and tests that were implemented at various points of the process.
Refer to 11 for a full account.

We begin with the configuration Co ((X, <), F, "<1), where (X, <) consists of
two unrelated elements x and y, with x -< y and F . Clearly, every poset with at
least two minimal elements is a continuation of this basic configuration Co.

Now Co evidently has no witness, so we generate all the 5-thin, 2-separated contin-
uations ((Y, <’), -< of Co in which every element of Y is incomparable with either x
ory.

One of the key points is that there are only finitely many such continuations.
Indeed, if ((Y, <’), -< is a 5-thin continuation of any configuration ((X, <), F, "<0),
then all but at most eight elements of Y\X are above all the elements of X. (For a
proof, see Brightwell [1].) Thus there are only boundedly many 5-thin continuations
((Y, <’), -< in which every element of Y is incomparable with some element of X.
Also, every continuation ((Z, <"), -< of ((X, <), F, "<o) is also a continuation of one
of the boundedly many configurations ((Y, <’), X, -< ). The extra set of elements Y\X
should be considered the next layer of the poset.

Having generated all the 5-thin, 2-separated continuations ((Y, <’), -< of Co, we
consider the set V’ of configurations (( Y, <’), X, "<0). We know that, if there is a 5-
thin poset with at least two minimals satisfying the 1/3-2/3 condition, then it is a
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continuation of some configuration in /. We take each of the configurations C e dV in
turn, and try to find a witness for it. Ifa witness is found, the configuration Cis discardable,
and is put into the list &’. Ifa witness cannot be found, we form all the 5-thin, 2-separated
continuations of C whose every element is incomparable with some element of Y, and
repeat the process. Whenever we form a new configuration in this way, the specified
down-set is just the set of vertices in the original configuration.

Thus, in practice, we maintain a list /ofconfigurations "to be considered." Every
time we fail to find a witness for a configuration, that configuration is put on the end of
the list /’. When we later return to it, we put another layer of vertices at the top of the
configuration, in all possible ways, and try to find witnesses for each of these new con-
figurations.

If there were a 5-thin poser, with at least two minimals, that satisfies the 1/3-2/3
condition, then at all times it would be a continuation of some configuration in /;
eventually, we would construct this poset and would recognise it as a poset with no
witness, whose last added layer was empty. As we have already said, this did not occur,
and the list //was eventually found to be empty. At this stage, witnesses had been found
for 38,372 configurations.

We do not propose to provide more detail here regarding the algorithms used, but
we should mention a few facts concerning the implementation and running of the pro-
grams. These were written in BCPL as implemented on the IBM 3084Q at Cambridge
University. The operating system was Phoenix. The total CPU time was approximately
4 hours 30 minutes; the total program length exceeded 2,500 lines, although this was in
several independent programs. Refer to Wright [11] for more information about either
the algorithms or their implementation.

Let us instead discuss the implications of our technique and result for Conjecture 1.
First, let us stress that there is nothing special about 5-thinness. If, as we believe, there
is no finite or "one-way infinite" poset satisfying the /3-2/3 condition (except for total
orders), then our method of proof can, in principle, be used to prove Conjecture for
k-thin posets, for any fixed value of k. However, it seems inevitable that the size of the
list of configurations required would grow extremely rapidly with k. To give some idea
of the explosion involved, after one "round" of the algorithm, the number of configu-
rations in our list #///"to be dealt with" was 122: when we tried the same process for
k 6, after one round there were 16,536 configurations in ’. We can also expect the
number of rounds required to be greater for 6-thin than for 5.

Nevertheless, if a result along the lines of "no poset containing an element x in-
comparable with 13 others satisfies the /3-2/3 condition" could be proved, then Con-
jecture could perhaps be regarded as essentially solved. (Needless to say, we have no
idea how to prove such a result!)

The state of knowledge as regards Conjecture is rather curious. The only known
infinite posets satisfying the /3-2/3 condition are 4-thin semiorders with width at most
3. Indeed, it seems natural to believe that posers satisfying the 1/3-2/3 condition will
tend to have low width, be k-thin for some small k, and be "almost" semiorders. However,
the cases where the conjecture has been proved are those ofwidth 2, 5-thin, and semiorders.
The only significant result "from the other end," eliminating an unlikely class ofpossible
counterexamples, is that of Fishburn, Gehrlein, and Trotter [3] for height posets.
In view of these results, it would be highly surprising (at least to us) if Conjecture
were false.
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THE EQUIVALENT SUBGRAPH AND DIRECTED CUT POLYHEDRA
ON SERIES-PARALLEL GRAPHS*
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Abstract. The families of minimal directed cuts and minimal equivalent subgraphs of a directed graph
form a pair of blocking clutters. A directed graph is series-parallel if the undirected graph obtained on ignoring
directions is series-parallel. It is shown that the minimal equivalent subgraph inequalities completely describe
the directed cut polyhedron, and that the minimal directed cut inequalities completely describe the equivalent
subgraph polyhedron on strongly connected series-parallel graphs.
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1. Introduction. G (V, A) refers to a directed graph with node set V and arc set
A. The arc a directed from node u to v is referred to as a or (u, v). Given a directed
graph G (V, A), a subgraph ES (V, AF) is said to be an equivalent subgraph if ES
has a directed path between vertices u and v if and only if G does, for every pair u, v
V. The set of arcs C is said to define a directed cut if there is no directed path from u to
v in G (V, A C) for some pair ofnodes u and v in V. G is said to be strongly connected
if there is a directed path between every pair of nodes u and v. In this paper, we assume
that G is strongly connected. Given a set of nodes V

_
V, define A (V, V- V ), where

A(V, V V { (s, t) e A Is e V, V V }. The arcs in A (V1, V V define a
directed cut for =< Vl --< VI 1.

Given a finite set A, a clutter C is a family of subsets ofA such that no member of
contains another member of . Let , be the family of all minimal subsets of A

having a nonempty intersection with each member of . is called the blocking
clutter, or simply the blocker, of.

Let be the set of all minimal equivalent subgraphs of G, and C the set of all
minimal directed cuts of G. Clearly, o and C form a pair of clutters defined on the arc
set A.

PROPOSITION 1.1. o and Cform a pair ofblocking clutters.
Proof. We first show that, if G (V, A) is not an equivalent subgraph of G, then

there is a directed cut containing no arc from A. Since G is not an equivalent subgraph,
there is a pair of nodes u and v such that G has no directed path from u to v. Let V be
the set of nodes that can be reached from u by means of directed paths in (. Clearly,
v V. The set of arcs A (V, V- V is nonempty, since G contains a directed path
from u to v, and defines a directed cut in G that contains no arc from A.

On the other hand, consider an arc set C that is not a directed cut. The graph t
(V, A C) contains a path between every pair of nodes u and v in V and is thus an
equivalent subgraph that contains no arc from C.

This proves that o and C form a pair of blocking clutters.
Given a vector w indexed by the arc set A, we refer to the element of w corresponding

to arc a (u, v) as wa, w(a), or w(u, v). Given an equivalent subgraph ES (V, AF),
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define its incidence vector x(ES), where

ifa
x(ES)

0 otherwise.

Define the equivalent subgraph polyhedron PE( G), where

PE(G) conv x(ES)[ ES e g } + RA
+.

Given a directed cut C, define its incidence vector y(C), where

ifaC,
y(C)

0 otherwise.

Define the directed cut polyhedron PC(G), where

PC(G) =conv y( C) C 6 C } + R.
Define the polyhedra LPE(G) and LPC(G), where

LPE(G) [x R+

LPC( G) { y R
x >- 1VCeC},a_C

, Ya ->- VES V, AE)
a-AE

In general, both LPE(G) and LPC(G) have fractional vertices. From the results of Fulk-
erson [3] on blocking polyhedra, the following result holds.

PROPOSITION 1.2. Each vertex ofPE(G) (PC(G)) is a vertex ofLPE(G) (LPC( G)),
and each integer vertex ofLPE(G) (LPC( G)) is a vertex ofPE( G) (PC(G)). Thus

PE( G) conv x LPE(G) x integer },

PC(G) =conv y LPC(G) y integer }.

Ifwe assign nonnegative weights Wa for each arc in A, the minimum weight equivalent
subgraph problem (MWES) is finding a minimum weight member of , and the mini-
mum weight directed cut problem (MWDC) is finding a minimum weight member of
C. MWES is NP-hard in general (see Garey and Johnson [4]). Thus it is unlikely that
a complete inequality description ofPE(G) can be obtained in general. It can be solved
in polynomial time on series-parallel graphs (Richey, Parker, and Rardin [6]). MWDC
can be solved in polynomial time using flow techniques.

The clutter C(o) is said to have the weak max-flow rain-cut property (see Seymour
[7]) if PC(G) LPC(G) (PE(G) LPE(G)).

In the next section, we show that, for connected series-parallel graphs, PE(G)
LPE(G) and PC(G) LPC(G); i.e., both clutters C and o have the weak max-flow min-
cut property. This is not true even for the complete directed graph on four nodes. Thus,
in some sense, the above result is the best possible one. Consider the complete directed
graph KD4 on four nodes, shown in Fig. 1.1.

Consider the vector , where

(12) (23) (34) (41) (24) (42) (13) (31) 1/2.
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FIG. 1.1

(a) is zero for all other arcs. is a fractional vertex of LPE(KD4). Similarly, consider
the vector 97, where

37(12) )7(21) )7(14) 37(41)= 37(31) 37(34) 37(43)= 37(42)

37(3, 2)

97(a) is zero for all other arcs. 37 is a fractional vertex of LPC(KD4).
At this stage, we mention that our definition of directed cuts is different from the

"directed cut" defined by Lucchesi and Younger 5 ]. For =< V1 --< V 1, Lucchesi
and Younger define A Vl, V VI to be a "directed cut" if A(V- V, V )l 0. Using
this definition, they show that the family of "directed cuts" has the max-flow min-cut
property (see [7]) for all connected directed graphs G.

2. PE(G) and PC(G) on series-larallel gralhs. UG (V, E) refers to an undirected
graph with edge set E and node set V. The undirected edge between u and v is referred
to as u, v ]. UG is a series-parallel graph if it can be obtained from a forest by repeatedly
adding an edge in parallel to an existing one or by replacing an edge by a path (Duffin
[2]). The following characterization of series-parallel graphs is also well known.

PROPOSITION 2.1. A connected series-parallel graph with no loops or nodes ofdegree
one either contains a node ofdegree two or two parallel edges.

This result can be extended to a form that is more suitable for our proof.
PROPOSITION 2.2. A connected series-parallel graph with no loops or nodes ofdegree

one contains one ofthe configurations ofFig. 2.1, below.
Proof. Let UG be a connected series-parallel graph that is minimal, with respect to

the property that it does not contain loops, nodes of degree one, or any one of Figs.
2.1 (a)-2.1 (d). By Proposition 2.1, it contains a node of degree two. Contract any ofthe
edges incident to this node to get the graph UG’. By minimality of UG, one of Figs.
2.1 a )-2.1 (d) must arise in UG’. IfFig. 2.1 (a) arises in UG’, then Fig. 2.1 (c) was present
in UG. If Fig. 2.1 (b) arises in UG’, then it was also present in UG. If Fig. 2.1 (c) arises
in UG’, then either Fig. 2.1 (b) or Fig. 2.1 (d) was present in UG. If Fig. 2.1 (d) arises,
then Fig. 2.1 (b) was present in UG. This contradicts the minimality of UG. The result
thus follows.

(a) (b) (c) (d)

FIG. 2.1
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Given any directed graph G (V, A), we can construct the corresponding undirected
graph UG (V, E), where edge [u, v] e E if either (u, v) eA or (v, u) eA. We say that
G is series-parallel if the corresponding undirected graph UG is series-parallel.

Assume that G (V, A) is a connected, loopless directed graph such that (u, v) e
A if and only if (v, u) A. G is clearly strongly connected. The main result of this paper
is stated as Theorem 2.1.

THEOREM 2.1. For a connected, loopless series-parallel directed graph G V, A
such that (u, v) A ifand only if(v, u) A, we have that PE(G) LPE(G).

Proof. Let G (V, A) be a connected, loopless series-parallel directed graph minimal
with respect to the property that LPE(G) has a fractional vertex . By Proposition 2.2,
G has one of the configurations shown in Fig. 2.2, below.

In the following proof, we show that if G contains any of the above configurations
(Fig. 2.2), then there exists a minor G’ of G such that LPE(G’) also has a fractional
vertex. The proof is presented as a sequence of five propositions, one for each of Figs.
2.2(a)-2.2(e).

PROPOSITION 2.3. IfG contains Fig. 2.2(a), set G’ (V’, A’), where V’ V-
{ u2 }, A’ A { (u, u), (u, u }. The polyhedron LeE(G’) contains a fractional
vertex.

Proof. Since Y is a vertex ofLPE(G), we must have that Y(u, u2) Y(u2, u) 1.
x’, the restriction of Y to A’, is a fractional vertex of LPE(G’). This contradicts the
minimality of G.

PROPOSITION 2.4. IfG contains Fig. 2.2(b), there exists a minor G’ ofG such that
LPE( G’) has afractional vertex.

Proof. Let a and a be the two arcs from u to u and b and b, the two arcs from
u to u. Since is a vertex of LPE(G), one of (a), $(a) and one of (b), (b_)
must be zero. Without loss of generality, assume that (a) (b) 0. Form G’
(V, A’), where A’ A { a, b }. x’, the restriction of $ to A’, is a fractional vertex of
LPE( G’),

PgOVOSON 2.5. IfG contains Fig. 2.2(e), there exists a minor G’ ofG such that
LPE( G’) has a fractional vertex.

(a) (b) (c)

(d) (e)

FG. 2.2
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Proof. Without loss of generality, we can assume that Y(u,, u2) >= Y(u2, u3),
(u3, u4). If Y(u3, u2) > Y(u2, u, ), define Y, where

(a) ifaA-{(u2,u,),(u3, u2)},
(a)= (u3,u2) if a=(u2,u),

92(u2, u,) ifa=(u3,u2).

is also a vertex of LPE(G). We can perform a similar transformation if (u4, u3) >
(u, u ). Thus we can assume that ( u, u >_- (u3, u), (u4, u3).

Contract the arcs u, u) and (ua, u to obtain G’ (V’, A’). Let x’ be the restriction
of to A’. We claim that x’ is a fractional vertex of LPE(G’). Assume not. Then we
can write

(2.1) x’= Z aiX} %- ,
Awhere c >= 0, ci 1, 6 s R+, and each x is the incidence vector of a minimal

equivalent subgraph of G’. All minimal equivalent subgraphs of G’ have one of the
following configurations; see Fig. 2.3.

Define

3’, { Z cl x has Fig. 2.3(a) },

3’2 { c; x has Fig. 2.3 (b) },

3’3 ail x has Fig. 2.3(c) ),

y4 { cil x has Fig. 2.3(d)}.

Without loss of generality, we can assume that 3’4 =< 3’3. In fact, we can assume
that 3’4 0. If 3r4 > 0, take a set $3 of solutions x containing Fig. 2.3(c) such that
Z,s3 a; >_- 3’4 and Zs3-i* a; =< "4. The solution i* is treated as two different solutions,
i*(1) and i*(2) with weights ai*(l "4 iS3-{i*} ai and ai*(2)
respectively. The solutions in the set $3 { i* } U { i*( } are transformed to
2i, where

x}(a) for aeA’- {(u3,uz),(u3,u4)},
2i(a) for a (u3, u4),

0 otherwise.

(a) (b)

(c) (d)

FIG. 2.3
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Take the solutions containing Fig. 2.3(d) (the total weight of such solutions is "Y4) and
transform them to i, where

x(a)

.i( a

0

The two transformations are shown in Fig. 2.4. For all other solutions, set ; x.
Define q 71 + 3’4, "2 3’2 + 74, "3 3’3 3’4, /4 0. We can write x’ Z a + di.
Thus we assume that ’Y4 0.

Given x LPE( G’) in (2.1), form ,i LPE( G) as follows:

x-/(a)

x(a)

for a cA’- { (u3, U4), U3, U2) },
for a (u3, u2),

otherwise.

ifa eA {(u, u), (u, u)},
ifa (u, u2) and x has Fig. 2.3(a) or Fig. 2.3(c),

ifa (ul, u2) and x has Fig. 2.3(b),

ifa (u2, u) and x has Fig. 2.3(b) or Fig. 2.3(c),

ifa (u2, ul) and x has Fig. 2.3(a).

Each 92i is the incidence vector of an equivalent subgraph of G and

(2.2) .2= E Olii’-,

where a a for a e A {(u, u2), (u2, u)} and a -- 0 for a e {(u, u2), (u2, u)}.
Thus is not a vertex of LPE(G), contradicting our assumption. This shows that, if
is a vertex of LPE(G), then x’ is a vertex of LPE(G), contradicting the minimality of
G. Thus G does not contain Fig. 2.2(c). V1

PROPOSITION 2.6. IfG contains Fig. 2.2(d), there exists a minor G’ ofG such that
LPE( G’) has afractional vertex.

Proof. First, we show that 92a 0 for at least one arc a in T, where T
{(Ul, U2), (U2, Ul ), (Ul, U3), (U3, Ul ), (U2, U3), (U3, U2)}. Assume not. Define and
922, where

(a) for aeA- T,

;?i(a) .(a)+(-1)ie fora-{(u,u2),(u2,u3),(u3,u)},
.(a)--(--1)ie fora-{(u2,u),(u3,u2),(Ul,U3)}

for 1, 2. , 2 LPE(G) for e sufficiently small and ( + 922)/2. Thus 92a 0
for at least one arc a T.

FIG. 2.4
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To prove Proposition 2.6, without loss of generality, there are the following two
distinct cases to be considered.

Case (2.6.i). We have that Y(u, u2) 0. In this case, Y(u3, u2) 1, since
-9( U l, U2 -]" -( U3, U2 -- 1, and is a vertex of LPE(G). Define 3 and )4, where

(a) for a A {(u_, u), (u2, u3), (u3, u)},

i(a) .f(a)+(-1)ie fora- {(u2, u3),(u3, u)},
(a) (-l)ie for a (u2, u)

for 3, 4. Both 3, 4 LPE(G) for e sufficiently small if (u2, u), (u2, u3),
(u3, u) > 0. Furthermore, .f (3 + 4)/2. Thus at least one ofY(u, u), (u2, u3)
and ( u3, u must be zero. We resolve each of the following three subcases separately.

Subcase (2.6.i.a). We have that( u2, u 0. Delete u, u2) and u, u to obtain
G’ (V, A’). x’, the restriction of to A’, is a fractional vector of LPE(G’).

Subdase (2.6.i.b). We have that (uz, u3) 0. In this case, (u2, u) and
(u3, u) 0. Form G’ (V’, A’) by deleting node uz and all incident arcs. x’, the
restriction of to A’ with x’( u3, u 1, is a fractional vertex of LPE(G’).

Subcase (2.6.i.c). We have that (u3, u 0. If (u2, u3) > 0, we must have that
( u2, u3) + ( u2, u 1. Form G’ (V’, A’) by deleting node u2 and all incident arcs;
i.e., V’ V- { U2 }, A’ A { Ul, u2), u2, Ul ), u2, u3), u3, u2) }. See Fig. 2.5. Define
x’, where

f(a) foraA’-{(u3,u)},
x’(a)=

2(u_,Ul) for a=(u3,u).

Clearly, if is a fractional vector, so is x’. We now show that x’ is a vertex of LPE(G’).
Assume not. Then we can write x’ ax + t, where each x is the incidence vector
of a minimal equivalent subgraph of G’, ai >= O, ai 1, a 0 for all a e A’. There
are q =< ( u2, u solutions x with x (u3, u (this refers to the set of such solutions
with total weight "r, as described in the proof of Proposition 2.5). In each such case,
define i, where

x(a)

)i(a)

0

For (u2, u 3’ of the remaining solutions x (this refers to a subset of the remaining
solutions with total weight (u2, u 3’), perform the same transformation as above
to get x-. For the remainder, define i, where

for aA’ { u3, u }
for a { (u3, u2), (u2, u },
otherwise.

x(a) for aeA’,

i(a) for a e { (u3, u2), (u2, u3) ),
0 otherwise.

FIG. 2.5
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Each ?i is the incidence vector of a minimal equivalent subgraph of G and
Z aii + 6, where 6a 6a for a e A’, 6a >-- 0 for a e A A’. Thus is not a vertex of
LPE(G), contradicting our assumption. This implies that, if is a vertex of LPE(G),
then x’ is a vertex of LPE(G’), contradicting the minimality of G.

This eliminates Subcase 2.6.i.c ). Since Subcases 2.6.i.a)-( 2.6.i.c have been elim-
inated, we cannot have that (ul, u2) 0. Thus (ul, Ua) > 0. By symmetry, we must
have that -(U2, Ul), )(U2, U3), )(U3, /’/2) > 0.

Case (2.6.ii). We have that ( ul, u3) 0. Note that

(2.3) )( Ul, U2) "1" ( U3, U2) -- 1,

(2.4) -9( U2, Ul -[- -’( U2, U3 -- 1.

Form G’ (V, A’), where A’ A { u, //3), (/’/3, Ul }. Define the vector x’, where

(a)

x’(a) (u2,u)+.f(u3,u)

.,( U3, U2)’-[",( U3, Ul)

for aeA’- { (u3,//2), U2, Ul },
for a U2, U1),

for a (u3, u2).

If x’ is an integer vector, then (Ul, u2), )( u2, u3), )( u2, Ul q’- )( u3, Ul ), )(/,/3,/,/2) -(u3, ul { 0, }. If any of the above is zero, we have Case (2.6.i). If all are 1, we have
that (u, u2) (u2, u3) and

(2.5)

(2.6)

.( U2, Ul -[- -’( U3, Ul 1,

.(/t3, U2 -[- -’( U3, Ul 1.

If 0 < Y(u3, Ul < 1, define 5 and 6, where

Y(a)

x-,.(a) Y(a) -I- (-1)ie,

.f(a) (-1)i$

fora eA {(u2, u), (u3, u2), (u3, u)},
for a e { (u2, u ), (u3, u2) },
for a (u3, u)

for 5, 6. Both 5 and6 LPE(G), andY= (5 + 6)/2. Thus cannot be a vertex
unless (u3, u 0. Then, however, from (2.5) and (2.6), we have that (u2, ul
(u3, u2) 1; i.e., is an integer vector. Thus we can assume that x’ is a fractional
vector. Now we show that x’ is a vertex of LPE(G’).

Assume not. Then we can write x’ Z aix + 6, where Ol O, Z Oti 1, 6a -- 0
for all a e A’, and each x is the incidence vector of a minimal equivalent subgraph of
G’. All minimal equivalent subgraphs of G’ have one of the following configurations,
shown in Fig. 2.6. Define

1 { , ai[ x has Fig. 2.6(a) },

3a { , ail x has Fig. 2.6(b) },

/33 { Z a[x has Fig. 2.6(c) },

/34 { a [x has Fig. 2.6(d) },

/5-" { Z Oi [X has Fig. 2.6(e) }.
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(a) (b) (c)

(d) (e)

FIG. 2.6

With an argument similar to that in the proof of Proposition 2.5, we can assume that
either 4 0 or 5 0. Note that/ +/2 +/3 + 4 - 5 1. From (2.3) and (2.4),
we thus have that

(2.7) ,(Ul, U2) (1 "+" 3 q- 4) --- 2 q- 5 --’(U3, U2),

(2.8) (U2, U3)--(1-" 3 "" 5) 2 "]- 4 -( U2, Ul ).

If 3 -- -(U3, Ul), convert a subset of solutions x with Fig. 2.6(c) of total weight
(u3, u to fi, where

(2.9)

x(a) foraeA’- {(U3,U2),(U2,Ul)},
i(a) for a (u3, u),

0 otherwise.

Each fi is the incidence vector of a minimal equivalent subgraph of G and f
Oli " , where a a for a e A’, a 0 for a A A’. In this case, 7 is not a vertex

of LPE(G), contradicting our assumption.
Thus we have that 3 < -( U3, Ul ). In this case, convert the solutions x with Fig.

2.6(c) of total weight 3 to -fi, as in (2.9).
Without loss of generality, assume that f( u2, u _>- f( u3, u2). Convert a subset of

solutions x with Fig. 2.6(b)of total weight r/ max {0, 2 .f(u2, u)} to i, where

x(a)

Y(a)

0

for aA’- { u, u), u2, u ), u2, u3), u3, u2) },
for a{(u,u),(Uz,U3),(u3,u)},
otherwise.

This transformation is shown in Fig. 2.7.
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FIG. 2.7

Let TI2 max { 0, t32 2(u3, U2) TI1 }. If TI2 > 0, convert a subset of the remaining
solutions x} with Fig. 2.6(b) of total weight TI2 to 2i, where

x}(a) fora_AP-{(Ul,U2),(u3,u2),(u3,ul)},
.i(a) for a-{(u,,u2),(u3,ul)},

0 otherwise.

This transformation is shown in Fig. 2.8.
If 35 0, let TI3 max { 0, 32 + 4 2(u2, ul TI1 }. Clearly, TI3 --< 4. If TI3 > 0,

convert a subset of solutions x} with Fig. 2.6(d) of total weight TI3 to 2i, where

x}(a) fora_A’-{(u2, ul),(u2, u3)},
2i(a) for a (u2, u3),

0 otherwise.

This transformation is shown in Fig. 2.9.
If/4 0, let TI4 max 0, 2 +/35 2(u3, u2) Ti1 TI_ }. Clearly, TI4 /5. If

TI4 > 0, convert a subset of solutions x with Fig. 2.6(e) of total weight Tin to -)i, where

x(a) fora-A’-{(u3, u2),(ul,u:z)),
2i(a) fora=(u,u2),

0 otherwise.

This transformation is shown in Fig. 2.1 0.
Each 2i is the incidence vector ofa minimal equivalent subgraph ofG. Furthermore,

by (2.7),

and, by (2.8),

+ 3 + 3 + n + n3 --< (u, u3),

t33 + TI + TI2 --< ( u3, u );

since 33 < (u3, u),/3 + 32 --< (u3, u2) + (u3, u) and max {0, 2 (u3, u2)}
TII + TI_. Thus aii + -, where a >= 0 for all a A. This implies that is not a

FG. 2.8
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FIG. 2.9

vertex of LPE(G), contradicting our assumption. This shows that, if 2 is a fractional
vertex ofLPE(G), x’ must be a fractional vertex ofLPE(G’), contradicting the minimality
of G.

Thus we have shown that Case (2.6.ii) can also be resolved. As a result, Fig. 2.2(d)
cannot be present in G. if]

PROPOSITION 2.7. IfG contains Fig. 2.2(e), there exists a minor G’ ofG such that
LPE( G’) has a fractional vertex.

Proof. With an argument similar to that in the proof of Proposition 2.6, we can
show that at least one of the arcs

a e { u, u), u, u ), u, U4), U4, U ), (/’/2, U3), U3, U2), U3, U4), U4, U3) }
has 2(a) 0. Without loss of generality, assume that 2(Ul, u2) 0. This implies that
2( u3, u2) 1. Delete u2 and all incident arcs to get G’ (V’, A’), where V’ V { u2 }
and A’ A {(Ul, u2), (u2, Ul), (u3, u2), (u2, u3)}. Define x’, where

2(a)
x’(a)

2(a)+(u2, ul)

Note that, in vector 2, we have that

for a eA’- { u3, u4), u4, Ul },
for

(2.10) 2(u2, Ul) - 2(u2, u3) 1,

(2.1 2( Ul, U4) -- 2( U3, U4) 1, ( U4, Ul 21- 2( U4, U3 1.

If x’ is an integer vector, then 2( Ul, u4), 2(u4, u3), 2(u4, Ul + 2( u2, u ), 2(u3, u4) +
2(u2, u)e { 0, 1}. If 0 < 2(u2, u) < 1, then 0 < 2(u, u3), 2(u4, Ul), 2(u3, u4) < 1,
and both (Ul, u4) and 2( u4, u3) must be 1. Define the vectors 27 and 28, where

2(a) for aeA- {(U2,Ul),(U2, U3),(U3,U4),(U4,Ul)},
2i(a) 2(a)+(-1)ie forae{(ua,u3),(u3,u4),(u4,u)},

2(a)-(-1)ie fora=(ua,u)

for 7, 8. Both 927,928 e LPE(G) for e small enough and 92 (927 + 928)/2. Thus we
cannot have that 0 < 92(u2, U < 1. This shows that, if x’ is an integer vector, so is 92.
Thus, if 92 is a fractional vector, so is x’. Now we show that x’ is a vertex of LPE(G’).

FIG. 2.10
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(a) (b) (c)

(d) (e)

FIG. 2.11

Assume not. Then we can write x’ Z aixi + 6, where ai > O, Z, ai a >" 0
for all a e A’, and each x is the incidence vector of a minimal equivalent subgraph of
G’. All minimal equivalent subgraphs of G’ have one of the following configurations in
Fig. 2.11.

Define

01-" { Z ai[ X has Fig. 2.11 (a) },

02-- { ai[ x has Fig. 2.11 (b) },

03 { , ailx has Fig. 2.11 (c) },

04 { Z ai[ x has Fig. 2.11 (d) },

0 { a[ x has Fig. 2.11 (e) }.

As before, we can assume that either 04 0 or 0 0. Note that

01 +02+03+04-[’05 1.

From (2.11 ), we thus have that

(2.12) .( Ul U4 O -[- 03 "[" 04 . 02 -[" 05 .( U3 U4

(2.13) Y(u4, u3)-(O +03+O)_(02+04)-Y(u4, u).

If 03 >-- f(u2, u), convert a subset of solutions x with Fig. 2.11 (c) of total weight
-9( U2, Ul to fi, where

x(a)

(2.14) (a)

0

This transformation is shown in Fig. 2.12.

for aA’- { u3, U4), U4, Ul) },
for a e { (u3, u2), (u2, u },
otherwise.
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FIG. 2.12

For all other solutions x;, form $i, where

x(a) for aeA’,

i(a)= for aE{(U3,U2),(U2,U3)},
0 otherwise.

Each ?i is the incidence vector of a minimal equivalent subgraph of G and

Oli "- , where a 0 for a EA. In this case, Sis not a vertex ofLPE(G), contradicting
our assumption.

Thus we have that 03 < 7( u2, u ). In this case, convert all the solutions x; with Fig.
2.1 (c) (of total weight 03) to ?i as in (2.14).

Without loss of generality, assume that ?(u4, u >= ?(u3, u4). Convert a subset of
solutions x with Fig. 2.11 (b) of total weight/Zl max {0, 02 (u4, Ul) } to ?i, where

x(a) foraat- {(U4, U3),(Ul,U4),(U3,U4),(U4, Ul)},

)i(a) for a-{(Ul,U4),(U4, U3),(U3,U2),(u2, Ul)},
0 otherwise.

This transformation is shown in Fig. 2.13.
Let u2 max { 0, 02 $(u3, u4) #1 }. If u2 > 0, convert a subset of the remaining

solutions x with Fig. 2.1 (b) of total weight #2 to i, where

x(a) for aeA’- ((U3,U4),(Ul,U4)),
:i(a)= for a{(Ul,U4),(u3,u2),(u2,ul)},

0 otherwise.

This transformation is shown in Fig. 2.14.

FIG. 2.13
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FIG. 2.14

If 05 0, let u3 max { 0, 02 -- 04 Y(//4, Ul /21}. Clearly, /23 04" If/23 > 0,
convert a subset of solutions x with Fig. 2.11 (d) of total weight/23 to 9i, where

x}(a) for a.A’-{(u4,ul),(tt4,tt3)},
2i(a) for a e { u4, u3), u3, u2), u2, Ul },

0 otherwise.

This transformation is shown in Fig. 2.15.
If 04 0, let /24 max { 0, 02 -- 05 2(//3, U4) /21 /22 }. Clearly, /24 05. If

/24 > 0, convert a subset of solutions x} with Fig. 2.11 (e) of total weight/24 to )i, where

x}(a) forac=A’--{(Ul,U4),(lt3,u4)},
x-i(a) fora-{(ul,u4),(u3,u2),(u2,ul)},

0 otherwise.

This transformation is shown in Fig. 2.16.
Note that either/23 or/24 is zero, and that 03 +/21 +/22 +/23 + /24 2(//2, Ul). Let

/25 2(u2, Ul (03 +/21 +/22 +/23 +/24). For a subset of the remaining solutions x}
of total weight/25, form 97,., where

x}(a) for a_A’,

2i( a for a - { U3, U2 ), U2, Ul

0 otherwise.

For the remaining solutions x of total weight (u_, ul ), form i, where

x (a) for a A’,

i(a for a e { u3, u Uz, U3 }
0 otherwise.

FIG. 2.15
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FIG. 2.16

Each f; is the incidence vector of a minimal equivalent subgraph of G. Furthermore,
by (2.12),

and, by (2.13),

01 + 03 -- 05 q-/21 q-/23 - )( U4,/’/3 )"

Thus we have that Y 7] aiYi + , where a 0 for all a e A. This implies that Y is not
a vertex of LPE(G), contradicting our assumption. Thus, if Y is a fractional vertex of
LPE(G), x’ must be a fractional vertex of LPE(G’), contradicting the minimality of G.

This shows that Fig. 2.2 (e) cannot be present in G.
Propositions 2.3-2.7 contradict the minimality of G in the proof of Theorem 2.1.

This proves Theorem 2.1. E]

Remark 2.1. In the case where t (V, ) is any directed series-parallel graph that
is strongly connected, it is a subgraph of a graph G (V, A) of the form assumed
in Theorem 2.1. If C is a directed cut in G, then C {A . } is a directed cut
in (. All directed cuts in t can be obtained in this manner, starting with all directed
cuts in G. Thus LPE() is the intersection of LPE(G) with the set {xl Xa 0 for all
a e A }. Since LPE(G) has only integer vertices, so does LPE(). This proves the
following corollary.

COROLLARY 2.1. For any strongly connected directed series-parallel graph G, we
have that LPE(G) PE(G).

From Fulkerson’s results on blocking polyhedra 3], it thus follows.
COROLLARY 2.2. For any strongly connected directed series-parallel graph G, we

have that LPC( G) PC(G).

3. Conclusions. In this paper, we give a complete characterization of PE(G) and
PC(G) for connected series-parallel graphs. A complete characterization of PE(G) is
unlikely to be found for general graphs. Various families of facet-defining inequalities
for this polyhedron are studied in [1]. As in the undirected case, the minimum directed
cut can be found in polynomial time. We are still far from a complete description of
PC(G), however. In comparison to the undirected case, there is one interesting point.
Undirected cuts and spanning trees form a blocking pair of clutters. Neither clutter,
however has the weak max-flow min-cut property, even if the graph is a triangle. In
contrast, the clutter of directed cuts has the weak max-flow min-cut property as long as
the graph is series-parallel.

Acknowledgments. The author thanks the referees for a careful reading ofthe paper
and for several valuable suggestions.
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COVERING GRAPHS BY CYCLES*

GENGHUA FANf

Abstract. Let G be a bridgeless graph with m edges and n vertices. It is proved that the edges of G can be
covered by circuits whose total length is at most m / (r/r )(n ), where r is the minimum length of an
even circuit (of G) of length at least 6 (r , if there is no such circuit). The proof suggests a polynomial-
time algorithm for constructing such a cover.

Key words, covering, Eulerian subgraphs, graph algorithms, integer flows
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1. Introduction. Graphs are finite, undirected, and may have loops or multiple edges.
We denote the vertex set and edge set of a graph G by V(G) and E(G), respectively.
Sometimes we identify a graph with its edge set. An edge is contracted if it is removed
and if its ends are identified. A component ofa graph G is a maximal connected subgraph
of G; a bridge of G is an edge whose removal leaves a graph with more components than
G. A graph without bridge is said to be bridgeless. A cycle is a graph in which every
component is an Eulerian graph; a trivial cycle is one without edge. A circuit is a minimal
nontrivial cycle. A circuit decomposition of a cycle is a set of edge-disjoint circuits whose
union is the cycle. The length of a cycle is the number of the edges it contains. A cycle
is even if its length is even.

A collection of cycles of a graph G covers G if each edge of G is in at least one of
the cycles; such a collection is called a cycle cover of G. The length of a cycle cover is

the sum of lengths of the cycles in the cover. The shortest cycle cover problem is to find

a cycle cover of shortest length. Let cc(G) denote the minimum length of a cycle cover
of a bridgeless graph G. Itai et al. [5] conjectured that the problem of determining

whether cc(G) <= k is NP-complete. Nevertheless, polynomial-time algorithms have been
developed to give good upper bounds for cc(G). There are two types of upper bounds
for cc(G). One is in terms of E(G)I, and the other in terms of both E(G)I and
F( G)I. We only consider the second type in this paper. If G is the graph obtained from

a tree by replacing each edge by an odd number of new edges with the same ends, then

cc(G) E(G)I + F(G)I 1. Itai and Rodeh [6] asked whether it is true that

cc(G) -< E(G)I + F(G)I for every bridgeless graph G. In the same paper, they

proved that cc(G) -< E(G)I / (2 log F(G)I)I F(G)I. A breakthrough, relying on

Jaeger’s 8-flow theorem [7], was made by Itai et al. [5], who proved that cc(G) <=
E(G)I / 61V(G)I 7. This bound was improved to E(G)I + -(I V(G)I 1)

by Alon and Tarsi [I] and Bermond, Jackson, and Jaeger [2], and then to [E(G)I +
(IV(G)I by Fraisse [4 ]. We prove the following theorem.

THEOREM 1.1. Let G be a bridgeless graph; then cc( G) <-_ E( G) + (r/r
(IV(G)[ ), where r is the minimum length ofan even circuit (ofG) oflength at least
6 (r c, ifthere is no such circuit).

An immediate consequence of Theorem 1.1 is the following theorem.
THEOREM 1.2. Let G be a bridgeless graph; then cc(G) <= IE(G)I + (I V(G)I 1).

2. Proof of Theorem 1.1. The number of cycles used in a cycle cover is significant.
It is known (see [7 ]) that a graph can be covered by two cycles if and only if it has a
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nowhere-zero 4-flow, and by three cycles if and only if it has a nowhere-zero 8-flow. The
covers given in [6] use / [log n/cycles, and all the covers in [1], [2], [5] use four
cycles, while the covers given by Fraisse 4 and by Theorem 1.1 need only three cycles.
Our method is different from that used by Fraisse 4 ]. The proofofTheorem 1.1 involves
Seymour’s 6-flow theorem [9] and uses Younger’s algorithm [11] for constructing a
nowhere-zero 6-flow. Aflow in a graph G with an orientation is an integer-valued function
on E(G) such that, for each vertex v, the sum of (e) over all edges e with head v is

equal to the sum over all edges e with tail v. If there is a positive integer k such that
-k < (e) < k for every e e E(G), then is called a k-flow of G. The support of a flow
4 of G is defined by S() {e E(G): 4fie) 4:0 } 4 is called nowhere-zero if S(4)
E(G). A fundamental result on flows is the following one due to Tutte [10]. It states
that any flow can be reduced modulo rn for any positive integer m.

LEMMA 2.1. IfG has aflow ok, then, for any integer k > O, G has a k-flow ok’ such
that ’(e) (e) (mod k) for every e E( G).

A circuit-chain is a sequence (C, C2, Ct) of edge-disjoint circuits such that
[V(Ci) f’) V(Cj)[ if [i-j[ and [V(Ci) fq V(Cj)[ 0 otherwise. By this
definition, we have the following proposition.

PROPOSITION 2.2. If C, Cz, "", Cl) is a non-null circuit chain, then the number
ofdistinct vertices ofthe chain is Z ([C/[ + 1.

In Younger’s algorithm [11] for constructing a nowhere-zero 6-flow, if we choose,
in each step, the cycle that contains the two ends of the "link pair" to be minimal, then
the cycle is either a circuit chain or a single vertex. Therefore the following lemma es-
sentially follows from Younger’s algorithm [11].

LEMMA 2.3. Every bridgeless graph G has a cycle F, each ofwhose components is
a circuit chain, and a 3-flow p such that E(G)\E(F) =_ S(p).

Remark 2.4. Lemma 2.3 can also be obtained without using Younger’s algorithm.
In that case, we first transfer G to a 3-edge connected graph G’, then apply the method
used by Seymour [9] to find a cycle F’, each component of which is a circuit chain in
G’, and finally convert F’ into the required cycle F in G.

DEFINITION 2.5. Let be a flow of G. Define Eoad(4) (Eeven(b)) to be the set of
edges e with 4(e) odd (even). By the definition of a flow, Eoda() is a cycle of G.

LEMMA 2.6. Suppose that 4 is a nowhere-zero 6-flow ofG and { C1, C2, Ct }
is a circuit decomposition ofEoaa(4). Then G has a 4-flow o such that Eeve,() --- S(o)and S(o) f3 C;[ >- 1Ci[ <= <= t.

Proof. Let C C1, C2, Ct } and let f be a 2-flow of G with S(f) C. Set

Ax {e e C: (e) + Xf(e) -= 0 (mod 3) }.
Since (e) e { _+ 1, _+3, _+5 } for e e C, it is easy to check that { A0, A2, A-2 } is a partition
of C. Therefore we may choose 0 e { 0, 2, -2 } such that [Ao[ >= 1/2[C[. Then

I{eC" O(e) + #f(e) 0 (mod 3)) --< lCI.
Since C is an arbitrary circuit in the circuit decomposition, we may apply the above
arguments to each C;, -< -< t. Suppose thatf is a 2-flow of G with S(f) Ci. Then
we have Oi e 0, 2, -2 } such that

(2.1) ]{eeCi’4(e)+Oif(e)qO(mod3)}[ =<-lf/I, <=i<=t.

Let b’ b + Z ti=l Oifi. Then b’ is a flow of G. Applying Lemma 2.1 with k 3 to b’,
we obtain a 3-flow ft. We observe that, ifee Eeven(), thenf(e) 0 for all i, -< -< t,
and so ’(e) q(e) e { +2, +4 }, which implies that if(e) (=-4(e)mod 3) is nonzero.
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Thus Eeven((]) S(Ip). For Eodd() we obtain from (2.1) that

(2.2) S(P) r) C;I --< lCil, <= <= t.

In the definition of Ax, if we replace b(e) by (e) and mod 3 by mod 4, then, since
p(e) e + 1, +2 } for e e S() f) G, we obtain with ti e { 1, 1, 2 } a partition of C such
that

(2.3) I{eeC’P(e)+uif(e)O(mod4)}l--<1/21S()Cil, <=i<=t,

where we have used the fact that, for every e e C;\S(),

p(e) + #if(e) #if(e) 0 (mod 4), =< -< t.

Let ’ k + = z;f. By applying Lemma 2.1 with k 4 to ’, we obtain a 4-flow 99
with Eeven(4) G S(99), and, by (2.3),

]{e Ci" 99(e) 0}1 =< 1/2] S() f3 Ci], _-< i-< t.

Using (2.2),

Therefore

I{e C 99(e) 0}1 =< lCil, l<=i<=t.

C6 F’,

(2.5)

Set
IG. ca cI -< 1/21cI, j 1, 2.

P= {CF’: ICI isodd} and Q= {CF’: ICI iseven}.

IS(so) n c,I >_- lql, =< =< t,

which ends the proof of Lemma 2.6. D
The proof of the proposition below is easy, and the details can be found in 3 ].
PROPOSITION 2.7. IfG has a nowhere-zero 4-flow, then G can be covered by two

cycles Z and Z2 with IZ,[ + IZ2I <= IE(G)I / V(G)I- .
Proofof Theorem 1.1. By Lemma 2.3, G has a cycle F, each of whose components

is a circuit chain, and a 3-flow such that E(G)\E(F)
_

S(p). Let f be a 2-flow
of G with S(f) F and define b 2b + f. Then 4) is a nowhere-zero 6-flow of G with
Eoda(4) F. Decompose F into edge-disjoint circuits C, C2, Ct. By Lemma 2.6,
we have a 4-flow 99 such that Eeven(4)) - S(99) and S(99) f) Ci[ 1 Ci[, <= <= t.
Since S(99) N Cil is an integer, we have, for C;[ -< 4, that S(99) f’) Ci[ Ci[, which
implies that Ci

_
S(99). Therefore, if we set

F’= {C: ICil >-5, <= <= t},

then E(G)\E(F’)
_

S(99). Denote by G* the graph obtained by contracting all the
edges in F’. It is clear that the restriction of 99 to E( G* is a nowhere-zero 4-flow of G*.
By Proposition 2.7, G* can be covered by two cycles Z’ and Z’ with

(2.4) IZTl+ IZYl--< E(G*)I + V(a*)l- 1.

By adding edges in F’ to Z*, we may expand Zj* into a cycle Zj of G, j 1, 2. For any
C F’, if [Zj f) C[ > 1/21c I, then I(Z C) f) C < 1/21c I, where Zj C (Zj tO C)\
(Zj A C). We may therefore assume that Z and Z2 have been chosen such that, for every
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Let p and q be the numbers of circuits ofP and Q, respectively. For any C e P, by (2.5)
IZj n C[ _-< 1/2(Ic[ 1),j 1, 2, and so ]Z n cI + [z2 n c[ _-< Ic[ 1. It follows
that

(2.6) IZl n F’l + IZ n F’l _-< E(F’)I-p.

Since IZ + IZ21 IZl / IZl / IZ F’l / IZ2 F’l, it follows from (2.4)
and (2.6) that

IZl / IZ21--< IE(G*)+ IV(G*)I / [E(F’)I- 1-p

-IE(G)I / IV(G*)I- -p.
Clearly, Z, Z2, F’} is a cycle cover of G, and so

(2.7) cc(a)<= IZl / IZ=l / IE(F’)I =< IE(G)I / IV(G*)I / IE(F’)I- -p.

We now give an upper bound for IV(G*)] + E(F’)I. We may assume that G is
connected. So G* is connected. Let T* be a spanning tree of G*. Consider the subgraph
HofG induced by E( T* U E(F’). Since each vertex of T* corresponds to a component
of F’, the only circuits in H are those in F’. If we remove one edge from each circuit of
F’, then the remainder ofH is a spanning tree of G. From the fact that the total number
of circuits in F’ is p + q, it follows that

E(H)I (p + q) =< V(G)I 1.

Since IE(H)] ]E(T*)] + IE(F’)I and IE(T*)I IV(G*)]- 1, we obtain

V(G*)I + E(F’)I--< V(G)I + p + q.

Substituting into (2.7), we obtain

(2.8) cc(G) <= [E(G)] + [V(G)I- + q.

If Q jZI, then q 0, and the result follows from (2.8). Suppose that Q 4: . For
convenience, regard Q as a subgraph of G. Then each component of Q is a non-null
circuit chain. It follows from Proposition 2.2 that

v(a)l >-- (ICI-- )+ .
CQ

By the definition of r and Q, CI >-- r for all C 6 Q, and hence

v(a)l >= q(r 1) + 1,(2.9)
which gives

(2.10) q <= (I V(Q)I 1) <
r- r- -V-G- 1).

Applying (2.10) to (2.8) yields the fact that cc(G) <= E(G)I + (r/r 1)(I V(G)[
and completes our proof, if]

3. Other results. In Lemma 2.3, if f is a 2-flow of G with S(f) F, then 4
2k + fis a nowhere-zero 6-flow of G with Eodd(4) F. We may start with any given
connected cycle to build up the cycle F (= Eooo(4)). In particular, we may start with a
circuit. This gives us the following strengthening of Lemma 2.3.

LEMMA 3.1. Let C be any circuit ofa bridgeless graph G; then G has a nowhere-
zero 6-flow 4 such that each component OfEodd(Ch is a circuit chain and C is one ofthe
components.
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If we apply Lemma 3.1 to the proof of Theorem 1.1, then we obtain a better up-
per bound for the number q in (2.10) as follows. If the given circuit C (in Lemma 3.1
is in Q, then, instead of (2.9), we have that v(a)l >- (q- 1)(r- 1) + v(c)l,
which gives

q<=(lv(O)l- IV(C)l)/ 1-< (IV(G)I- IV(C)l)/ "r-1 r

otherwise, C P and V(Q)[ -< V(G)[ V(C)[, and, from (2.9),

q<
r

(1V(G)[ v(c)l 1),

where we assume that Q 4: . In either case, q -<- / r )(] V(G)] V(C)]) + 1.
This, together with (2.8), yields the following result.

THEOREM 3.2. Let C be any circuit ofa bridgeless graph G; then

cc(G) < [E(G)[ + V(G)I / (IV(G)I- v(c)l)
r-

where r is the minimum length ofan even circuit (of G) of length at least 6 r , if
there is no such circuit).

An immediate consequence of the above theorem is Corollary 3.3.
COROILARY 3.3. Suppose that G is a bridgeless graph. Let be the maximum

length ofa circuit ofG. Then

cc(G) < E(G)I / V(G)I / (IV(G)I- l)

where r is the minimum length ofan even circuit (ofG) oflength at least 6 (r , if
there is no such circuit).

Another possible approach to strengthen Theorem 1.1 is to improve inequality (2.9).
If each component of Eodd(b) is a circuit, then we would have, instead of (2.9), that
[V(Q)I >= qr, and it would follow from (2.8) that

r+l 7
(3.1) cc(G) <-- IE(G)I +

r
IV(G)l- 1-< IE(G)I +g IV(G)I- 1.

This leads us to the following question.
Problem 3.4. Does every bridgeless graph have a nowhere-zero 6-flow 4 such that

each component of Eodd() is a circuit?
An affirmative answer to the above problem was given by Seymour [9, (3.2)] to 3-

connected simple graphs. The condition "simple" can be dropped if we combine Sey-
mour’s method [9] with that used by Jaeger [8, Thm. 4.4 ]. In fact, by combination of
these two methods, we can obtain the following result.

THEOREM 3.5. IfG is a graph such that G e is 2-connectedfor every edge e, then,
for any circuit C ofG, G has a 6-flow cb such that C

_
Eo(cb ), and each component of

Eo(ok) is a circuit.
Combining the proofs of Theorem 3.2 and inequality (3.1), we have the following

consequence of Theorem 3.5.
COROLLARY 3.6. Suppose that G is a 3-connected graph. Let be the maximum

length ofa circuit ofG. Then

cc(a) <= g(a)l / w(a)l /-(Iw(a)l- l),
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where r is the minimum length ofan even circuit (ofG) of length at least 6 r oe, if
there is no such circuit).

4. Time bounds for finding cycle covers. Throughout this section, m and n denote
the numbers of edges and vertices of a graph, respectively. The cycle cover given by Itai
and Rodeh 6 uses +/log n3 cycles. The number of cycles is dramatically reduced to
4 by Itai et al. [5]. The covers given by Alon and Tarsi [1] and Bermond, Jackson, and
Jaeger [2] also require four cycles. These four cycles can be found in O(m + n2) time
(see ). (It is possible that m )) n, since G may have multiple edges.) The covers given
by Fraisse [4] and by Theorem 1.1 need only three cycles. Fraisse did not give a time
bound for his construction, which starts with three cycles coveting G. Since it requires
O( m. n to find such three cycles see 5 ), Fraisse’s construction needs at least O( m. n)
running time. The cover in Theorem 1.1 can be constructed in O(m. n). We sketch an
evaluation of the complexity as follows.

Younger’s algorithm [11] finds the needed 6-flow in O(m. n) time.
(2) In the proof of Lemma 2.6, 0i and #i, _-< _-< t, can be determined in O(m)

time.
3 Applying Lemma 2.1 to obtain the needed k-flows can be done in O(m. n) time

(see [11, 3]).
By the statements above, the 4-flow in Lemma 2.6 can be constructed in O(m. n) time.
Clearly, finding the two cycles ZI and Z2 from o can be done in O(m.n). Therefore the
time bound for finding the cover in Theorem 1.1 is O(m.n), as claimed.
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Abstract. In this note, a new method for taking the first few terms of a sequence and making an educated
guess as to the generating function of the sequence is described. The method involves a matrix factorization
into lower triangular, diagonal, and upper triangular matrices (the LDU decomposition), generating functions,
and solving a first-order differential equation.

Key words, generating function, Hankel matrix, differential equations, preferential arrangement, Schr6der
numbers
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Analyzing a sequence. Suppose that we have determined the first few terms of a
sequence and would like to know more about it. The sequence 1, 3, 10, 37, 151,674,
3263, 17007, 94824, will be used to illustrate. From this limited information, we
would like to guess either a generating function or a recursion relation. Suppose that
looking at differences, Sloane’s handbook [S], or looking for a recursion, have not
helped in identifying the sequence. Here is a new technique that often provides some
insight. Start by forming a Hankel matrix from the sequence. The illustrative sequence
yields that

3 10 37 151
3 10 37 151 674
10 37 151 674 3263
37 151 674 3263 17007

151 674 3263 17007 94824

and Gauss elimination is used to find the LDU decomposition ofH as follows:

3
10 7
37 40
151 221

12
103 18

2!

0 4!

and U L, the transpose of L.
Obviously, L and the original sequence convey the same information, but often L

is more tractable.
Let Co(x) be the generating function for the first column, C(x) the generating

function for the second, and findf(x) such that Co(x)f(x) Cl(X).
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In this example, exponential generating functions work, and we solve

1+3x+10--.+37--.+’" f(x)=x+7-.. + 40-. +221-. +""
to obtainf(x) x + x/2! + x3/3! -t- leading to a reasonable guess thatf(x)
ex- 1.

The next step is a comparison of the first two columns. Here it seems that C. / ,o
3C,o + Cn,, where L (C.,).,_o. This leads to

C’o(X) 3C0(x) + C1 (x) 3C0(x) +f(x)Co(x)

3Co(x) + (eX-1)Co(x).

The solution of this elementary differential equation is

Co(x)= ee+2x-1 sinceCo(0) 1.

We have guessed our generating function. If we define Co(x) Z .= o P.(x"/n ),
then differentiation yields

C(x) Co(x)(ex+2), so

Pn+l=2Pn+=0 P"

We can even give a combinatorial interpretation for e2xe3x- Since ee- generates
the Bell numbers, we can take a set n ], color some elements red and some others green,
then partition the rest into disjoint nonempty blocks B, B2, Bk. Let G be the green
elements, R the red elements, and let B tO G, B2 tO G, Bk tO G be the atoms of a
sublattice. The 0 element for this sublattice is G, while is [n] R. This process can
be easily reversed. Thus the sequence 1, 3, 10, 37, 151,-.. could be the number of
Boolean sublattices of the Boolean lattice of subsets of In ].

We have seen one example where we started with the first nine terms of a sequence,
formed the Hankel matrix, row-reduced to obtain the LDU decomposition, found a
recurrence in L, guessed f, and solved a first-order differential equation. From this, we
found the generating function, a recursion relation, and a combinatorial interpretation.

Here are two examples, set as exercises, to illustrate the technique.
(i) We use the sequence 1, 1, 3, 13, 75, 541, 4683, .-.. We obtain that

0 0 0 0
0 0 0

L= 3 5 0 0
13 31 12 0
75 233 133 22

f(x)=x+ 3x2/2! + 13x3/3! + 75x4/4! + ....
A reasonable guess is that Co(x) f(x). The differential equation then becomes

C’o(X) Co(x) + 2Co(x)f( x),

so Co(x)= 1/(2- eX). These numbers can arise as the number of preferential ar-
rangements.
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(ii) We use the sequence 1, 2, 6, 22, 90, 394, 1806,.... In this case, ordinary
generating functions work better, as shown below:

0 0 0
2 0 0
6 5 0

22 23 8

Co(x)-
f= x + 3X2 + lx + 45X4 +

2

Cn + 1,0 2C,,o + 2Cn,1 so

Co(x)=l+2x[Co(x)+C,(x)]=l+2x[Co(x)+Co(x)(C(x)-l)]2

Now we solve a quadratic equation instead of a differential equation and ob-
tain that

1--X-- ]/1--6x+x2

Co(X)
2x

which generates the (double) Schr6der numbers.
If we have the stronger condition that the C,(x) Co(x)(f(x))" or C,(x)

Co(x)(f(x)")/n! for all n, then we obtain a group structure for the lower triangular
matrices leading variously to the umbral calculus [R], paths and continued fraction
expansions IF], [GJ ], and combinatorics of orthogonal polynomials [V]. A brief intro-
duction is given in [GSWW ].

For a researcher discovering integer sequences, this technique can be very useful at
the initial work stage. It is hard to judge how many sequences on which this would work,
but the list does include factorials, derangement numbers, telephone numbers (the number
of elements in Sn such that x2 e), Bernoulli numbers, number of permutations with
no double descents, Bell numbers, both even and odd factorials, Euler numbers, numbers
of preferential arrangements, secant numbers, Catalan numbers, Motzkin numbers,
Schr6der numbers (little and big), Delannoy numbers, central binomial coefficients,
directed animals (single source), central trinomial coefficients, and some polynomial
sequences such as Chebyshev Legendre and Hermite sequences.
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the ratio of the optimal nonpreemptive schedule length versus the optimal preemptive schedule length is bounded
above by 2m/(m + ). Furthermore, Liu showed that the bound is the best possible by giving a task system
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1. Introduction. In 1972, Liu 9 claimed that for any task systems to be scheduled
on m -> identical processors, the ratio of the optimal nonpreemptive schedule length
versus the optimal preemptive schedule length is bounded above by 2m/(rn + ). Fur-
thermore, he showed that the bound is the best possible by giving a task system achieving
the ratio. His upper bound proof was later found to be incorrect, and his claim has since
remained a conjecture. In this paper, we show that Liu’s bound is valid for the unit
execution time (UET) and tree-structured task systems. For two processors, we show
that some other classes of task systems satisfy the 4/3 bound. Other results comparing
the lengths of optimal list, nonpreemptive, and preemptive schedules are also given.

The problem to be considered involves scheduling a task system on a set P
{ P1, P2, Pm} of m >= identical processors so as to minimize the schedule length.
A task system r TS, G, e) consists of a set of n tasks TS T, T2, Tn },
(2) a directed acyclic graph G TS, A describing the precedence constraints between
the tasks in TS such that Ti, Tj) E A implies that Ti must be completed before Tj. can
start, and (3) a function e TS -- { nonnegative integers } giving the execution time of
the tasks, where e(T;) denotes the execution time of T;. If S is a schedule for r on P,
the length of S, denoted by cos, is the total time taken to execute all tasks in r. We call
a schedule with the minimum schedule length an optimal schedule.

Preemptive, nonpreemptive, and list are three scheduling disciplines commonly
studied in the literature ], [4]. For a given task system r to be scheduled on m >=
identical processors, let coe, CON, and WL denote the lengths of optimal preemptive, non-
preemptive, and list schedules, respectively. Trivially, we have that coe <= WN -<- OL. It is
known [1 ], [4] that COL/WN <---- COL/W, <= 2 1/m. Furthermore, there are task systems
for which both ratios approach 2 1/rn asymptotically [1], [4]. Liu [9] gave a task
system for which Wu/we 2m/(rn + ). It consists of a set of rn + independent tasks,
each of which has execution time m. As mentioned before, it has been conjectured that
2m/(rn + is also an upper bound. In this paper, we show that Liu’s bound is valid
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for UET and tree-structured task systems. Furthermore, we show that COL CON, and
hence COL/CO,, CON/CO,, -< 2m/(m + for these two classes. Liu’s task system shows that
the bound is the best possible for these two classes. For arbitrary precedence constraints
and arbitrary execution times, it is not known whether Liu’s bound is valid, even for
m 2. We show, for two-processor systems, that the 4/3 bound is valid for two special
classes. The first class allows arbitrary execution times but restricts the precedence con-
straints to be simple (defined later in the paper). The second class allows arbitrary pre-
cedence constraints but restricts the execution times to be drawn from the set 1, 2, 3, 4 }.

A UET task system is one in which each task has execution time unit. Finding
optimal nonpreemptive schedules for UET task systems is NP-hard ifm is arbitrary 11 ].
Coffman and Graham [2] gave an optimal algorithm for two processors. Lam and Sethi
8] used the Coffman-Graham Algorithm as a heuristic and showed that, for any UET

task systems, COc/CON -< 2 2/m, where COca is the length of the schedule produced by
the Coffman-Graham Algorithm. Furthermore, they showed that the bound can be ap-
proached asymptotically. We follow the analysis of Lam and Sethi [8] to show that
COc/CO,, <- 2m/(m + 1).

Let r TS, G, e) be a task system. A chain from a task Tto a task T’ is a sequence
of tasks T, T2, Tt such that T T, T’ Tt, and (Ti, Ti+ 1) is an arc in G for
all _-< < l. Task T(T’) is a predecessor (successor) of task T’(T) if there is a chain
from T to T’. Furthermore, if 2, then T(T’) is an immediate predecessor (successor)
of T’(T). The length of a chain is the total execution time of the tasks on the chain.
Initial tasks are those with no predecessors, and terminal tasks are those with no successors.
The level of a task T is the length of the longest chain from T to a terminal task. The
precedence graph G is an in-forest (out-forest) if each task has at most one immediate
successor (predecessor). An in-tree (out-tree) is a special case of in-forest (out-forest) in
which there is exactly one task, called the root, with no immediate successor (predecessor).
An opposingforest is a collection ofin-trees and out-trees. For the purpose of minimizing
schedule length, the cases of in-trees, out-trees, in-forests, and out-forests are equivalent.
Thus any results for in-trees also apply to out-trees, in-forests, and out-forests. In this
paper, we concentrate on in-trees only. Unless stated otherwise, we refer to an in-tree
simply as a tree.

A list-scheduling algorithm that has been studied in the literature is the so-called
critical path algorithm [4]. In the critical path algorithm, a list of tasks is formed by
assigning higher priorities to tasks at higher level; ties are broken arbitrarily. A schedule
obtained by the critical path algorithm is called a CP-schedule, and its length is denoted
by COcp. Kaufman [6] showed that, for any tree-structured task system to be scheduled
on rn processors, w,, <= CON COCP COP -4- k km, where k is the maximum execution
time of all tasks. Kunde [7] showed that, for any tree-structured task systems to be
scheduled on rn processors, coCP/COu <---- 2m/(rn + ). Moreover, the bound is the best
possible. We strengthen Kunde’s analysis to show that COc/CO,, <= 2m/(m + ).

Let (T, T, Tt) be a chain in r. A task T not on the chain is a loop task of
the chain if T is a successor of some task T; and a predecessor of some task T, where
j > + 1. z is simple if there is a longest chain in r that does not have any loop tasks.
Clearly, simple task systems include in-forests, out-forests, and opposing forests. In this
paper, we give an algorithm to construct a nonpreemptive schedule S for a simple task
system on two processors such that COs/CO,, <= 4/3.

Muntz and Coffman 10 gave an algorithm to construct optimal preemptive sched-
ules for arbitrary task systems on two processors. A schedule constructed by the Muntz-
Coffma Algorithm is called an MC-schedule, and its length is denoted by COMC. One
approach to prove the 4/3 bound for two processors is to devise an algorithm to convert
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an MC-schedule into a nonpreemptive schedule S such that COs/COMc =< 4/3. We attempted
this approach, but we could not obtain an algorithm for arbitrary execution times. We
can, however, give an algorithm for task systems whose execution times are drawn from
the set { 1, 2, 3, 4 }. Goyal 3 extended the Coffman-Graham Algorithm to schedule
task systems with execution times or k units on two processors. He showed that COo/
CON =< 4/3 for k 2 and (3k )/2k for k > 2, where COo denotes the length of the
schedule produced by his algorithm. We note that our algorithm compares favorably
with Goyal’s algorithm for k =< 4.

We now introduce notation that is used throughout this paper. If S is a schedule,
we let s(T) andf(T) denote the starting andfinishing times of task T in S, respectively.
The symbol r(T) denotes the first time-instant in S at which T becomes ready. The
paper is organized as follows. In the next two sections, we give the results for UET and
tree-structured task systems, respectively. In 4 we concentrate on the case of two pro-
cessors. Finally, we draw some concluding remarks in the last section.

2. UET task systems. In this section we assume that z is a UET task system, and
we show that COc/COe --< 2m/(m + ). The next theorem can be easily proved by an
interchange argument.

THEOREM 1. For any UET task system to be scheduled on m processors, we have
that CO. CON.

The Coffman-Graham Algorithm is a special critical path algorithm, where the
priorities assigned to two tasks at the same level are determined by the priorities assigned
to their immediate successors. For each T e z, the Coffman-Graham Algorithm assigns
to T an integer a(T), which represents the priority of T. Let IS(T) denote the set of
immediate successors of T and let N(T) denote the decreasing sequence of integers
obtained from the set {c( T’)I T’ IS(T) }. The Coffman-Graham Algorithm assigns
priorities to tasks as follows.

Coffman-Graham Algorithm
1. Choose an arbitrary terminal task T and define a(T) to be 1.
2. Suppose that the integers l, 2, j have been assigned. Let R be the set

of tasks, all of whose immediate successors have been labeled. Let T* be in R such that
N(T*) is lexicographically less than or equal to N(T) for all T in R. Define a(T*) to
be j.

3. Repeat the above step until all tasks have been labeled.
4. Construct a list schedule using the list (Tn, T1), where a(Ti) for all

l<=i<-n.
A schedule constructed by the Coffman-Graham Algorithm is called a CG-schedule,

and its length is denoted by COc. To prove that CG-schedules are optimal on two pro-
cessors, Coffman and Graham [2] divided the schedules into segments. These segments
have the important property that all tasks in one segment precede every task in the next
segment. Thus, in any schedules whatsoever, we must finish all tasks in one segment
before we can start any tasks in the next segment. On two processors, the Coffman-
Graham Algorithm schedules the tasks in each segment optimally. In 8 the segments
are called blocks. One or more consecutive blocks are merged together, along with some
extra tasks that do not belong to any blocks, to form segments. These segments also have
the property that all tasks in one segment precede every task in the next segment. Thus
we can bound the ratio COc/COn by bounding the ratio of the lengths of a segment in a
CG-schedule and an optimal nonpreemptive schedule. In 8 it is shown that the ratio
is no more than 2 2/m. We follow the same technique and show that the ratio of the
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lengths of a segment in a CG-schedule and an optimal preemptive schedule is no more
than 2m/(m + ). This implies that wc6/we -< 2m/(m + ).

Let X be a block as defined in 8 ]. A time unit in X during which all processors are
executing tasks is called a full column of X. Time units in X that are not full columns
are called partial columns. The next two lemmas are immediate from the proofs in 8 ].

LEMMA 1. Let Xi, Xi_ k, k >= O, be the blocks in a segment Wand let there be
p partial columns in these blocks. Then there is a chain oflength p in W.

LEMMA 2. Let f andp be the numbers offull and partial columns in a segment W,
respectively. IfE is the number oftasks in W, then E >= mf+ 2p 1.

Using the above two lemmas, we can derive a lower bound for the optimal preemptive
schedule length for the tasks in a segment, as given in Lemma 3. Lemma 4 is the key to
proving that Liu’s bound is valid for UET task systems.

LEMMA 3. Letfandp be the numbers offull and partial columns in a segment W,
respectively. Ifw* denotes the length ofan optimal preemptive schedulefor the tasks in
W, then we have that w* >-_ max {p, (mf+ 2p )/m }.

Proof. The proof is immediate from Lemmas and 2.
LEMMA 4. Let w and w* be the lengths ofa segment W in a CG-schedule and an

optimal preemptive schedule, respectively. Then we have that ww* <= 2m/(m + ).
Proof. Let there be p partial columns and ffull columns in W. Then we have that

w f+ p. We consider the following two cases.
Case 1. We have that f >= p.
Since w f + p and f >_- p, we have that f >= w/2. Letting E be the number of

tasks inW, wehavethatE>=mf+p=(m- 1)f+w>=(m- 1)w/2+w=(m+ 1)w/
2. Since w* >-_ E/m, we have that w/w* <= 2m/(m + ).

Case 2. We have that f< p.
Since fand p are integers, we have that f-p+ 1=<0. Thus (m+ 1)w=

(m+ 1)(f+p)=(mf+2p- 1)+mp+(f-p+ 1)=<mw* +mw* +(f-p+ 1)
(by Lemma 3) =< 2mw*. Hence we have that w/w* =< 2m/(m + ).

TI-IEORM 2. For any UET task system to be scheduled on m processors, we have
that Wu/Wp wL/wp <= Wc6/We <= 2m/(m + ).

Proof. The proof is immediate from Theorem and Lemma 4.

3. Tree-structured task systems. In this section, we assume that - is a tree-structured
task system; i.e., its precedence graph is an in-tree. We show that, for any tree-structured
task systems to be scheduled on m processors, wL Wn and Wcp/we =< 2m/(m + ).

THEOREM 3. For any tree-structured task systems to be scheduled on m processors,
we have that w wn.

Proof. Let S be a nonpreemptive schedule for a tree-structured task system on m
processors. The theorem is proved if we can show that S can be transformed into a list
schedule S’ with no increase in schedule length. To this end, we define the following
three transformations. By SWAP (t, Pk, P1), we mean swapping the tasks executed at or
after time on processor Pk with those on PI.

Type I transformation. Suppose that Ti is executed on Pk. If Ti is ready at t’ <
s(T.) and Pk is idle in the interval (t’, s(T.)), then reassign T. to start at t’.

Type II transformation. Suppose that Ti is executed on P and its immediate suc-
cessor Tj is executed on P, where k 4 l. Iff(Ti) s(Tj) and PI is idle immediately
before s(T), then perform SWAP (f(T;), P, P). Note that, after this transformation,
any task that starts at f(T.) on PI cannot be the immediate successor of T..

Type III transformation. Suppose that Ti is executed on P and P is busy imme-
diately before s(Tt.). If T is ready at t’ < s(T,.) and there is a processor PI such that P
is idle in the interval (t’, s(Tg)), then perform SWAP (s(Tg), P, PI).
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We apply the above transformations exhaustively to S. The resulting schedule S’
cannot be longer than S, since none of the transformations can increase the schedule
length. In the following, we show that S’ is a list schedule; i.e., there is no task T; ready
at tl < s(Ti) but not assigned to a processor Pt that is idle at t. By way of contradiction,
let T,. be such a task and Pl be the idle processor. Observe that Pt cannot be idle from tl
until the end of the schedule; otherwise, we can apply a Type III transformation to Ti.
Let (t, t2) be the maximal interval during which Pt is idle and Tj. be the task that starts
at t2 on P. Since no Type II transformation can be applied to Tj, all immediate prede-
cessors of Tj have finished earlier than t2. This implies that a Type I transformation can
be applied to T, contradicting our assumption that it cannot.

Before we show that wc,/we --< 2m/(rn + ), we first derive some properties of list
schedules for tree-structured task systems. Recall that for a schedule S and a task T,
r(T) denotes the first time-instant in S at which T becomes ready. T is called a waiting
task if r(T) < s(T). If S is a list schedule and T is a waiting task, then we can conclude
that all processors are busy in S during the interval (0, s(T)). This is shown in Lemma
6. First, we need the following lemma.

LEMMA 5. Let S be a list schedule. For any two time-instants t < t2, the number
ofbusy processors in S at t is no less than that at t2.

Proof. In S a processor is left idle at t only when there are no tasks ready at t.
The lemma follows immediately from the observation that, in a tree-structured task
system, a completed task can make at most one task ready.

LEMMA 6. Let S be a list schedule and T be a waiting task. Then S has no idle
time in the interval (0, s(T)).

Proof. Since S is a list schedule and T is a waiting task, all processors are busy in
the interval (r(T), s(T)). By Lemma 5, all processors are busy in the interval (0, r(T)),
also. Hence S has no idle time in the interval (0, s(T)).

A useful concept of list schedules is the notion of a maximal contiguous chain. Let
S be a list schedule. A chain T, T2, Tt) is called a maximal contiguous chain if

either s(T) 0 or Tl is a waiting task, (2)f(Ti) s( Ti+ 1) for each =< < l, and
(3) f(T) ws. It is clear that a list schedule must have a maximal contiguous chain.
The next lemma shows that if the length of a maximal contiguous chain is no more than
half of the schedule length, then Ws/We <= 2m/ rn + ).

LEMMA 7. Let S be a list schedule and lc be the length of a maximal contiguous
chain. Iflc <= ws/2, then ws/we <= 2m/(m + ).

Proof. Let T1 be the first task ofthe maximal contiguous chain and be the starting
time of T. From the definition of maximal contiguous chains, we have that Ws
lc. Since l. <= Ws/2, >= Ws/2 > 0, and hence T is a waiting task. By Lemma 6, S has
no idle time in the interval (0, t). Letting E be the total execution time of all tasks, we
have that E >= mt + lc (m 1)t + ws >= (m 1)Ws/2 + Ws (m + 1)Ws/2. Since
we >--_ Em, we have that Ws/we <-- 2m/ rn + ).

Lemma 7 shows that Liu’s bound is valid for any list schedule S with l <= Ws/2. To
show that Liu’s bound is also valid for lc > ws/2, we consider CP-schedules. CP-schedules
have the property that if T is a waiting task, then any tasks started earlier than T have
level at least that of T. This property was first proved by Kunde 7 ]. In the following,
we use l(T) to denote the level of T.

LEMMA 8 (see [7, Lemma ]). Let S be a CP-schedule and T be a waiting task.
Then, for any task T’ with s(T’) < s(T), l(T’) >= l(T).

In a preemptive schedule, a task may be preempted with the remaining portion
executed at a later time. Therefore there is a need to indicate the level of a portion of a
task. If T is at level l(T) and it has executed a portion x < e(T), then the level of the
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remaining portion of T is l(T) x. We use Ez to denote the total execution time of
those portions oftasks whose levels are at least l. Thus E0 equals the total execution time
of all tasks. The next two lemmas are instrumental in proving the bound.

LEMMA 9. Let S be a CP-schedule, T be a waiting task, and be its starting time.
Then those portions oftasks executed before have levels at least l(T) t.

Proof. Let T’ be a task with s(T’) < t. By Lemma 8, we have that l(T’) >= l(T).
During the interval (0, t), at most units of T’ can be executed. Thus any portions of
T’ executed in the interval (0, t) have levels at least l(T) t. Ul

LEMMA 10. It holds that we >= Et/m + l.
Proof. Let S be an optimal preemptive schedule and be the last instant in S such

that a portion of a task at level is executed. Clearly, we have that >= Et/m. Since it
takes at least time units to finish the remaining tasks at level less than l, we have that
w, >= E/m + l. [3

LEMMA 11. Let S be a CP-schedule and lc be the length ofa maximal contiguous
chain. Iflc > wcp/ 2, then we have that wcp/we <= 2m/ m + ).

Proof. Let T be the first task of the maximal contiguous chain and be the start-
ing time of T. If 0, then Wcp lc we, and hence the lemma is proved. Thus we
may assume > 0, and, consequently, T is a waiting task. By Lemma 6, S has no idle
time in the interval (0, t). By Lemma 9, those portions of tasks executed before must
have levels at least l t. Since T is at level lc and T is executed after t, we have that

Elc-t >-- mt + t. By Lemma 10, we have that we >= (m + )t/m + (l. t) (t + mlc)/
m (wcp + (m 1)lc)/m >= (wcp + (m 1)wcp/2)/m (m + 1)wcp/(2m). Hence
we have that Wcp/we =< 2m/(m + ). []

THEOREM 4. For any tree-structured task systems to be scheduled on m processors,
we have that wu/we wL/we <= wcp/we <= 2m/(m + ).

Proof. The proof is immediate from Theorem 3 and Lemmas 7 and 11. [--1

4. Two-processor systems. In this section, we concentrate on two-processor systems,
showing that the 4/3 bound holds for two special classes of task systems. The case of
simple task systems is shown in 4. l, and the case of restricted execution times is shown
in 4.2. First, we introduce notation that is used throughout this section. IfS is a (partial)
schedule for r, then the concurrency ofS, denoted by Cs, is defined to be the total amount
of time during which both processors are busy in S. Is denotes the total idle time in S,
and Es denotes the total execution time of the tasks assigned in S. Thus ws Cs + Is
and Es 2Cs + Is. If S is understood, then we let C, I, and E denote Cs, Is, and Es,
respectively. For a given set of tasks R, E(R) denotes the total execution time of all tasks
in R. Thus E(TS) denotes the total execution time of all tasks in z TS, G, e).

In proving the 4/3 bound, we need only consider those z such that its optimal
preemptive schedule has no idle time. Otherwise, we can construct z’ from - by adding
enough independent tasks to fill the idle intervals in Sp. If the 4/3 bound holds for z’,
then it also holds for -. Since optimal preemptive schedules can be constructed by the
Muntz-Coffman Algorithm, any z can be converted in polynomial time into r’ satisfying
this property. Throughout this section, we assume that - satisfies this property, and hence
wp E(TS)/2.

We can further restrict our attention to those z with the length of the longest chain
more than E( TS)/3. We show in Theorem 5 that, if the length of the longest chain is
no more than E( TS)/3, then any list schedule S for r satisfies ws/we =< 4/3. The next
two lemmas are instrumental in proving Theorem 5.

LEMMA 12. Let S be a nonpreemptive schedulefor . IfI -< ws/ 2, or, equivalently,
I <= C, then ws/we < 4 / 3.
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Proof. Since Ws=I+C, I<=ws/2 if and only if I=<C. If I<=ws/2, then
E(TS) 2ws I >= 3ws/2. Since we >= E(TS)/2, we have that we >= 3ws/4, and hence
ws/we <= 4/3.

LEMMA 13 (see [1], [4]). Let S be a list schedule for -. If denotes the length of
the longest chain in -, then we have that I <= l.

THEOREM 5. Let S be a list schedulefor z and be the length ofthe longest chain
in z. Ifl <= E( TS)/3, then ws/We <= 4/3.

Proof. By Lemma 13, we have that I <= <= E( TS)/3. Since ws (E(TS) + I)/
2 >-(31+ 1)/2 21, we have that I<=ws/2. By Lemma 12, we have that
ws/we <= 4/3.

4.1 Simple task systems. In this section, we show that the 4/3 bound holds for
simple task systems. Recall that z TS, G, e) is a simple task system ifthere is a longest
chain LC (T, T2, TI) such that LC has no loop tasks. The tasks in TS- LC
can be partitioned into three disjoint sets: PRED, SUCC, and REM, where PRED (SUCC)
is the set of tasks that are predecessors (successors) of some tasks in LC, and REM is the
set of all remaining tasks. Let Tp, Tr, and Ts be arbitrary tasks in PRED, REM, and
SUCC, respectively. It is clear that Tp cannot be a successor of Tr or Ts, and Tr cannot
be a successor of Ts. Thus, if S, Sa, and $3 are valid schedules for the tasks in PRED,
REM, and SUCC, respectively, then Sll Sll $3 is a valid schedule for the tasks in
PRED U REM LI SUCC. As is seen in Theorem 6, the proof that the 4/3 bound holds
consists of constructing a schedule S, where the tasks in PRED t_J REM t_J SUCC are
scheduled on one processor and the tasks in LC are scheduled on the other. It will be
shown that C >- I, and hence the 4/3 bound holds by Lemma 12.

Before we prove Theorem 6, we must introduce the following notation. Let PRED
be partitioned into A, A2, A! such that, for each <= <= l, Ai is the set of tasks that
are predecessors of Ti but not Ti-. Similarly, SUCC is partitioned into B1, B2, "", Bl
such that, for each <= <= l, Bi is the set of tasksthat are successors of Ti but not Ti / 1.

Since T has no predecessors and Tl has no successors, we have that A B .
Observe that T; cannot start until T;_ and all tasks in A,. have finished. Similarly, T; /
and all tasks in B; cannot start until T; has finished.

THEOREM 6. Let - (TS, G, e) be a simple task system to be scheduled on two
processors. Then we have that WN/We <= 4 / 3.

Proof. Let LC T1, T2, Tt) be the longest chain that has no loop tasks and
lc be its length. From the discussions in 4, we may assume that lc > E( TS)/3 and
we E( TS)/2. We construct a nonpreemptive schedule S for z as follows. Starting at
time 0, the tasks in A, A2, Al, REM, B, B2, and Bt are successively scheduled
on P2. The tasks in each set are scheduled such that precedence constraints are observed.
The tasks on the chain LC are scheduled on P as follows. T is scheduled to start at
time 0. For each 2 -< -< l, T is scheduled to start at time max {f(T_),f(A)}.

We show that S is a valid schedule. It is clear that there are no precedence violations
between the tasks scheduled on P2. Furthermore, there are no precedence violations
between a task in LC and a task in = Ai 1,3 REM. Thus all we must show is that there
are no precedence violations between a task in LC and a task in U= B,.. We show by
contradiction that, for each <= <= l,f(Ti) <= s(Bi). Suppose that is the smallest index
such that f(Ti) > s(Bi). Let t’ be such that (t’, f(T;)) is the maximal interval during
which P is busy. Then t’ must be the starting time of some task Tx in LC and also the
finishing time of Ax. Let F t.J=+ A t_J REM -I B. Sincef(Ti) > s(B), we
have that Zi e(T) > E(F) However, the tasks Tx, Tx+, T/can execute con-j=x

currently only with the tasks in F. Thus any schedules for on two processors must have
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some idle times, contradicting our assumption that toe E(TS)/2. Therefore S is a valid
schedule.

Sincef(T) <= S(Bl) <= f(Bt), every task on LC must be executed concurrently with
some tasks on P2. Thus C lc > E( TS)/3. Since E(TS) 2C + I, we have that I <
C. By Lemma 12, we have that ws/we <= 4/3, and hence WN/WP 4/3. I--!

4.2. Restricted execution times. In this section, we show that the 4/3 bound holds
for task systems with execution times drawn from the set { 1, 2, 3, 4 }. The idea is to
convert the MC-schedule SMc into a nonpreemptive schedule S such that I =< C. By
Lemma 12, we have that Ws/0e _-< 4/3. The conversion is done in two steps. First, SMc
is converted into an extended schedule S’, where a task can be executed concurrently by
two processors. S’ has the property that the intervals ofexecution oftwo preempted tasks
do not overlap; i.e., they are either disjoint, or one is included in the other. The algorithms
for this conversion are given in 4.2.1. Second, S’ is converted into a nonpreemptive
schedule S by rescheduling the preempted tasks and the tasks that are executed concur-
rently by two processors. The algorithms for this conversion are given in 4.2.2. Before
we provide the details, we must state the Muntz-Coffman Algorithm and show an im-
portant property of MC-schedules that is used in later sections.

Muntz-Coffman Algorithm
Assign one processor each to the tasks at the highest level. If there is a tie among y

tasks (because they are at the same level) for the last x(x < y) processors, then assign
x/y of a processor to each of these y tasks. Whenever either of the two events described
below occurs, reassign the processors to the unexecuted portion of the task system ac-
cording to the above rule. These are the following:

1. A task is finished;
2. We reach a point where, ifwe were to continue the present assignment, we would

be executing some tasks (in the unexecuted portion of the task system) at a lower level
at a faster rate than other tasks at a higher level.

Figure shows the MC-schedule for a task system r. Note that the Muntz-Coffman
Algorithm allows a processor to be shared by several tasks. The next theorem shows that
the finishing time of each task in a MC-schedule must be an integral multiple of /2; it
holds even if the MC-schedule has some idle times. Due to space limitation, we omit the
proof here; it can be found in [5].

THEOREM 7. Let SMc be the MC-schedulefor a task system with integer execution
times. Thenf(T) is an integral multiple of / 2 for each task T.

4.2.1. Conversion. In this section, we show how to construct an extended schedule,
which is used later for constructing a nonpreemptive schedule. An extended schedule is
not a valid schedule, in the sense that some tasks can be executed concurrently on both
processors; they are called double tasks, while the others are called regular tasks. Like
regular tasks, double tasks can be further divided into preempted and nonpreempted
double tasks, depending on whether it is preempted. The construction is done in two
steps. First, an extended schedule is constructed from the MC-schedule. Second, the
schedule obtained is examined to see if all nonpreempted double tasks satisfy a certain
condition (specified later). Those tasks not satisfied with the condition will be rescheduled,
and the rescheduling process may involve other tasks or portions of other tasks. As is
seen in the next section, the condition put on the nonpreempted double tasks is to ensure
that the 4/3 bound holds for the final nonpreemptive schedule.

We now introduce some notation that is used throughout this section. Let S be a
schedule with length os. An idle interval (a, b) on a processor/6 is called an idle slot if
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FIG. 1. An MC-schedulefor a task system" (a) a task system r, T/x Task T with execution time x; (b)
the MC-schedulefor .
it is not properly contained in any other idle intervals on/. S is called a normalized
schedule if, for each idle slot (a, b) in S, two tasks start at b whenever b < ws. Clearly,
every list schedule is a normalized schedule. Let S be a normalized schedule and b,
b2, bk be the sequence of times such that bl 0, bk ws, and b; is the fight end of
an idle slot for each < < k. Then, for each =< < k, the partial schedule ofS in the
interval (bi, bi+ 1) is called the ith segment of S. Note that each segment has exactly one
idle slot. By interchanging processors if necessary, we can make all idle slots to be on P2.
In the algorithm given below, the schedule produced at each iteration is a normalized
schedule, and we assume that all idle slots are on P2. For each =< -< n, we let (Ti)
andf(Ti) denote the starting and finishing times of T; in the MC-schedule, respectively.
Algorithm A, below, constructs the first phase of an extended schedule.

Algorithm A

1"
Construct a list of tasks, L (T, T2, T,) such thatf(Ti) <=f(Ti+l) for

each _< < n; ties are broken by smaller starting times.
2. -- 0.
3. -- + 1. If > n, then STOP.
4. Let be the length of the current schedule and be the earliest time that T; can

be assigned to the current schedule without violating any precedence constraints. Ti will
be assigned to use up as much idle time as possible, starting at t. The scheduling is done
by one of the following rules.
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Rule 1. Suppose that Ti can be nonpreemptively scheduled starting at t. If
it can finish no later thanf(Ti), then nonpreemptively schedule it on P2 starting
at and go to step 3. (Note that Ti is a nonpreempted regular task ifit is scheduled
by Rule 1.)

Rule 2. Suppose that Ti can be nonpreemptively scheduled starting at t, but
it cannot finish by f(T;). Then nonpreemptively schedule a portion of it on P2
in the interval (t, f(T)) and the remaining portion on P starting at 1. Go
to step 3. (Note that T is a nonpreempted double task if it is scheduled by
Rule 2.)

Rule 3. Suppose that Tg can only be preemptively scheduled starting at t.
If it can finish by l, then preemptively schedule it on P2 starting at and go to
step 3. (Note that T; is a preempted regular task if it is scheduled by Rule 3.)

Rule 4. Suppose that Ti can only be preemptively scheduled starting at t,
but it cannot finish by l. Then preemptively schedule it on P_ in the interval
(t, l). Schedule half of the remaining portion of it on P2 and the other half on
P, both starting at l. (Note that Ti is a preempted double task if it is scheduled
by Rule 4.) Now examine Rule 5.

Rule 5. Let R be the set of tasks executed in the interval (t, l) before Ti is
assigned and r be the total amount of R executed in the interval. If r < e(Ti),
then reschedule all of R on P and reschedule Ti by Rule or Rule 2, starting
at t. Go to step 3.

A schedule constructed by Algorithm A is called an A-schedule, denoted by SA, and
its length is dentoed by Wg. We use SA(Ti) andfg (Ti) to denote the starting and finishing
times of T; in SA, respectively. Figure 2 shows the A-schedule obtained from the MC-
schedule in Fig. 1. Tasks T, T, T3, and T4 are scheduled by Rule l, and T by Rule
2. Figure 2(a) shows the schedule obtained after T is scheduled. Tasks T6 and T8 are
scheduled by Rules and 4, respectively. Note that since the condition of Rule 5 is not
satisfied, T8 is not rescheduled. Figure 2(b) shows the schedule obtained after T8 is
scheduled. Task T7 is scheduled by Rule 2, while T9 and T0 are scheduled by Rule 1.
Task T2 is initially scheduled by Rule 4, and the schedule is shown in Fig. 2(c). Since
the condition of Rule 5 is satisfied, T2 is rescheduled with the resulting schedule, shown
in Fig. 2 (d). Tasks T and TI3 are scheduled by Rules 2 and 4, respectively. Since the
condition of Rule 5 is not satisfied, TI3 is not rescheduled. Finally, T14 is scheduled by
Rule 2 and the final schedule is shown in Fig. 2(e). In Fig. 2(e), T, T7, T, and T14
are nonpreempted double tasks, and T8 and T13 are preempted double tasks. Note that
a nonpreempted double task is executed in two intervals, with one interval contained in
the other. Wecall the smaller interval the minor part, and the larger one the major part
of the task.

THEOREM 8. Let SA be the A-schedulefor -. Then we have that
1. Precedence constraints in - are observed;
2. If Ti and T are two preempted tasks in SA, then their execution intervals are

either disjoint, or one is properly contained in the other. Furthermore, if the execution
interval of Tj. is properly contained in that ofTi, then Ti is never executed in the execution
interval of T;

3. If(t, t’) is the execution interval ofa preempted task Ti, and r is the total amount
ofother tasks executed in the same interval, then r

_
e(T).

Proof. The list L constructed in step of Algorithm A has the property that pre-
cedence constraints in z are observed. That is, if T is a predecessor of T in z, then Ti
precedes T in L. Since the tasks are scheduled in the order ofL, property holds. When
a preempted task is scheduled by Algorithm A, it fills consecutive idle slots. Thus property
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FIG. 2. The A-schedule constructedfrom the MC-schedule in Fig. 1" (a) after T5 is scheduled; (b) after T8
is scheduled; (c) after T: is scheduled by Rule 4; (d) after T: is rescheduled by Rule 5" e thefinal A-schedule.

2 holds. Finally, we observe that a preempted task Ti is scheduled by either Rule 3 or
Rule 4. In both cases, we have that r >= e(Ti). Thus property 3 holds. [3

We show in Theorem 9 that there are no idle slots in an A-schedule and that each
preempted portion ofa preempted task has integer length. The next lemma, whose proof
is omitted here but can be found in [5], is instrumental in proving Theorem 9.

LEMMA 14. For each <= <= n, let SA i) be the schedule obtained after thefirst
tasks have been scheduled by Algorithm A and let COA (i) be its length. For each 1 <-j <-
i, let si( Tj) and f(Tj) denote the starting andfinishing times ofTj in SA(i), respectively.
Then we have, for each <= <= n, that

1. 0A(i) <=f(Ti);
2. si( Tj) andfi( Tj) are integral multiples of l/2 for each <=j <-_ i;
3. Each idle slot in SA (i) has integer length;
4. For each <= j < i, iffi( Tj) >f(Tj), then there is a task T such that the interval

si( Tj) fi( Tj) is contained in the interval si( Tr) J( Tr) and si( Tr) <f(Tj).
THEOREM 9. Let S be the A-schedulefor z. Then we have that
1. SA does not have any idle slots;
2. If Ti is a preempted task in SA, then each preempted portion of Ti has integer

length;
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3. Let Ti be a preempted task in Sa, and a and b be the first and last instants at
which Ti coexecutes with another task, say T and Tk, respectively. Then the level of Tj
at a and the level of Tk at b are integers.

Proof. By Lemma 14, wa WMC. Since SMc does not have any idle slots, Sa cannot
have any idle slots. Thus property holds. Properties 2 and 3 follow from property 3 in
Lemma 14. D

As is seen in the next section, the technique to reschedule the nonpreempted double
tasks is different from that for the preempted tasks. The properties in Theorem 8 and
properties and 3 in Theorem 9 are sufficient to guarantee that the preempted tasks can
be rescheduled such that the resulting schedule has concurrency no less than its total idle
time. For nonpreempted double tasks, we need the schedule to satisfy additional properties.
Let T; be a nonpreempted double task with its minor part in the interval (ag, b). It is
desired that there is an interval ITi (li, ri) such that IT contains (ai, b), ri li >=
3 (bi a), and no other nonpreempted double tasks or preempted tasks are executed in
ITs. Furthermore, for any two nonpreempted double tasks Ti and Tj, we need IT N
ITj . Algorithm B, given below, reschedules the nonpreempted double tasks such
that these properties are satisfied, along with the properties in Theorem 8 and properties
and 3 in Theorem 9. Note that the RESCHEDULE procedure in Algorithm B is not

given; it is given in the proof of Theorem 10. Also, the continue statement in Algorithm
B causes the control flow to skip all subsequent statements in step 2.

Algorithm B
1. Let T1, T2, T, be the n tasks such thatfA(Ti) <=fA(Ti+l) for each _-<

< n. boundary - O:g. For each from n to l, if Ti is a nonpreempted double task, then
perform step 2.

2. Let the minor part of Ti be in the interval (ai, bi). Let ri be the earliest time
such that r >-- bi and r is either (a) boundary, (b) the starting time of the minor part of
a double task, or (c) the starting or restarting time of a preempted task. If b ai <=
(ri bi)/2, then boundary - ai; continue }. li - r 3 (hi ai). If no other non-
preempted double tasks or preempted tasks are executed in the interval (l, r;), then
boundary - li; continue }. RESCHEDULE( Tg, ri).

A schedule constructed by Algorithm B is called a B-schedule, denoted by SB, and
its length is denoted by Wa. Figure 3 shows the B-schedule obtained from the A-schedule
in Fig. 2. In the A-schedule shown in Fig. 2, Ts, TT, TI, and T14 are the nonpreempted
double tasks. Only T4 must be rescheduled; the other tasks already have the conditions
satisfied.

THEOREM 10. Let SB be the B-schedule obtainedfrom SA. Then the properties in
Theorem 8 and properties and 3 in Theorem 9 hold for SB. Furthermore, if Tg is a
nonpreempted double task in SB such that its minor part is in the interval a, bi), then
there is an interval ITi li, ri) such that

1. ITi contains ai hi) and r li >- 3 (hi ai
2. No other preempted tasks or nonpreempted double tasks

are executed in ITs;
3. For any other nonpreempted double task T, we have that ITi f’l IT .

P!

0 2 3 4

Tt3 Ta

FIG. 3. The B-schedule constructedfrom the A-schedule in Fig. 2.
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Proof. Let Ti be a nonpreempted double task in SA. If Ti does not cause the
RESCHEDULE procedure to be executed, then it is clear that the properties stated in
Theorem 10 hold. Thus we may assume that RESCHEDULE( Ti, ri) is executed in
Algorithm B. Let (ai, bi) and (ci, di) be the intervals of the minor and major parts of Ti
in SA, respectively. Without loss of generality, we may assume that the major part is
executed on P2. Let li and r; be as computed in Algorithm B. By Algorithm B, there are
no preempted or nonpreempted double tasks, besides Ti, executed in the interval
(hi, ri). Furthermore, there must be some preempted or nonpreempted double tasks,
besides Ti, executed in the interval (li, ai). Let x bi ai and ci x. Let U be the
set of tasks, besides T;, executed in the interval (t, ai), and let V_ U be the set of
preempted tasks in U. Note that if T e Vand if a portion of T is executed totally outside
the interval (t, ai), then that portion of T is not counted toward V. Since Zi is a non-
preempted double task, any T e V must finish by ai. We first remove all tasks in U from
the schedule. Let tl =< and t2 -< be the starting times of the idle slots on P1 and P2,
respectively. We then try to assign the minor part of T; in the interval (t, ci) on P2 (so
that it becomes a nonpreempted regular task) and reschedule the tasks in U in the re-
maining idle slots so that the conditions ofthe theorem are satisfied. If this is impossible,
then we leave Ti as it is and try to reschedule the tasks in U so that the conditions of the
theorem are satisfied. We have the following two cases to consider.

Case I. Some predecessors of Ti are in U.
If tl < t, then we interchange PI with P2 for the interval (0, re), and, after the swap,

we let t and t be the starting times of the idle slots on P1 and P2, respectively. Thus we
always have that t >= t2. Let Tk and Tj. be the tasks started at tz and tl, respectively. (If
t t2, then we let Tk be the one that finished last.) Let Wbe the set of all predecessors
ofT/in U. For each TIe W,fA(TI) > andf(Tz) <- t, and hencefA(Tt) >je(Tt). Thus,
by Lemma 14, there is a Tq such that the interval (SA (Tt), fA (TI)) is contained in the
interval (SA (Tq), fA (Tq)), and SA (Tq) < f’(Tl) <- t. Since T and Tj are the only tasks
in U that start at or earlier than t, Tq must be either Tg or Tj. We now show that it is
impossible for Tq to be T. Suppose that Tq is Tj. Then, since Tq is scheduled by Rule
5 of Algorithm A, the tasks in W must have been scheduled before Tj.. Furthermore,
each Tt e W must finish by f(T) =< before Tj. is scheduled. This means, however,
that the tasks in W are scheduled in the interval (t, t) on P before T is scheduled.
Therefore it is impossible for Tj to start at t. Hence Tq must be T, and we have that
fa( T) <- fa( T).

The tasks in W are rescheduled by Rule 5 of Algorithm A because of Tk. Let t’ be
the latest finishing time for the tasks in W. Clearly, we have that t’ > t. Let X

_
Wbe

the set of tasks executed in the interval (tl, t’) on P. We schedule the minor part of Ti
in the interval (t, c;) on P2, and the tasks in X are scheduled on P and P2 as early as
possible (this process unwinds the rescheduling by Rule 5 in Algorithm A). Figure 4(a)
shows the schedule after the tasks in X are scheduled. Let t* be the latest finishing time
for the tasks in X and h be the total amount of tasks in X executed on P. Since all tasks
in X should finish by t, we have that t* < t, and, since t’ > t, we have that t* / h >=
t’ > t. Let U’ U X { T }. The tasks in U’ and T are scheduled as shown in Fig.
4 (b). Note that the tasks in U’ are scheduled in the same relative order as in Sa. Observe
that the finishing time of T must be larger than t. Finally, we interchange P with P at
time and thereafter. The final schedule is shown in Fig. 4(c).

Since T is preempted, it is not a nonpreempted double task. Thus no new non-
preempted double tasks are created in the process, and hence the properties in Theorem
10 hold. Properties and 2 in Theorem 8 clearly hold. Since the double amount of Tk
is t* and since h > t*, property 3 in Theorem 8 also holds. Property in Theorem
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FIG. 4. Illustrating Case in Theorem 10: (a) after the tasks in X are scheduled; (b) after the tasks in U’
tO Tk are scheduled; c interchanging P with P2 at and thereafter.

9 clearly holds. Since di bi and e(Ti) are integers and since each T 6 U’ has integer
execution time, the level of T; when T is finished must be integer. Similarly, the level of
Ti when Tk is finished must also be integer. Thus property 3 in Theorem 9 also holds.

Case II. No predecessors of Zi are in U.
We consider two cases depending on whether t >= t2.
Case 1. We have that t >= t2.
In this case, we schedule the minor part of Ti in the interval (t, ci) on P2 and the

tasks in U in the remaining idle slots. Let Tk U be the task that starts at t2 on P2. Then
we have that < fA(T) <= ci. Letting d fA(T) t, we have that d =< x.

Suppose that T is not a preempted task; i.e., T is not in V. We schedule a portion
of Tk in the interval (t2, t) on P2. Then the tasks in V, the remaining portion of T, and
the tasks in U’ U- V- T ) are scheduled in that order on P, starting at t. Note
that the tasks in V are scheduled in the same relative order as in SA and that the tasks
in U’ are scheduled so that precedence constraints are observed. Let S’ denote this schedule.
Clearly, properties and 2 in Theorem 8 and property in Theorem 9 hold. Property
3 in Theorem 8 also holds, since each task in V is a preempted regular task. Since t
t2 and the lengths of the tasks in V are integers, property 3 in Theorem 9 is also satisfied.
Let the portion of T on P be scheduled in the interval (t’, t*), where t’ is the latest
finishing time for the tasks in V and t* t’ + d. As shown in Fig. 5, there are three
possibilities for S’. In Fig. 5 (a), we have that t* =< t. In this case, T is a nonpreempted
double task, and the length of its minor part is d. Since d =< x _-< (b;- t)/2 =< (b;- t*)/
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FIG. 5. Illustrating Case II in Theorem 10 (h >= t2)" (a) t* =< t; (b) t’ _-< < t*; (c) < t’.

2 and since there are no preempted tasks or nonpreempted double tasks in the interval
(t*, bi), the properties in Theorem l0 are satisfied. In Fig. 5 (b), we have that t’ _-< <
t*. In this case, we interchange P1 with P2 at and thereafter. The resulting schedule is
shown in Fig. 6(a). Clearly, the length of the minor part of Tk is less than d. Hence the
properties in Theorem 10 hold, as in the previous case. Finally, in Fig. 5 (c), we have
that < t’. Let Vl and V2 be the tasks executed on P1 in the intervals (tl, l) and (t, t’),
respectively. Then at most one task in V, say ’, can be split into two parts, with one
part in V1 and the other in V2. We now interchange P1 with P2 at time and thereafter,
and swap Tk with the tasks in V2. The resulting schedule is shown in Fig. 6(b). Note
that T is a nonpreempted regular task. Since no new nonpreempted double tasks are
created, the properties in Theorem 10 hold. Since di bi and the lengths of the tasks in
V2, besides , are integers, the level of T must be integer when each task in V2 finishes.
As explained above, the level ofT is integer when each task in Vl finishes. Thus property
3 in Theorem 9 also holds. In all three cases, we set boundary to be

If Tk is a preempted task (i.e., T e V), then we let V’ V- { Tk }. Since the
execution intervals of preempted tasks do not overlap, the tasks in V’ must start after T
is finished. Therefore no tasks in V’ can be scheduled in the interval (tl, fA(T)). We
consider two cases, depending on which rule was used to schedule T in Algorithm A.
Suppose that T was scheduled by Rule 4 of Algorithm A. We schedule a portion of Tk
in the interval (t2, t) on P2. The remaining portion of T, the tasks in V’ and the tasks
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FIG. 6. Transforming the schedules in Fig. 5: (a) the schedule obtainedfrom the schedule in Fig. 5(b);
(b) the schedule obtainedfrom the schedule in Fig. 5(c).

in U- V, are scheduled in that order on P, starting at t. Note that the tasks in V’ are
scheduled in the same relative order as in SA and that the tasks in U- V are scheduled
so that precedence constraints are observed. Observe that Tk must finish after time and
that its double amount is decreased after the rescheduling. Since no new nonpreempted
double tasks are created, the properties in Theorem 10 hold. Clearly, the properties in
Theorem 8 and property in Theorem 9 are satisfied. Since di bi and the lengths of
the tasks in U- { Tk } are integers, the level of Ti must be integer when each task in U
finishes. Thus property 3 in Theorem 9 also holds.

If Tk was scheduled by Rule 3 of Algorithm A, then we let Y
_
U be the set of tasks

executed on P during the interval (t,fA(T)) and y be the total execution time of the
tasks in Y. Clearly, we have that y ->_ fg (Tg) tl. Furthermore, since Tk is a preempted
task, and since the execution intervals of preempted tasks do not overlap, the tasks in Y
cannot be preempted tasks. We now schedule a portion of Tg in the interval (/2, t) on
P2 and the remaining portion in the interval (t, t + d) on P. The tasks in U- { T }
are then scheduled on P, starting at tl d- d. These tasks are scheduled in such a way that
the task with the smallest finishing time is scheduled first. Thus the tasks in V’ start after
all tasks in Y are finished. Letting t’ be the earliest starting time for the tasks in V’, we
have that ’>- t + d + y >= fg (Tk) + d. Hence there are no overlappings of executions
of preempted tasks. Since Tk is a preempted task, no new nonpreempted double tasks
are created, and hence the properties in Theorem l0 are satisfied. Clearly, properties
and 2 in Theorem 8 and property in Theorem 9 hold. Since di bi and the execution
times of the tasks in U- { T } are integers, property 3 in Theorem 9 is also satisfied.
Let r be the total amount oftasks, besides Tg, executed in the interval (SA (Tg), ), where

max { t, t + d}. If r

_
e(T), then property 3 in Theorem 8 also holds, and we are

done. Otherwise, we reschedule Tk to become a nonpreempted double task. We show
that the properties in Theorem 10 hold after the rescheduling.

If + d > t, then we interchange P with P2 at and thereafter. Furthermore, we
do not reschedule the portion of T in the interval (t, t + d) on P2. Let d’ be the length
of time during which Tk is doubly executed. Clearly, we have that d’ min { d, t }.
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Since d+(t--t)=(fA(Tk)--t)+(t--t)=fA(Tk)--t, we have that d’-<
(fA(T) tl)/2. (Note that ifa min {/3, 3"), then a =< (/3 + 3’)/2.) Let t* tl + d’.
Observe that there are no preempted tasks or nonpreempted double tasks, besides Tg,
executed in the interval (t*, t’). Since t’>= tl + d + y and t* tl + d’, we have that
t’- t* >= y. Now d’ =< (fA(Tg) tl)/2 <= y/2 -< (t’-- t*)/2. We reschedule the tasks in
the interval (SA(T), tl ). Let Z be the set of tasks, besides Tk, executed in the interval
(SA(Tk), t) and z be the total amount of tasks in Z executed in the same interval. Then
we have that z < t* SA T); otherwise, we have that r >= e(T). Furthermore, we have
that z > tl SA(Tk) since Tk is not doubly executed in the interval (SA(Tg), t). NOW
we schedule the tasks in Z on P from SA(Tk) to SA(T) + z, and T in the intervals
SA (T), t) and SA Tg + z, * on P2 and P, respectively. Note that, after the reschedul-

ing, Tk becomes a nonpreempted double task with its minor part executed in the inter-
val (SA(T) + z, t*) on P. Since
SA(T) + z < t*. Therefore the length of the minor part of Tk is less than d’. Since d’ _-<
(t’ t* / 2, the properties in Theorem 10 are satisfied.

Case 2. We have that < 12.
Let T e U be the task scheduled on P1 at l. If t2 --< x or fA(T) <= ci, then we

interchange P1 with P2 for the interval (0, t). After the interchange, we reschedule the
tasks in U in the same manner as in Case 1. If T becomes a nonpreempted double task
after the rescheduling, it is easy to see that the length of the minor part of T is no more
than x. Thus we can use the same argument as in Case 1.

Now suppose that t2 > x andfA (Tk) > Ci. Let X be the set of tasks executed in
the interval (fA (T), a; on P1. We want to show that T and the tasks in X cannot be
preempted tasks. Observe that T; is scheduled after the tasks in X U T have been
scheduled. Thus, if any task in X U T } is a preempted task, then it must have been
scheduled by Rule 4 of Algorithm A, and hence its last portion must be executed con-
currently by both processors. This contradicts the fact that Ti is executed on P2 in the
interval (c;, a; ). Let Tj. e U be the task scheduled on Pz at t2, and let Ybe the set of tasks
executed on P2 in the interval (fA(T), Ci ). Observe thatfA(T) > and that there must
be some preempted tasks in Y U { T }. We consider two cases depending on whether T
is a preempted task. If Tj. is a preempted task, then we schedule the minor part of Ti on
P2 in the interval (t, c ). A portion of Tj. is scheduled in the interval (t2, t) on P2, and
the remaining portion is scheduled on P1, starting atfA (Tk). Finally, the tasks in Yfollow
Tj on P1, and they are followed by the tasks in X. Since no new nonpreempted double
tasks are created, the properties in Theorem 10 are satisfied. It is easy to see that the
properties in Theorem 8, and also properties and 3 in Theorem 9, hold.

If T is not a preempted task, then we have that V
__

Y. In this case, it may not be
necessary to reschedule T. First, we swap the task T with the tasks in V, so that they
are executed before Tj.. Since e(Tj.) > t2 > x, T must be executing at time after the
swap. Let t* be the new starting time of Tj.. If t* -< x, then we interchange P1 with
P2 for the interval (0, t*) and reschedule the tasks in U’ U { T/. } in the same manner as
in Case 1, where U’ U- V. On the other hand, if t* > x, then we leave all other
tasks unchanged. Thus T is still a nonpreempted double task with its minor and major
parts in the intervals (ai, b and (c, di ), respectively. Observe that there are no preempted
tasks or nonpreempted double tasks, besides Ti, executed in the interval (t*, bi ). Fur-
thermore, b t* > 3x. Thus the properties in Theorem 10 are satisfied. It is easy to
see that the properties in Theorem 8 and properties and 3 in Theorem 9 hold. In this
case, we set boundary to be t*.

4.2.2. Insertion. In this section we show how a B-schedule can be converted into
a nonpreemptive schedule S such that ws/o, =< 4/3. A B-schedule can have four types
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of tasks--preempted regular, preempted double, nonpreempted regular, and non-
preempted double. Preempted tasks (both regular and double) are rescheduled by Al-
gorithm D, given later. Nonpreempted double tasks are rescheduled by Algorithm C,
given below. Recall that a nonpreempted double task has two parts--minor and major,
with the minor contained in the major. The algorithm to reschedule the nonpreempted
double task is simply to expand the execution of the major part by the length of the
minor, creating an idle interval with length twice that of the minor.

Algorithm C
1. Let $1 be the given B-schedule and o)1 be its length. Let T1, T2, T/ be the

nonpreempted double tasks in $1. For each from to k, perform step 2.
2. Without loss of generality, assume that the minor and major parts of Ti are

executed on P1 and P2, respectively. Let be the finishing time of the minor part of Ti,
and let x be its length. Shift the tasks executed in the interval (t, wi on both processors
to the fight by x. Remove the minor part of Ti from PI and assign it to the interval
(t, + x) on P2. Let Si + be the new schedule and 09 + be its length.

A schedule constructed by Algorithm C is called a C-schedule, denoted by Sc, and
its length is denoted by Wc. Figure 7 shows the C-schedule obtained from the B-schedule
in Fig. 3. Note that there are only three nonpreempted double tasks in the B-schedule
in Fig. 3, namely, Ts, T7, and

THEOREM 1. Let Sc be a C-schedule and a bi be an idle slot in Sc. Then there
is an interval IT l, ri such that

1. ITi contains the interval ai, bi ), and ri l >= 2 bi ai)
2. No preempted tasks are executed in ITs;
3. For any other idle slot (aj, bj), we have that ITi
Proof. By Algorithm C, the idle slot (a, b;) is created because of rescheduling a

nonpreempted double task Ti. The minor part of Ti has length (b; a; / 2. The theorem
follows immediately from Theorem 10.

THEOREM 12. Let r be a task system such that its B-schedule has no preempted
tasks. Then we have that Wu/op <= 4/3.

Proof. Since the B-schedule for r has no preempted tasks, its C-schedule has no
preempted tasks, also. Thus Sc is a valid nonpreemptive schedule for r. By Theorem 11,
the concurrency of Sc is no less than its total idle time. Thus, by Lemma 12, we have
that WN/ OOp (.OC/ (.Op 4 / 3.

We now consider how to reschedule the preempted tasks. Observe that the execution
intervals of preempted tasks in a C-schedule do not overlap. That is, if Ti and T are two
preempted tasks in Sc, then the execution intervals of Tg and T are either disjoint, or
one is properly contained in the other. Furthermore, if the execution interval of Tj is
properly contained in that of T;, then Ti is never executed in the execution interval of

T. The rescheduling proceeds from the preempted task in the innermost level to the
outermost one. Suppose that we are considering Ti. We divide the current schedule into
three portionsmthe left portion from the beginning of the schedule to the starting time
of Ti, the middle portion from the starting time of T; to the finishing time of Tg, and

0

P T T T3

P T Ts T4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1717

FIG. 7. The C-schedule constructedfrom the B-schedule in Fig. 3.
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FIG. 8. The schedule obtained after inserting T8: (a) the schedule SM; b the schedule SMl c the schedule
S2; (d) the schedule S3; (e) the schedule after concatenation.

the fight portion from the finishing time of Ti to the end of the schedule. The middle
portion is rescheduled, and the resulting schedule is concatenated with the left and fight
portions again. To reschedule the middle portion, we first remove all of Ti from the
schedule. Then the schedule is rearranged to form a proper schedule (defined later).
Finally, the whole piece of Ti is inserted into the proper schedule. This is done in such
a way that the resulting schedule has concurrency no less than its total idle time. Thus,
after all preempted tasks have been rescheduled, the final schedule has the property that
its concurrency is no less than its total idle time, and hence the 4/3 bound holds by
Lemma 12. The algorithm is given below. Note that there are three subroutines used in
the algorithm, but they are not given there; they are given later when we characterize the
schedules obtained at each iteration of the algorithm.

Algorithm D
1. Let S be the given C-schedule and 0 be its length, -- 1. While there is a

preempted task, perform step 2.
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FIG. 9. Thefinal schedule SD: (a) the schedule SM,; (b) the schedule SM2; C the schedule SM3.

2. Let Tj be a preempted task in the innermost level, and let t, and t2 be the starting
and finishing times of Tj in S;, respectively. Divide S; into three partial schedules S,,
SM, and SR such that they consist ofthe intervals (0, t, ), (t,,/2), and (t2, o)i ), respectively.
Let St, be the schedule obtained by removing Tj from SM. SM2 REARRANGE(SM,).
SM3 INSERT(Tj, SM2). Si +1 - CONCATENATE(S,, SM3, Sn). Let wi +, be the
length of Si +1. -- + 1.

A schedule constructed by Algorithm D is called a D-schedule, denoted by SD, and
its length is denoted by 0D. Figures 8 and 9 show the schedules obtained after inserting
T8 and T,, respectively. Since Ts and TI are the only preempted tasks, the schedule
shown in Fig. 9(c) is the final D-schedule.

Before we give the REARRANGE procedure, we must define additional notation.
Let Sbe a nonpreemptive schedule, and let (al, bl ), (a2, b2), (ak, bk) be the sequence
of all idle slots in S. S is called a proper schedule if there are no idle slots on P1, (2)
for each =< < k, two tasks start at bi, and (3) if b < os, then there is a task T that
starts in the interval (a, b). In the INSERT procedure given later, we assume that the
schedule in hand is a proper schedule. Thus the REARRANGE procedure must generate
a proper schedule. If S is a proper schedule, an interval (tl, t2) on P2 is called a task
block if it is a maximal interval during which tasks are executing. Thus tl is either
the beginning of the schedule or the fight end of an idle slot, and t2 is either the end of
the schedule or the left end of an idle slot. The proof of the next theorem gives the
REARRANGE procedure.

THEOREM 13. Let SM be the middle subschedule when the preempted task Tj is
consideredfor insertion in Algorithm D. Let TI and T2 (ifthey exist) be two tasks such
that T1 starts at the beginning and Tzfinishes at the end ofSM. Then there is a proper
schedule SM2 such that T1 starts at the beginning and Tzfinishes at the end ofSM2.

Proof. Let SM1 be obtained from SM by removing Tj. We obtain SM2 from SMI as
follows. By scanning SM1 from left to fight, we shift the tasks in S1 as far left as possible.
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Let SM2 denote this new schedule and let 09M2 be its length. By interchanging processors
within each segment if necessary, we can make all idle slots to be on P2. Clearly, St is
a normalized schedule, and T starts at the beginning of St2. If T2 finishes at the end
of St2, then Stz is the desired schedule. Otherwise, we shift T2 fight until it finishes at
wta. Note that T2 is in the last segment with no tasks following it. Furthermore, T2 is
executed on P2. The shifting of T2 shifts the idle slot in the last segment to an earlier
position. Let (a, b) be this new idle slot. If there is a task that starts in (a, b), then we
have the desired schedule. Otherwise, we shift the task that finishes at a on P2 to the fight
until its finishing time becomes b. Shifting this task again shifts the idle slot to an earlier
position. We repeat the above process until we obtain the desired schedule. Note that
the shifting process must stop at the beginning of the last segment, since two tasks start
at that point. [2

LEMMA 15. Let be a task system such that each task has integer execution time.
IfS is a proper schedulefor -, then each idle slot in S has integer length.

Proof. The proof is immediate from the definition of proper schedules, ff]

THEOREM 14. Let Stz be the schedule as in Algorithm D. Then each idle slot in
Sta has integer length.

Proof. Since SM2 is a proper schedule, the theorem is proved by showing that each
task executed in S4: has integer execution time. This follows immediately from property
3 in Theorem 9. [5]

Our next goal is to give the INSERT procedure. Let T be the task to be inserted
into the schedule St2. We show in Theorem 15 that, if e(Tj.) -< Es,2, e(T) -< 4, and
Is, <= Cs, + e(T), then there is a nonpreemptive schedule St3 for Tj- and the tasks in
St such that Is,3 <= Cs3. We then show in Theorem 16 that the conditions e(T) =<
Es,2 and Is, <= Cs, + e(T) hold at each iteration of Algorithm D. To show the above
results, we must introduce additional notation. Let r (TS, G, e) be a task system.
r’ TS’, G’, e’) is a restriction of r if TS’ is a subset of TS, (2) G’ is a subgraph of
G induced by TS’, and (3) e’ is a restriction of e to TS’. Lemma 17 is instrumental in
proving Theorem 15. First, we must prove the following lemma.

LEMMA 16. Let rl (TS1, Gl, el) be a restriction oft2 TS1 U { T}, G2, e2)
such that T is independent with every task in TSI Let Sl ($2) be a nonpreemptive schedule
for r (’/2), and let Ol (w2) be its length. Let C (C2) and I1 (I2) be the concurrency and
total idle time ofS ($2), respectively. Let d (C + 2e(T) 1)/3. Ifw o92 d,
then I <= C2.

Proof. Clearly, we have that E(TS2) E(TS) + e(T), w CI + I, (.o2 C2 --I, E( TS 2C + I, and E(TS2) 2C2 + I. Thus O)2 C2 -- 12 E(TS2) C2
E( TS + e(T) C2, and w C + I E(TS) C. Since o o =< d, we have
that C >= e(T) + C d E( T82)/3. Therefore I2 E(TS2) 2C2 =< C2o []

LEMMA 17. Let ’ TSI, G1, e) be a restriction Of’l"2 (TS1 [,.J { T}, G2, e2)
such that T is independent with every task in TS1. Ife(T) <-_ E( TS and if there is a
proper schedule S1 for - such that I1 <= e(T), then there is a nonpreemptive schedule $2
for 7"2 such that I2 <= C2.

Proof. If e(T) >= E( TS )/2, we can obtain $2 by scheduling all tasks in TS on P
and T on Pz. Then Cz e(T) and 12 E( TS e(T). Since E( TS <= 2e(T), we
have that I2 =< e(T) C2. Thus we may assume that e(T) < E(TSI)/2. Let S be a
proper schedule for z, and let C and I be its concurrency and total idle time, respectively.
Then we have that I _-< e(T). Since E(TS) 2C + I and 2e(T) < E(TS), we
have that

(.) 2e(T) < 2C + I.
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Let d C + 2e(T) I / 3. By Lemma 16, if T can be inserted into S such that the
schedule length is increased by at most d, then the resulting schedule has concurrency
not less than its total idle time. Thus, if e(T) -< d, then we can append T at the end of
S1, and the length of the resulting schedule is increased by at most d. Thus we may
assume that e(T) > d (C + 2e(T) I )/3 or, equivalently,

(, ,) e(T) > C I.
We now show that T can still be inserted into S such that the resulting schedule

has length increased by at most d under conditions (,) and (**). Let (a, bl),
(a2, b2), (ak, bk) be all idle slots in S. Let be the smallest index such that bi >=
e(T) d, and let D be the total amount oftasks in the interval (0, bi on P2. We consider
the following two cases.

Case A. We have that D _-< d.
In this case, we obtain $2 from S, as follows. All tasks in the interval (0, b on P2

are moved to P. If the new idle slot is not large enough for T, then the idle slot is
expanded such that its length becomes e(T). Schedule T in this idle slot. Since D =< d
and since bi >= e(T) d, or, equivalently, e(T) =< b; + d, the schedule length is increased
by at most d.

Case B. We have that D > d.
Let D’ be the total amount of tasks in the interval (bi, osl) on P2. Note that C

D + D’. Thus D’= C D < C d (2C 2e(T) + 11)/3 <= (2C1 2I + I)/3
(since I <- e(T)) (2C I)/3 < (C + e(T))/3 (by(**)) =< (C1 + 2e(T)- I)/3
(since I _-< e(T)) d. Therefore, if we can show that os, ai >= e(T) d, then we can
insert T into the interval (ai, OOs, just as we did in Case A. We prove the contradiction
that Os, a >_- e(T) d. If osl a; < e(T) d, then ai > os, e(T) + d. Since is
the smallest index such that b; >= e(T) d, we have that b;_ < e(T) d. Note that
the interval (bi_ , a;) on P2 is a task block with length a; b;_ . However, ai bi- >
(ws,-e(T)+d)-(e(T)-d) Os-2e(T)+2d= C +11-2e(T)+2(C +
2e(T) I)/3 (5C 2e(T) + I1)/3 > (5C (2C + I) + I)/3 (by (,)) C.
This is the contradiction we seek, since the task block has length greater than

We are now ready to give the INSERT procedure. The proofofthe following theorem
describes the procedure.

THEOREM 15. Let T be the task to be inserted into Sz in Algorithm D. Let Ct2
and IM2 denote the concurrency and total idle time in St2, respectively. If e(T) <-_

EsM2, e(T) <- 4, and IM2 CM2 -[- e(Tj), then there is a nonpreemptive schedule St3for
the tasks in SM2 and T such that It3 <= Ct3, where Ct3 and It3 denote the concurrency
and total idle time in St3, respectively.

Proof. Note that SM2 is a proper schedule by Theorem 13 and that each idle slot
in SM2 has integer length by Theorem 14. Furthermore, T is independent with every
task in St2. If It2 =< e(Tj.), then the theorem holds by Lemma 17. Thus we may assume
that e(T) < It2. Since e(T) _-< 4, we consider the following four cases.

Case (i). We have that e(Tj.) 1.
In this case, we have that IM2 CM2 -- 1. Since each idle slot has length at least

unit, we can obtain St3 by inserting T into any idle slot in St2. Then we have that
Ct3 Ct2 + and It3 IM2 1. Since IM2 =< Ct2 + 1, we have that It3 --< C43.

Case (ii). We have that e(T) 2.
In this case, we have that IM2 CM2 "[- 2. If there is an idle slot in SM2 with length

at least 2 units, then we can obtain St3 by the same method as in Case (i). Thus we
may assume that each idle slot has length unit. Since Ct2 equals the sum ofthe lengths
of all task blocks, C42 is at least the number oftask blocks. Note that the number of idle
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slots is at most one more than the number of task blocks. Thus we have IM2 <---- CM2 -1. TO obtain SM3, we expand an arbitrary idle slot (a, b) in SM2 by unit. This is done
by fight shifting all tasks executed after b by unit. Then Tj is inserted into the new idle
slot, which has a length of 2 units. Clearly, we have that CM3 Ct_ + and IM3 IM2.
Since IM2 <= CM2 q" 1, we have that IM3 <= CM3.

Case (iii). We have that e(Tj) 3.
In this case, we have that IM2 CM2 - 3. If there is an idle slot in St2 with length

at least 3 units, then we can obtain SM3 as in Case (i). On the other hand, if there is an
idle slot in S2 with length 2 units, then we can expand the idle slot by unit and insert
Tj as in Case (ii). Thus we may assume that each idle slot has length unit. We consider
the following two cases. If there is a task block with length unit, then we can move the
task in the task block to P, thereby creating a new idle slot with length 3 units or more.
We can now schedule T in this idle slot. Clearly, CM3 CM2 -[- 2 and IM3 IM2 1.
Since It2 --< Ct2 + 3, we have that IM3 CM3. On the other hand, if each task block
has length 2 units or more, then Ct2 must be at least twice the number of task blocks.
Since I is at most one more than the number of task blocks, we have that Ct2 >--
2(Ira2 ), or, equivalently, CM2 -[- 2 >= 2IM2. Since IM2 > e(Tj) 3, we have that
Ct2 > It2 + 1. We can expand an arbitrary idle slot by 2 units and insert Tj- into this
new idle slot. Clearly, we have that Ct3 Ct2 + and IM3 IM2 -- 1. Since Ct2 >
I42 + 1, we have that IM3 <= CM3.

Case (iv). We have that e(Tj) 4.
In this case, we have that It2 -< Ct2 + 4. If there is an idle slot in St2 with length

4 units or more, then we can obtain St3 as in Case (i). Similarly, if there is an idle slot
with length 3 units, then we can expand the idle slot by unit as in Case (ii). Thus we
may assume that each idle slot has length 2 units or less. If there is a task block with
length unit between two idle slots, then we can move the task in the task block to P,
thereby creating an idle slot with length at least 4 units. T is inserted into the new idle
slot. Clearly, we have that CM3 CM2 -- 3 and IM3 IM2 2. Since It2 <= CM2 -[- 4, we
have that IM3 <= CM3. Thus we may assume that each task block between two idle slots
has length more than unit. Therefore CM2 must be at least twice the number of task
blocks between two idle slots. The number oftask blocks between two idle slots is exactly
one less than the number of idle slots. Since each idle slot has length 2 units or less, IM2
is no more than twice the number of idle slots. Consequently, we have that CM2 >=
IM2 2 or, equivalently, IM2 <= CM + 2. If there is an idle slot with length 2 units, then
we can expand the idle slot by 2 units and insert T into this new idle slot. Clearly, we
have that CM3 CM2 q- 2 and IM3 IM2. Since IM2 <= CM2 + 2, we have that IM3 <=
CM3. On the other hand, ifeach idle slot has length unit, then IM2 is exactly the number
of idle slots. Consequently, we have that CM2 >= 2IM2 2. Since IM2 > e(Tj) 4, we
have that CM2 > IM2 + 2. We can now expand an arbitrary idle slot by 3 units and insert
Tj into a new idle slot. Clearly, we have that CM3 CM2 + and IM3 IM2 -I- 2. Since
CM2 > IM2 + 2, we have that 1M3 <= CM3. [’]

THEOREM 16. Let T be the task to be inserted into SM2 in Algorithm D. Let Ct2
and It2 denote the concurrency and total idle time ofSt, respectively. Then we have
that e(T) <= Es,: and IM2 CM2 dr- e(Tj).

Proof. Let T be a preempted task in the innermost level in the C-schedule. By
property 3 in Theorem 8, we have that e(T) <- Es,:. Let C and It denote the con-
currency and total idle time of St, respectively. Let e’(Tj) denote the double amount
of T in St. From the nature of Algorithm C, we have that It =< Ct e’(T)
(e(Tj) 2e’(Tj.)). Let C4 and It denote the concurrency and total idle time of Stl,
respectively. Since S is obtained from SM by removing Tj., we have that It It +
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(e(Tj) 2e’(Tj.)) and Ct Ct- e’(T) (e(T) 2e’(Tj)). Thus we have that IM -<
Ct + e(Tj). Since St2 is obtained by rearranging SM, we have that CM2 >- Ct and
It2 -< It. Thus we have that It2 -< Ct2 + e(Tj). If Tj. is not in the innermost level,
then, by induction on the level of nestedness, we can show that e(Tj) <= EsM2 and
I2 <= CM2 + e(Tj), l-I

We now describe the procedure CONCATENATE. The purpose of CONCATEN-
ATE is to concatenate together the subschedules Sz, SM3, and Sg to form Si+. In
Algorithm D, the schedule S is divided into three subschedules Sz, S, and Sa. It is
possible that there is a task T executed in both S and S. Similarly, there may be a
task T2 executed in both S and Sa. When S is divided into three portions, T and T
are cut at the boundaries. The CONCATENATE procedure must ensure that T and T
are not preempted at the boundaries in S;+. By the REARRANGE and INSERT pro-
cedures, T and T2 can always be rearranged so that T starts at the beginning and T
finishes at the end of S3. Thus, by interchanging processors in Sz if necessary, we can
arrange T to be executed on the same processor in S as in S3. Similarly, T2 can also
be arranged so that it is executed on the same processor in Sa as in S3. Thus T and
T2 are not preempted at the boundaries in S;+.

THEOREM 17. Let r be a task system such that e(T) { 1, 2, 3, 4 ) for each T.
Then we have that ov/oe <= oo/oe <- 4/3.

Proof. The proof is immediate from Theorems 15 and 16 and Lemma 12. []

5. Conclusion. In this paper, we have shown that Liu’s bound is valid for UET and
tree-structured task systems. For two processors, we show that the 4/3 bound holds for
simple task systems, as well as task systems with execution times drawn from the set
{ 1, 2, 3, 4 }. We note that all of our proofs are constructive. Thus they can be used as
algorithms with a guaranteed performance bound. For future research, it is clearly desirable
to settle Liu’s conjecture for arbitrary task systems on arbitrary number of processors.
However, we feel that the problem might be too difficult to solve. A less ambitious goal
is to settle the 4/3 bound for arbitrary task systems on two processors. In this regard, we
note that all of our results in 4.2, except Algorithm D, are also applicable to arbitrary
execution times. A more powerful insertion technique is needed if our technique proves
to be successful.

REFERENCES

E. G. COFFMAN, JR., ED., Computer and Job-Shop Scheduling Theory, John Wiley, New York, 1976.
2 E. G. COFFMAN, JR. AND R. L. GRAHAM, Optimal schedulingfor two-processor systems, Acta Inform.,

(1972), pp. 200-213.
3 D. K. GOYAL, Non-preemptive scheduling of unequal execution time tasks on two identical processors,

Tech. Report CS-77-039, Computer Science Department, Wash. State University, Pullman, WA,
1977.

4 R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 416-
429.

5 K. S. HONG, On Some Scheduling Problems, Ph.D. thesis, Northwestern University, Evanston, IL, 1989.
[6] M. T. KAUFMAN, An almost-optimal algorithm for the assembly-line scheduling problem, IEEE Trans.

Comput., C-23 (1974), pp. 1169-1174.
[7] M. KUNDE, Nonpreemptive LP-scheduling on homogeneous multiprocessor systems, SIAM J. Comput.,

l0 (1981), pp. 151-173.
[8] S. LAM AND R. SETHI, Worst case analysis oftwo scheduling algorithms, SIAM J. Comput., 6 (1977),

pp. 518-536.
[9] C. L. Lu, Optimal scheduling on multiprocessor computing systems, in Proc. 13th Ann. Sympos. on

Switching and Automata Theory, IEEE Computer Society, 1972, pp. 155-160.
l0 R. R. MUNTZ AND E. G. COFFMAN, JR., Optimal preemptive scheduling on two-processor systems, IEEE

Trans. Comput., C- 18 (1969), pp. 1014-1020.
J. D. ULLMAN, NP-complete scheduling problems, J. Comput. Systems Sci., l0 (1975) pp. 151-173.



SIAM J. DISC. MATH.
Vol. 5, No. 4, pp. 524-538, November 1992

(C) 1992 Society for Industrial and Applied Mathematics
008

2-COMPETITION GRAPHS*
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Abstract. If D (V, A) is a digraph, its p-competition graph for p a positive integer has vertex set V and
an edge between x and y if and only if there are distinct vertices a, , an in D with (x, a and (y, a) arcs
of D for each 1, , p. This notion generalizes the notion of ordinary competition graph, which has been
widely studied and is the special case where p 1. Results about the case where p 2 are obtained. In particular,
the paper addresses the question of which complete bipartite graphs are 2-competition graphs. This problem is
formulated as the following combinatorial problem: Given disjoint sets A and B such that A tO BI n, when
can one find n subsets of A tO B so that every a in A and b in B are together contained in at least two of the
subsets and so that the intersection of every pair of subsets contains at most one element from A and at most
one element from B?

Key words, competition graphs, edge clique coverings, food webs, complete bipartite graphs, set coverings

AMS(MOS) subject classifications. 05C90, 05C99, 05D05, 92D40

1. Introduction. Suppose that D (F, .4) is a digraph, loops allowed. (For all un-
defined graph theory terminology, see ], 9 ].) Ifp is a positive integer, the p-competition
graph corresponding to D, Cp(D), is defined to have vertex set F and to have an edge
between x and y in F if and only if, for some distinct al, ap in F, (x, al), (y, a ),
(x, a2), (y, a2), (x, ap), (y, a) are in.4. This concept was introduced in [5] as a
generalization ofthe special case where p 1, which has been studied by many authors.3

The 1-competition graphs were motivated by a problem in ecology and have applications
to a variety of fields, as summarized in [8]. The p-competition graphs have a similar
motivation and similar applications to other fields. The ecological motivation is as follows:
The vertices ofD are considered species in an ecosystem, and there is an arc from species
x to species a if x preys on a. Then x and y are joined by an edge in the p-competition
graph if and only if they have at least p common prey. The literature of 1-competition
graphs, otherwise known as competition graphs, is summarized in [4], [6], and [8]. In
this paper, we study the special case where p 2.

It is easy to reduce the study ofp-competition graphs to a combinatorial problem
that itself is of interest. Suppose that G is a graph and that F { S, Sr is a family
of subsets of the vertex set of G, repetitions allowed. We say that F is a p-edge clique
covering, or p-ECC, if, for every set of p distinct subscripts l, i2, ip, T Si t3
Si2 t 3 Sip is either empty or induces a clique of G, and the collection of sets of the
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form T covers all edges of G. Let 0(G) be the smallest r for which there is a p-ECC F.
(A 1-ECC is an ordinary edge clique coveting. Edge clique coverings have played a
central role in the theory of competition graphs; cf. [10 ].)

THEOREM (see [5]). A graph G with n vertices is a p-competition graph if and
only ifOPec(G) <- n.

Proof. Suppose that G Cp(D), where D (V, A), and let V(G) v l, vn ).
For each i, let Si { vj: (vj, vi A ). It is easy to verify that the family of S; is a p-ECC.
Conversely, suppose that G and a p-ECC F $1,’", Mr), r <= n, are given. Now
define D (V, A) on V V(G) by letting (v, v) A if and only if v; 6 S. It is easy to
verify that G C,(D). E]

COROLLARY. A graph G with n vertices is a p-competition graph if and only if G
has a p-ECC consisting ofn sets.

Proof. Suppose that F is a p-ECC of r < n sets. Since repetitions are allowed in F,
we can add n r copies of the empty set to F to obtain a p-ECC of size n. []

Kim et al. [5] obtain a number of results about p-competition graphs in general;
for example, they extend the basic results about ordinary competition graphs obtained
in 2 ], 7 ], and 11 ]. They also obtain a variety of results about 2-competition graphs.
For instance, they show that all trees are 2-competition graphs, all unicyclic graphs are
2-competition graphs except the 4-cycle C4, and all chordal graphs are 2-competition
graphs. In this paper, we study the question: What complete bipartite graphs are 2-
competition graphs?

A graph G Km,x is a complete bipartite graph if the vertices are partitioned into a
pair ofdisjoint sets A and B ofm and x vertices, respectively, and there is an edge between
two vertices if and only if they are in different sets. By virtue ofthe corollary to Theorem
1, the question of whether Km,x is a 2-competition graph is reduced to the combinatorial
question: If A tO B m + x n, are there n subsets ofA t3 B (not necessarily distinct)
so that (i) for all a e A and b e B, a and b are contained in at least two sets, and (ii)
each pair of elements from A appears together in at most one set, and similarly for each
pair of elements from B? In 2 we study this question for general m and x, showing
that for fixed m, there are real numbers a(m) < b(m) < c(m) so that Km, is not a 2-
competition graph for x e [a(m), b(m)] and Km, is a 2-competition graph for x >_-
c(m). In 3 we answer the question entirely for the special case where m 2. In 4
and 5 we consider the special cases where m 3 and m x. Finally, 6 gives closing
remarks and open questions.

2. Fixed m and arbitrary x. In this section, we study Km,x for arbitrary m and x.
We show that for fixed m, Km,x is a 2-competition graph for all x sufficiently large.
However, when m is sufficiently large (at least 24), we show that there is an interval of
intermediate values ofx for which Km,x is not a 2-competition graph. We do not yet have
evidence to dispute the conjecture that, for all x

_
m >= 2, if Km,x is a 2-competition

graph, then so is Km,x+l. Our results in the next section do prove this conjecture for
m 2 (though we do not have a direct proof).

THEOREM 2. For every m -> 1, Km,x is a 2-competition graph for all x suffi-
ciently large.

Proof. Given m and x, let y be an integer such that x <= yZm, let C be the set of all
(2m)-tuples c (c, 2m) with entries from { 1, 2, y}, and let C’ be the set of
all (2m )-tuples d (dl, d2m- 1) with entries from { 1, 2, y }. Let B be any
subset of C with BI x. Note that CI yZm and C’[ y2m-1. Let G Km,x have
one independent set Ul, Um } and the other independent set B. Build a 2-ECC for
G as follows. Given =< =< 2m and cin B, define c/i (cl, ci-l, ci+ 1, C2m).
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Note that c is in C’. Given =< =< 2m and given d in C’, let

Sid Uri/} U { C e B: c/i d}.
Thus the family of all such sets has 2my2m- members. To see why they form a 2-ECC,
first fix u;. Then any c in B appears with u in e- 2Sc/2i. ui UjOc/(2i-1) and Also, and never
appear together if 4: j. Finally, consider c 4: c’ in B. Then there is some i, so that ci 4:
c;. It follows that when j 4: i, then, for any d in C’, either c or c’ is not in S. We next
show that c and c’ appear together in at most one S.

Case 1. For some j 4: i, cj 4: cj. Here for every d in C’, either or ’ is not in S.
Case 2. For all j 4: i, cj cj. Here c c’/i and c and c’ both appear in the set

Sic/ Sc,/i. However, whenever d in C’ is different from c c’/i, neither c nor c’ is
in S.

We conclude that G is a 2-competition graph as long as the number of sets in the
family is at most the number of vertices of G; i.e.,

2my2m- <= m +x
or

2my2m- m <= x.
Thus we have shown that Km,x is a 2-competition graph whenever

(2) 2my2m m <= x <= y2m,
i.e., whenever x belongs to the interval

Iy 2my2m- m, yzm].

Note that Iy 4: if y >_- 2m. Note also that, if y is sufficiently large, say y >= Y (where
Y >_- 2m), then

2m(y+ )m- <_ ym,
and therefore

2m(y+ )2m- m <- y2m.

Thus, for all y

_
Y, the intervals Iy and Iy /l overlap. It follows that, for all x ->

2mY2m- m, Km,x is a 2-competition graph.
COROLLARY. Km,,:,, is a 2-competition graph whenever rn >- and y >- 2m.
Proof. By the proof, Km,x is a 2-competition graph as long as (2) holds. However,

(2) holds ifx y2m and y >-_ 2m.
We now introduce the following notation, which we use throughout this section.

Let A { a, ..., am } and B { b, .’., bx }. Let S, ..., St be a 2-ECC for Km,x with
bipartition A and B. Suppose that v1 is the number of sets Si containing bj and v
min vj. (In calculating vj, if a set S and a set S are the same for 4: k, we count
them both.)

LEMMA 3. It holds that

+/1 +8mv>=
2

Proof. Given j, note that, for each i, there are two distinct subscripts a(i) and/3(i),
so that sets Sti) and Sati) both contain a and bj. The pairs { Sti), Sate)} are all different
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because, if { Sa(i), SB(i } { Sa(k), (k) } for q: k, then ai and ak are in two sets together,
which is impossible. It follows that

(vJ)>=m’2
and so () >- m. Thus v 2 v 2m >_- 0. Using the quadratic formula and the fact that

1-/1 +8m
<0_-<v,

2

we conclude that v >_- / /1 / 8m)/2. E]

Remark. Suppose that u; is the number of sets Sj. containing ai (again, with multiple
counting as for vj) and u min u;. By symmetry,

1+/1 +8x
2

LEMMA 4. IfS, St is a 2-ECCfor Km,x, then >= v2x/(v + x ).
Proof. We may assume that all of the S are nonempty and contain an element of

B. Otherwise, we remove the empty sets and those not containing elements of B, and
we still have a 2-ECC with the same v; the result follows for the original 2-ECC from the
result for the new 2-ECC. Let S S; N B. Thus we may assume that all of the S are
nonempty.

We next note that since each b is in at least v sets S, we have that

(3) Z ISl >-xv,
i=1

Note that no pair of elements from B is together in more than one set S, and so

_. 2 2

Using the Cauchy-Schwartz inequality and (4), we have that

]2(5) ISl 7] ISl < Z ISl = Z ISl <x=-x
i=1 i=1 i=1 i=1

Since no S is empty, = Sl >-- t. Then, by (5) and (3),

i=1 i=1

so >= 1)2X/(l) / X- 1). if]

Remark. By symmetry, if u is defined as in the Remark after Lemma 3, we have
that >-_ uZm/( u / m ).

Remark. It follows from Lemma 4 and Theorem that Km,x is not a 2-competition
graph if

(6) m+x<
l)2X

vWx-1
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By symmetry, the same conclusion holds if

m+x<
bl2m

u+m-1

THEOREM 5. Forfixed m >= 24, Km,x is not a 2-competition graph if

xI m+12 ]/m2+4m+ l-2m]/l ,----t-m+l /m2+4m+ l-2m]/l

Proof. Let 3, /1 + 8m. By Lemma 3, v >= (1 + 3,)/2. Since x _-> (by tacit
assumption) and v >= 1,

/)2x
ix(v)

v+x-1

is increasing in v for fixed x. (This is easy to check by taking the first derivative.) It
follows that, since v > + 3’)/2,

2
x

I2X
1+3, v+x-1
+x-

2

Hence, if we can show that

(7) m+x<
1+3,+x-

then (6) follows. However, since x >- and since

+..3, ]2 + 3’ + 2m
2 J 2

we see by cross-multiplying that (7) holds if and only if

F(x)=x2+(-1-m)x+[3"-1]2
m<O.

Thus, for given m, this holds if x is between the roots of the quadratic F(x), namely,

+m+/m2+2m+ 1-2(3"- 1)m m + "!Vm2 + 4m + 2m/i + 8m

2 2 2

This proves the desired result. Note that the hypothesis m >- 24 is needed for

m2+4m+ 1-2m/1 +8m

to be nonnegative, and hence for

Vm2 + 4m + 2ml + 8m

to be defined (to give a real number). For m < 24, the square root is undefined, and
there are no real roots of the quadratic F(x); hence F(x) < 0 is never the case.



2-COMPETITION GRAPHS 529

COIOI.LAIY 1. Forfixed rn large, Km,x is not a 2-competition graph for

/1 + 8m 3 /1 + 8m )x
2 +,m- 2

-1

Proof. Consider

g(m) [m2 + 4m + 2m/1 + 8m] 1/2 m[1 + 4/m + 1/m2- /4/m2 + 32/m] 1/2.

Using the binomial theorem and the notation o( for terms that go to zero as m goes
to o, we find that

g(m) m{1 + 1/2 [4/m + 1/m2- /4/m2 + 32/m] + 1/2(-1/2)
2

[4/m + 1/m2

]/4/m2 + 32/m] -} + o(1)

rn + 1/2[4 + 1/m /4 + 32m] [4/fm + 1/m3/2 /4/m + 32] 2 + o(1)

m- /1 + 8m-2.

Thus

rn + g m rn [ m /1 + 8m
2 2 2+ 2 2

-1
/1 +8m 3

2 2’

and

] /1 +8mrn + g m rn rn /1 + 8m
rn ff-+ 2 2 ++ 2 2 2 2"

COROLLARY 2. Forfixed m large, Km,x is not a 2-competition graph for
xe(Z+m+l +2(m+ 1),(m-Z)Z).

Proof. By symmetw, Corolla holds with m and x reversed. Thus, for fixed x
large, Km,x is not a 2-competition graph for

(l+8x 3 l+8x 1)m
2 +,x- 2 -Since 1 + 8x < + 1, we have that Km,x is not a 2-competition graph for fixed x

large and

me +,x- 2

i.e., for

(8)

Note that

(9)

m(2x+2, x- 2x-1).

m> 2x+2--m-2> 2x
x < 1/2(m 2) 2.

(The second equivalence follows, since rn 2 > 0.)
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Let z x (using the positive square root). Then, using the quadratic formula and
the fact that z > 0, we have that

m < x- Vx- -- m < z2 Vz-
z2-Vz-(m+ 1)>0

(10)
,--, z> 1/2[ + /2 + 4(m + 1)]- x> 2 + m+ l/i + 2(m+ 1).

Since Km,x is not a 2-competition graph for m in the interval given in (8), it follows
from (9) and (10) that Km,x is not a 2-competition graph for

x e (2 + m + /1 + 2(m + 1), 1/2(m 2)2). [--1

Independently, Jacobson [3] obtained results that can be stated as follows.
THEOIEM 6 (see [3]). Forfixed m large,
(a) Km,x is not a 2-competition graph ifx [m, (2 + f)m);
(b) Km,x is a 2-competition graph ifx 16m2, + ).
Proof. (a) Jacobson proves that Km,x is not a 2-competition graph for sufficiently

large x. c > 2 /-J, and m cx, i.e., for sufficiently large m and x < m/(2 f)
(2 + f)m.

(b) Let a(t) be the smallest prime power that is at least as large as t. Since 2 <
_-< 2 r+l for some r, a(t) =< 2t. Jacobson proves that 0P _-< mp(a(x)) whenever
(x) >-_ pm/(p ). We show that ifx >_- 16m2, then 2m(a(x)) _-< m + x, which by
Theorem shows that Km,x is a 2-competition graph. (Note that a(x) >_- a(4m) >_-
4m > 2m; so Jacobson’s result applies. If x >_- 16m 2, we have

2ma(x) =< 2m(2x) =< x < m + x.

Combining part (a) with Corollary 2 gives us that Km,x is not a 2-competition graph
for x e[m, 1/2(m 2) 2) when m is a fixed large number. We are not sure for what values
ofx [1/2(m 2) 2, 16m2 the graph Km,x is a 2-competition graph. Using better bounds
on a (for example, those in Jacobson’s paper), the constant 16 in 16m2 can be improved
somewhat (to some value greater than or equal to 4).

3. K2,x. In this section, we study the values of x for which Kz,x is a 2-competition
graph. Suppose that Kz,x has one independent set { a, b } and a second independent set
B al, ax }, and suppose that Sl, Sr is a 2-ECC for Kz,x. Let ra be the number
of sets Sj. that contain a and suppose similarly for re. Let sa be the largest size of a
set B f3 Sj for a set Sj. containing a and suppose similarly for Sb. We start with a sim-
ple lemma.

LEMMA 7. Suppose that St, Sr is a 2-ECC for K2,x. Then
(a) r>--_ra+rb-- 1;
b ra Sa + 1, rb >- Sb + 1; and
(c) Ifs 1, then r >= 2x; ifs 1, then r >= 2x.
Proof. (a) The elements a and b cannot be in more than one set together.
(b) Start with a set S containing a such that [B S] Sa. Each element of B

S appears in another set S, k 4: j, containing a, and no two elements of B f S can
appear together in more than one set of the 2-ECC. The same is true for b.

(c) Each element ofB appears twice in a set containing a and twice in a set contain-
ing b.

Continuing with the above notation, suppose that Kz,x is a 2-competition graph and
that r 2 + x. Let S; be any set containing a and b, if there is such a set (there can be
at most one), and let it be any set containing a otherwise. Let N B
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LEMMh 8. IfS, $2 + x is a 2-ECC for K2.x, =< x < 15, and N is defined as
above, then

(a) N-< (3 + 3x)/(15 x),
b x <= 2N + 1, and
(c) x >= 7 orx <- 3.

Proof. (a) We can assume that each set Sj contains either a or b, since otherwise
we may replace Sj by and still have a 2-ECC. Every element ak of B Si appears in
at least two sets S, j 4: i, with a, and in at least two sets S, j 4: i, with b. If ak is in more
than two sets containing a, or more than two sets containing b, it can be deleted from
one of these sets without changing the fact that we have a 2-ECC. Thus, by iterating the
argument, it follows that we can assume that ak appears in exactly two of each kind of
set. Moreover, since a and b appear together at most in Si, these four sets containing a
and a and b and a have distinct subscripts. Thus every element a of B Si appears
in exactly four sets Sj.

Let T S f3 (B Si ). Suppose that every Tj, j i, is empty. Then, if B Si is
not empty, there is a vertex in B that is in none of the sets in the 2-ECC. This vertex is
an isolated vertex ofK2,, which is a contradiction. Thus B Si must be empty, Nmust
be 0, and so (a) follows trivially. Thus assume that some T, j :P i, is nonempty, and
therefore B S; q: and N > 0. Without loss of generality, relabel the sets so that Tj
is nonempty if and only ifj _-< q. Thus, since every element ak of B Si is in exactly
four sets T, we have that

q

(11) ] ITI 4N.
j=l

Moreover, since Ti , we have that q < 2 + x.
Now every pair of elements in B Si appears in at most one T. Hence

Thus

q q

E ITjl -- E ITjl <-_N(N- 1).
j=l j:l

Using 11 ), we have that

(12)
q

T/I: -< N- + 3N.
j=l

By the Cauchy-Schwartz inequality,

2 q

TI q E TI 2,
j=

so (since q >= (12) implies that

[o1 Z ITjl <=N:+3N.
qj=l
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Using 11 ), the observation that q < 2 + x, and the facts that N > 0 and x < 15, we
have that

-(4N)2 < N2 + 3N,
q

3
q- 16 16N’

3
16N l+x 16

N=<
3+3x
15-x

15-X
16( + x)

(b) Note that ]B N S;] x N. Now every element ofB N S; appears in another
set S together with a and in another set Sj together with b. Since a and b do not appear
together in any sets other than S; and since two elements ofB can appear together in at
most one set, it follows that all of these additional sets Sj. have distinct subscripts. Hence,
counting Si, the 2-ECC has at least 2(x N) + sets. Thus 2x 2N + _-< 2 + x or
x_-< 2N+ 1.

(c) By parts (a) and (b),

so (x- 7)(x- 3) >_- 0.

3+3x x-1>_
15 -x 2

THEOREM 9. K2,x is a 2-competition graph ifand only ifx or x >-_ 9.
Proof. It is useful to consider three separate cases: (a) x 1, (b) 2 =< x _-< 8, and

(c)x>= 9.
(a) x .1. Then it is trivial to show by Theorem that K,x is a 2-competi-

tion graph.
(b) 2 =< x _-< 8. Let us use the notation defined before Lemmas 7 and 8, taking

r 2 + x. If Sa 1, then, since r6 must be at least 2, parts (a) and (c) of Lemma 7
imply that

2+x=r>-_ra+r6 >_-2x+2 1,

which is a contradiction. Thus we may assume that sa >-- 2 and, similarly, that Sb >- 2.
Hence, by Lemma 7 (b), ra >_- 3 and rb >---- 3.

By Lemma 8 (c), x _-< 3 or x >_- 7. If x 2, then by Lemma 7 (a),

4=2+x=r_>-3+3-1 =5,

which is a contradiction.
Next, suppose that x 3. Then, if r >_- 4 or rb >= 4, we have that

5=2+X>-4+3-1=6,

which is a contradiction. Thus r rb 3 and, by Lemma 7 (b), sa Sb 2. Thus the
sets containing a must, in their intersections with B, be the sets { al, a }, { a2, a3 }, and
{ al, a3 }. The same is true for the sets containing b in their intersections with B. However,
now two elements of B appear together in more than one set, which is a contradiction.

We now consider the case where x 7. By Lemma 8(a), N =< z 3. If N =< 2,
then, by Lemma 8 (b), x _-< 5, which is a contradiction. Thus we have that N 3. Using
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the notation of the proof of Lemma 8 (a), we have q < 2 + x sets T, which are subsets
of a 3-element set B S; and whose cardinalities total 4N 12. Moreover, any two of
these sets have at most one element in common, since two elements of B appear in at
most one set in common. Thus, if some T is all of B Si, all of the other T must be
1-element sets. It follows by that q >- 0, which contradicts q < 2 + x. If all Tj. are
1-element sets, then q 12 >_- 2 + x, again a contradiction. Even if some T’s have two
elements, at most three of these sets can have two elements, and then we need six more
sets to get a total sum of cardinalities of 2. Hence q >= 9 ->_ 2 + x, and again there is a
contradiction.

Finally, consider x 8. By Lemma 8(a), N _-< , so N =< 3. By Lemma 8(b),
however, x =< 2N + =< 7, and we have a contradiction.

(c) x >_- 9. We construct a 2-ECC Ex for Kz,x recursively. Ex will consist of the
2 + x sets Rx, K, Ko, L{, L, where

x/2 + if x is even,
P

(x + / 2 if x is odd;

x/2 if x is even,
q

(x + )/2 if x is odd.

The set Rx will contain a, b, and some elements of B; the sets Kix will contain a and
some elements of B; and the sets L will contain b and some elements of B. For x 9,
the sets are as follows:

R9= { a,b,al,a3,as,aT,a9 },

K9 {a,a,,a2}, L9={b,az,a3,a6},

K= { a,a3,a4 ), L 92 { b, az, a4, a7 )

K { a,a4,as,a6 }, L9= {b,a,,a4,a8},

K94 { a, a2, a8, a9 }, L94= {b,a,as},

K9 { a, a6, a7, a8 L95 { b, a6, a9 }
That these sets form a 2-ECC for K2,9 is easy to verify.

We now extend this definition recursively. If x is even, x >= 10, let

/2-4= Kx/-4 lO { ax} x -’ U{ax}Lx/2-1 =Lx/2-1

L x/=Lx-’LJ{ax}, K/+, {a,ax},
and, otherwise, let RX RX- , K K- L Lx- If x is odd, x > 11, let

RX=RX-’t.J{ax}, K(x+l)/z=K(;-+l)/ztO{ax}, L(x+l)/z={b,ax},
and, otherwise, let Kix K- , L L- 1.

Observe the following: (i) If ay E Rx, K[, or Lix then y -< x; (ii) If ay E R, then
y is odd; and (iii) If ax K[ for x odd, x >- 11, then (x + )/2. Observation (iii)
follows, since, by construction, if 4: (x + )/2, K Kix-1 and, by (i), a does not
belong to K-1

To see that we have defined a 2-ECC when x > 9, let us first observe that, for all
y =< x, a and ay appear in common in at least two of the sets, and b and ay appear in
common in at least two of the sets. This is because, if x is even, a and ax appear in
common in K/2-4 and Kc/2+ 1, and b and ax appear in common in L/2-1 and
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xLx/2, ifx is odd, then a and ax appear in common in Rx and Kx+ 1)/2, and b and ax
appear in common in Rx and L(x+ 1)/2. The result follows because Kf is a subset of
Kf/1 LZ is a subset of LZ/ and RZ is a subset ofRZ/

Note also that a and b appear in common only in Rx. Thus it suffices to show that,
if y < z

_
x, then ay and az appear in common in at most one set ofEx. We prove this

by induction on x. It is true for x 9. Assume that it is true for x’ < x. Suppose that
y < z. If z < x, then it is true for x, because, in going from Ex- to Ex, neither ay nor
az is added to any set, and the inductive hypothesis can be applied. Thus it suces to
show this for z x.

We first assume that x is odd, x 11. Note that ax appears only in Rx, Kx+ 1)/2,

and Lx+ /2, and ay is not in the last ofthese sets. Also, ifay is in Rx, then, by obseation
(ii), y is odd. However, since x is odd and x is even and geater than or equal to 10,

Kx+ )/2 K)/2 {a} K;)/2 + { ax} { a,ax- ,ax}.
Since y is odd and y < x, we have that y x 1.

Next, suppose that x is even, x 10. Here ax appears in only four sets. The case
where x 10 is a special case. In this case,

x x-ILx/- Lx/2- U { ax } LU { a,o } { b, as, a, a,o },
x xLx/2=Lx;2 U{ax}=LU{ao}={b,a6,a9,ao},
x x-IKx/2-4 Kx/ -4 U { ax } KU { a,o } { a, a a, ao },
xKx/z+,={a,ax}={a,a,o}.

Thus, clearly, if y < 10, ar appears in at most one of these sets.
The case where x 12 is also a special case. In this case,

L/2- L’ U { a2 } LU { a2 } { b,a6,ag,ao,a2 },

Lx/=L,X U{a2}={b,a,,a},
x =K =KOKx/2-4 U{a,} U{a}=KU{a,}={a,a3,a4,a,2},
XK/+,- { a, a,2 }.

Thus, if y < 12, ay appears in at most one of these sets.
Finally, suppose that x is even and x 14. Then

x _LX-ILx/--

L;2)/2 U { ax }
X--3Lx-)/U { ax-2 } { ax}

={b,ax-3,a-z,ax},
which holds, since x- 3 11. Also,

x xLx/= Lx; U { a}

X--IK/2-4 Kx/2-4 {ax}
X--2=Kx-)/-3U{a}
x-3K(x- 2/- { a },
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and

KX/2+ {a,ax}.

To prove that ay and ax are not in common in more than one of these four sets, it
x-3 implies that y < x 3 By observationtherefore suffices to show that ay K(x-2)/2-3

x- implies that <(i), however, ay K(x-2)/2-3 y x 3. If y x 3 then, by observation
(iii), since x- 3 -> 11, we must have that

x-2 (x-3)+
-3=
2 2

which is false. []

4. K3,x. In this section, we consider the case where rn 3. That K3,1 is a 2-com-
petition graph follows by a straightforward construction of a 2-ECC. It also follows from
the result of[ 5 that every tree is a 2-competition graph. That K3,2 is not a 2-competition
graph follows from Theorem 9.

THEOREM 10. K3,3 is not a 2-competition graph.
Proof. Let K3,3 have one independent set { a, b, c } and a second independent set

{ x, y, z }. If K3,3 is a 2-competition graph, then, by the corollary to Theorem 1, there is
a 2-ECC $1, $6. We first show that each vertex of K3,3 is contained in exactly three
of the sets Sj. Now a and x are in two sets together. However, y can be in at most one
of these sets, since x and y are nonadjacent. Thus a and y must be in a third set. Hence
a is in at least three sets. Similarly, each vertex must be contained in at least three S/s.
Suppose that a vertex, say a, is contained in more than three S’s, say $1, $2, $3, $4.
Since b is in at least three sets, b is in one of $1, $2, $3, $4, and it cannot be in more
than one of these sets, since a and b are in at most one Sj. together. Thus b is in $5 and
$6. Similarly, c is in $5 and $6. This, however, is impossible.

Let us suppose that a is contained in $1, $2, $3 only. If b is in none of these sets,
then b is in all three of $4, $5, $6. However, c must either be in at least two of $1, $2,
$3 or in at least two of $4, $5, $6. In either case, there is a contradiction, since either a
and c or b and c are in two sets together. Thus we may assume that b is in one of these
sets, say $1. Then b cannot be in $2 or $3. Since b is in three sets, we may assume that
it is also in $4 and $5. Similarly, c is in one of $1, $2, $3 and two of $4, $5, $6. Since b
is in two of the latter, b and c will overlap in one of the latter, and hence c cannot be in
$1. Thus, without loss of generality, we have c in $2, $4, $6. Then x must be in two sets
with a, two with b, and two with c, and the only possibility is for x to be in $1, $2, $4.
The same argument, however, puts y in $1, $2, $4. Then x and y are in two sets together,
which is a contradiction. [2]

In the following lemma, we use the notation u defined in the remark after Lemma 3.
LEMMA 1. If$1, St is a 2-ECCfor Km,x and u >= m l, then

t>=mu
m(m- 1)

Proof. Note that element al of A must be in at least u sets of the 2-ECC; say it
belongs to Sl, Sl2, Slu. Element a2 must be in at least u sets of the 2-ECC, and,
since al and a2 can be in at most one set together, a2 is in at least u sets not included
in the sets Sl. Call these sets Szl, $22, S2u- 1). Similarly, a3 is in at most one of the
$1 and at most one of the $2, so in at least u 2 other sets. Call these S31, $32,
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S3(u-2). By continuing the argument, (since u ->_ m we find that

t>=u+(u- 1)+(u-2)+... +(u-m+ 1)

=mu-[1 +2+ +(m- 1)]

m(m- 1)
mu-

2

THEOREM 12. Ka,x is not a 2-competition graph for x 4, 5, 7, 8, 11.
Proof. In addition to Lemma l, the proof will use the following facts:
(i) u >= (1 + /1 + 8x)/2,
(ii) >= u-m/(u + rn 1) fm(U),
(iii) For fixed m, fm(u) is increasing in u (since u >= ),
(iv) rn + x < implies that Km,x is not a 2-competition graph.

Fact (i) is noted in the remark after Lemma 3, fact (ii) in the first remark before Theorem
5. Fact (iii) is easy to check by taking the derivative. Fact (iv) follows from Theorem 1.

Let x 4. By (i),

1+ 3V
u>_->3,

2

and therefore u >= 4. Then, by (ii) and (iii), however,

>=(u) >=f3(4 48/6 8> m + x.

By (iv), K3,4 is not a 2-competition graph.
Next, let x 5. By (i),

+4
u>->3,

2

so u >- 4. By Lemma 11, >= 12 3 9 > rn + x. By (iv), K3,5 is not a 2-competi-
tion graph.

Suppose that x 7. By (i),

1+
u>_->4,

2

so u >_- 5. Then

sot>-- 11 >m+x.
Ifx 8, then, by (i),

t>-_j(u)>__j(5) =,

1+6 
u>_->4,

2

sou>=5. ByLemma ll, t>= 15-3= 12>m+x.
Ifx 11, then, by (i),

u>__>5.
2

Thusu>=6. ByLemmall, t>= 18-3= 15>rn+x.
Theorem 12 gives some values ofx for which K3,x is known not to be a 2-competition

graph. The next result gives values ofx for which it is known to be such a graph.
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THEOREM 13 (see 3 ). K3,x is a 2-competition graph for x >= 38.
We do not know if K3,37 is a 2-competition graph or if there is any x 6 1, 38) such

that K3,x is a 2-competition graph. The smallest value of x for which we do not know
whether K3,x is a 2-competition graph is x 6.

5. Kx, We turn now to the case where m x. Theorems 9 and 10 already show
that Kx,x is not a 2-competition graph ifx 2 or 3. The next theorem follows by a simple
argument, and therefore we include it here although it also follows from a stronger (and
more difficult) result of[3 ], which we state below. To state the next theorem, we first
need a lemma. In this lemma, we use the notation [ a] to denote the least integer greater
than or equal to a.

LEMMA 14. Every positive integer x can be expressed uniquely in theform

w-l)(13) x=
2

+q’ 0<q--<w- 1’

where

+/1 +8x](14) w=
2

Proof. Let h(s) (s(s ))/2 and let w be the smallest positive integer so that
h(w) >= x. Hence, if s is such that h(s) x, it follows because h is increasing for s >_-
that w [s]. Since

2 2

it follows that x can be expressed in the form 13 ). By the quadratic formula, it follows
that s(s )/2 x and s > 0 imply that

+/l+8x
S’-"

2

This gives us (14). []

THEOREM 15. Ifw and q are defined as in Lemma 14, then Kx,x is not a 2-competition
graph ifq < w/ 2.

Proof. The proof uses (i)-(iv) of the proof of Theorem 12. By (i), u _>- w. By (ii)
and (iii), >-fm(U) >=fm(W) f(w). Then

W2X
f(w)> m+x=2x----> 2x

w+x-1

Hence, by (13),

.-- w2> 2w+ 2x- 2.

fx(w)>m+x-w2>2w+[(w 1)(w-2)+2q]-2-- w> 2q

--q< w/2.

The theorem follows by (iv).
Remark. By using this theorem, we can show, for example, that Kx,x is not a 2-

competition graph for x 2, 4, 7, 8, 11, 12, 16, 17, 18, 22, 23, 24, 29, 30, 31, 32, 37,
38, 39, 40. From Theorem 10, we know that this conclusion also holds for x 3.

THEOREM 16 (see 3 ). Kx,x is not a 2-competition graph for x >= 4.
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6. Closing remarks. The results in this paper leave some natural questions unre-
solved. For instance, the proof of Theorem 9 shows that if KE,x is a 2-cornpetition graph
and x > l, then KE,x+ is a 2-competition graph. We have not been able to settle whether,
for x >_- m > 2, Km,x being a 2-competition graph implies that Km, / is a 2-competition
graph. While we have determined exactly for what values of x K2, is a 2-competition
graph, the problem for K3,x remains open. In particular, small values ofx such as x 6
remain unresolved, as does the question of whether K3, can be a 2-competition graph
for any < x < 38. For the case of K4,, which we have not discussed in this paper, 3
shows that K4,x is a 2-competition graph for x >_- 124 and that K4, is not a 2-competition
graph for x 4, 10. However, nothing else is known here.

Acknowledgments. The authors thank Denise Sakai and Chi Wang for their helpful
comments. The authors also thank Jeff Kahn for suggesting use ofthe Cauchy-Schwartz
inequality in the proofofLemma 4 and Rob Hochberg for suggesting use ofthe binomial
theorem in the proof of Corollary to Theorem 5.
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Abstract. Given a digraph D (V, A) and a positive integer p, the p-competition graph of D, denoted
Cp(D), is defined to have vertex set Vand for x, y V, xy E(C,(D)) if and only if there are at least p distinct
vertices v, v2, v, e V(D) such that xvi and yvi eA(D) for 1, 2, p. This paper furthers the study
of complete bipartite graphs that are p-competition graphs. The primary technique used is the concept of the
p-edge clique cover (p-ECC) number. General results are given for K3-free graphs, as well as the result that Kn,n
is not a 2-competition graph for n >= 4.

Key words, graph, bipartite, clique cover number

AMS(MOS) subject classification. 05C

1. Introduction. Given a digraph D (V, A) and a positive integer p, the p-com-
petition graph of D, denoted C,(D), is defined to have vertex set V and for x, y V,
xy E(C,(D)) if and only if there are at least p distinct vertices v, v2,’", Vp
V(D) such that xvi and yvi cA(D) for 1, 2, p. The concept ofp-competition
graphs was introduced in [6], generalizing the idea of competition graphs [2], [5], [7].
The fundamental question is: For what graphs G does there exist a digraph D so that
G C,(D)? That is, for a given integer p, characterize those graphs that are p-competition
graphs. The study of this question for complete bipartite graphs was started by Isaak et al.
in 4 ]. In this paper, we attempt to give additional insight into this problem and, essen-
tially, with the results in 4], answer the question for p 2.

It is easy to reduce the problem of determining if a graph is a p-competition graph
to an alternate graph-theoretic problem. Let { S, $2, "", Sr } be a family, repetitions
allowed, of subsets of the vertex set of G. We say that F is a p-edge clique cover, or a p-
ECC, if, for every set ofp distinct indices i, i2. i..

s,, n n n s,,
is either empty or induces a complete subgraph of G, and, furthermore, the induced
subgraphs ofthe sets ofthe form Tcompose an edge cover ofG. Define the p-edge clique
cover number, denoted 0,(G), to be the smallest r for which there is a p-ECC containing
r sets for G. We will use simply Op when no confusion will result. Kim et al. [6] proved
that if G is a graph of order n, then G is a p-competition graph if and only if Op <= n.

In the remainder of this paper, we study Op(G), the conclusion ofwhich will enable
us to deduce results pertaining to whether G is a p-competition graph. In particular, we
will show that, for m and p fixed, Km,n is a p-competition graph for n sufficiently large.
As a corollary to the proof, we get that K2,n is a 2-competition graph for n >_- 14 (this is
superceded by the results in 4 ], where it is shown that K2,, is not a 2-competition graph
if and only if 2 _-< n -< 9.). Also, we are able to show that K3,, is a 2-competition graph
for n >- 38. By using a counting argument, we show that, if 2 < c _-< and m cn,
then Km,, is not a 2-competition graph for sufficiently large n. In particular, we are able
to answer the question completely for K,,n and to show that it is not a 2-competition
graph for n ->_ 4. The case where n 2 and 3 was previously considered in [6].

* Received by the editors February 7, 1990; accepted for publication (in revised form) June l. 199 I. This
research was supported by Office of Naval Research grant N00014-85-0694.

f Department of Mathematics, University of Louisville, Louisville, Kentucky 40292.
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2. General results. Although the principal results contained here are for complete
bipartite graphs, some of the techniques also apply to a much broader class of graphs.
To say that a graph is Ka-free means that K3 is not a subgraph of the original graph. Of
course, bipartite graphs and complete bipartite are Ka-free.

PROPOSITION 2.1. Let ( S, $2, So} be a p-ECC of G. IfG is Ka-free,
thenfor any vertex x V(G), x must be contained in at least rx elements of, where rx
is the smallest integer solution to (rp) >= deg x.

Proof. Assume the hypotheses and let x be any vertex of G. Consider all the sets
of that contain the vertex x. Each element in the neighborhood of x must be in at
least p elements of ’, which also contain x since is a p-ECC. Furthermore, since G
is K3-free, each element in N(x) that is in the intersection ofp elements of o, each also
containing x, is the only such element in that intersection. Since the set ofp intersections
forms an edge cover, and since () is the number of all p intersections of sets containing
x, it follows that () >= deg x.

COROLLARY 2.2. If G is K3-free, with a p-ECC, then x is in at least
(p! degx) /p elements of for each x V(G).

COROLLARY 2.3. If G is Ka-free and is a 2-ECC, then every vertex ofG is in
at least

+/1 +8 degx
2

elements of.
Proof. From Proposition 2.1, we know that, for any vertex x, it must be in at least

r sets, where r is the smallest integer that satisfies r2 r >= 2 deg x. Using the quadratic
formula, the result follows.

3. A lower bound for 02(K,,,). The remainder ofthe paper will focus on complete
bipartite graphs. For convenience, when discussing Kin,n, we will assume bipartition X,
Y with Xl m and Yl n. In addition, let X {Xl, x2, Xm} and Y
(y,,

LEMMA 3.1. If { S, $2, So} is a 2-ECC ofKm,,, then every vertex ofX
is in at least

+ /1 +8n]2

elements of, and every element Y is in at least

[1+/1+8m12
elements of.

Proof. This follows, since the degree of every vertex in X is n and since the degree
of every vertex in Y is m.

THEOREM 3.2. Ifm cn for some 0 < c -< 1, then

02(Km,n)> l+/l+[(-c2+4c-1)n2+(l+c)n][[l+8cn-1]]2

Furthermore, for sufficiently large n and c > 2 V, Km,n is not a 2-competition graph.
Proof. Let {S, $2,"’, So) be a 2-ECC of minimum order and let Xi

Si fq Xwith Xi oli and Yi Si 1’ Ywith Yi i. Note that, since has minimum
order, no Xi nor Y. can be empty.
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Since no pair of vertices in X or Ycan be in more than one set of ’, it follows that

(oti)<=(m) (//)<(n)
i= 2 2 i= 2 2

(The summation indices will henceforth be omitted for convenience.) Also, since every
edge must occur in at least two elements of ’, it follows that Oli . 2mn. This im-
plies that

Z Ol Ol - m2- rn c2n2- cn,

, ai3i >= 2cn.
Consequently,

(a,2. + ,2. )_ (a; +/3)=< +c2)n2-(1 +c)n,, (a’ +’ )- , (ai + i) <- + c2)/(2c) , aii -( + c)n,

which implies that, (ai2 2ai3i + ) + (2 (1 + c)/(2c)) ., ai3i < ., (ai + 3i) + c)n,

(a /;)2 + (2 (1 + c2)/(2c)) ., ai <= , (a + i) (1 + c)n,

(2 (1 + c2)/(2c)) ., Olii ’ . (Oli "Jl" i) -4- c)n.

This yields

(1) .,(oti+i)>-_(-c2+4c 1)n2+(1 +c)n.

Since Z (ai +/3i is the sum of 20 positive integers, it follows that for some i, either ai

or/3i is at least

(2) [ (-cg-+4c-1)n2+(l +c)n]20

(Note that the value in (2) is positive as long as c > 2 f.) By the implication of
Lemma 3.1, we will assume that

i’--
(--c2+4c--1)n2+(l

for some i. (The conclusion is stronger if we can find ai that large.) Since Yi has order
/3i, and each element of Y must occur in at least

+ 1 + 8cn7
2

elements of (that is, each element is in

[/1+8cn-112
additional sets, and no pair of vertices in Y can be duplicated), it follows that

20 2

The lower bound follows from (3).



542 MICHAEL S. JACOBSON

It is an easy consequence to see from (3) that 0 >= en 5/4 for e a function of c. Hence,
for c > 2- f and n sufficiently large,

02(Km,n)>enS/4> m+ n=( +c)n.

Thus gm,n is not a 2-competition graph, for sufficiently large n.
As applications of this result, we have the following corollary.
COROLLARY 3.3. Ifn >= 6 or n 4, then Kn,n is not a 2-competition graph.
Proof. Suppose that Kn,n is a 2-competition graph. This would imply that

02(K,,n) <= 2n. By (3) of Theorem 3.2, this implies that

2n >
2nZ + 2n ] / + 8n -1]4n 2

+ 1,

which gives

(4) 2n>=
n+l
2

/l+8n- 1]2
+1.

This inequality is false for n 4 and n >- 6. Note, that for n 5, (4) is an equality.
COROLLARY 3.4. K5,5 is not a 2-competition graph.
Proof. For K5,5 to be a 2-competition graph, it follows that there is a 2-ECC with

at most ten subsets. Choose a 2-ECC with ten subsets and form Xi and Yi as in Theorem
3.2. By Lemma 2.1, each element ofX and Y is in at least four subsets of the 2-ECC. By

of Theorem 3.2, Z (ci + /i 60. If X (or Yj.) contains four vertices, by (3) this
would imply that 02 >= + 4(3) 13. Hence Xi (and Y) must each contain exactly
three elements. Since there are only ten different three-element subsets of X, however,
some pair of them must contain at least two common vertices, and hence will not be a
2-ECC. Therefore K5,5 is not a 2-competition graph.

Putting the results of[4] together with these corollaries, we get the following result.
THEOREM 3.5. gn,n is not a 2-competition graph for n >= 2.

4. A construction for p-ECCs. For convenience, we define for any real number t,
a(t) to be the smallest integer greater than or equal to t, so that a(t) is a prime power.
We will use the fact (cf. that, for every prime power q, there exists an affine geometry
with q2 points, where each line contains q points and each point is in q + lines. In
addition, the set of q2 + q lines can be partitioned into q + classes of q parallel lines
so that every point is in each parallel class exactly once. We also use the fact that every
pair of points lies on precisely one line in the geometry.

It is known 3 that a(t) <= + kt /20+ for any e > 0 and k a function of e. In fact,
between and + kt /20+ , there is a prime under the above conditions.

THEOREM 4.1. It holds that Op(Km,n) <= mp(a(n)), whenever a(fn) >= pm/
(p- ).

Proof. Let s a( fn). Consider the affine geometry with s2 points. Associate with
each vertex of Y a distinct point in the geometry. The points in the geometry with no
vertex of Y associated with it can be ignored. Let C, C2, , Cs + be a partition ofthe
lines into parallel classes. Take p copies of each parallel class and order them in any
manner, label them C’, C[, ..., Cp_ )+ ).

Construct a p-ECC in the following manner. For each xi X, take the union of
x with the vertices in each of the lines in

Cp(i-1) + 1, Ctp(i- 1) + 2, pi
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to be the sets of " containing xi. This can be completed as long as pm <- (p
(s + ). Each xi is in sp sets and does not occur in any other set with any other element
ofX. This family contains mps sets.

It is easy to see that this forms a p-ECC. No pair of vertices from Y occur in more
than p sets, no pair of vertices in X occurs in any set together, and every pair of
vertices xi yj. occurs in exactly p sets together. Thus " is a p-ECC, and it follows that

Op(Km,n) <= mp(a( fn ))

under the appropriate conditions.
COROLLARY 4.2. For a fixed m and p, e > 0, and n sufficiently large,

Op(Km,n) <= mp(n /2 + kn/4 + )

for some k dependent on e. Furthermore, Km,n is a 2-competition graph.
Proof. The first part follows, since a(fn) -< n /2 + knl/4+’; see 3 ]. This implies

that mp(a( Vn <= m + n for sufficiently large n.
COROLLARY 4.3. Kz,n is a 2-competition graph for n >- 14.
Proof. For n 14, 15, and 16, by using the geometry containing 16 points and the

construction of Theorem 4.1, we get a 2-ECC with 16 sets, which is at most n + 2 in
these cases. For 18 =< n -< 25, using the geometry with 25 points, we get an appropriate
2-ECC with 20 sets. For n 17, choose a particular line ofthe geometry and assign none
of the vertices of Y to any of the points on that line. This can be accomplished since
each line of the geometry contains only five points. Using the construction as described
above, we arrive at a 2-ECC with 19 nonempty sets, the empty set can simply be discarded.
For 26 =< n =< 49 using the geometry with 49 points and the construction above, we get
a 2-ECC with 28 sets, which is at most n + 2. For n >= 50, Corollary 4.2 gives the result.

COROLLARY 4.4. K3,n is a 2-competition graph for n >= 38.
Proof. For n >_- 39, the 2-ECC given by the construction on the geometries with 49,

81 and assured by Corollary 4.2 implies that K3,, is a 2-competition graph. For K3,38, as
in the previous result, by assigning no vertices of Y to the points of a particular line in
the geometry on 49 points, a 2-ECC results that contains 41 sets. Thus K3,38 is a 2-
competition graph, and this completes the proof.

5. Conclusion. The material presented in this paper only lightly considers the general
problem ofdetermining when a graph is or is not a p-competition graph. Several obvious
problems arise.

First, combining the results presented here with those given in 4 ], it is known that
Km,,, is not a 2-competition graph for m =< n =< (m 2)2/2 and that it is a 2-competition
graph when n >= 16m2. What is the cutoff level? Does one exist? Is it possible that Km,,
is a 2-competition graph, but that Km,,, + is not?

Second, what about the case where p > 2? Can the counting techniques of 2 and
3 be extended to attain a general bound for Op? Finally, it is worth considering K3-free
graphs that are not complete bipartite graphs. It might also be worth studying complete
multipartite graphs because of their nice structure.
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THE PROBABILISTIC COMMUNICATION COMPLEXITY
OF SET INTERSECTION*
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Abstract. It is shown that, for inputs of length n, the probabilistic (bounded error) communication com-
plexity of set intersection is O(n). Since set intersection can be recognized nondeterministically by exchanging
O(log n) bits, the result implies an exponential gap between nondeterminism and probabilism. This gap is the
largest possible. The first general technique to analyze the probabilistic communication complexity of sparse
languages is also described.
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1. Introduction. We first describe the model of communication complexity as in-
troduced in [16]; a related model is given by [1].

Let L c { 0, 1} 2n be a language to be recognized by two agents P and Q. Agent P
knows the first n bits, and Q knows the remaining bits of a given input string. P and Q
have unlimited computational power and exchange messages to recognize L according
to some protocol. The deterministic (nondeterministic) communication complexity of
L is the minimum number ofbits exchanged for the worst-case input, where the minimum
is taken over all deterministic (nondeterministic) protocols recognizing L. This model
is quite well understood for deterministic protocols 2 ], 6 ], ], 12 ], 16 and also
for nondeterministic protocols 8 ].

Bounded-error probabilistic protocols differ from deterministic protocols in allowing
a probability distribution on the set of possible messages. An input is accepted if the
probability of acceptance is at least e for some fixed e, 0 =< e < 1/2, rejected if the
probability of acceptance is at most e, and all input pairs (x, y) must fall in one of these
categories. The complexity of a protocol on input (x, y) is the average length of the
messages exchanged between the two agents, where P knows x and Q knows y. The
complexity of a protocol is defined as the maximum (over all inputs) of the average
message length.

Halstenberg and Reischuk 7 show that, without altering the asymptotic complexity,
we can restrict our attention to the worst-case message length of regular protocols. We
say that a protocol is regular if it exchanges messages according to the uniform probability
distribution. Let us now define the probabilistic communication complexity C(L) as
the minimum (over all regular probabilistic protocols recognizing L with error probability
e) of the worst-case message length.

Probabilistic (bounded error) communication complexity is introduced by Yao
15 ]. Yao relates the complexity ofprobabilistic protocols to the distributional complexity,
namely, the complexity of almost correct deterministic protocols. Using this technique,
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Yao develops methods to analyze the probabilistic communication complexity of dense
languages. Examples of successfully analyzed languages include multiplication modulo
prime number 15 and inner product modulo 2 5 ].

A protocol is considered to be polynomial time if at most (log n) bits are exchanged
for some constant c. Consequently, we can introduce the complexity classes P (deter-
ministic polynomial time), NP (nondeterministic polynomial time), and BPP (proba-
bilistic polynomial time) for communication complexity. Babai, Frankl, and Simon [3]
introduce the notion of rectangular reductions to extend the notion of NP-completeness
to communication complexity. One example of an "NP-complete" language is the lan-
guage set intersection, which is defined as the set of all binary strings (al, a2, a,,
b, b2, b,) with Z f--1 aibi > 1.

Chor and Goldreich’s result 5 implies a tight O(n) lower bound ifwe are interested
in computing the exact size of a set intersection, instead of only settling the disjointness
problem. Babai, Frankl, and Simon derive an ft(Vn) lower bound for the probabilistic
communication complexity of set intersection, thus proving an exponential gap between
nondeterminism and probabilism. On the other hand, they show that the distributional
complexity of set intersection, when restricted to product distributions, is bounded
by O( Vn log n).

We can determine the probabilistic communication complexity of set intersection
in the following theorem.

THZOZM. For every e < 1/2, C,( set intersection) 19(n).
Thus we obtain the best possible gap between nondeterminism and probabilism.

This result has been applied by Raz and Wigderson [13 ], who obtained exponential
lower bounds for the size of (depth-constrained) monotone circuits.

Technically, the difficulty in analyzing set intersection is due to its sparsity: only 3
of its 4" inputs belong to the language. Previous methods 3 ], 5 proceed by testing the
error performance of all possible protocols relative to a single product distribution defined
on the set of inputs. Instead, our approach is to design a collection of subsets on which
to perform "error accounting." Given the probabilistic protocol, we choose a subset from
this collection at random, hoping that the given protocol is unprepared for this particular
test set. Furthermore, our subsets are not product sets.

Recently, Razbarov [14] was able to simplify our analysis with an argument tailor-
made for set intersection. However, our approach is more general and seems to be ap-
plicable to large classes of sparse languages.

The organization of this paper is as follows. First, in 2 we give a proof outline and
define our collection of test sets. We also (in Lemma 2.1 describe our general technique
for sparse languages. The expected behavior of our collection of test sets is investigated
in 3 and 4. The proof then concludes in 5. The results of 5 are independent of the
properties of set intersection.

A preliminary version of this paper appeared in [10 ].

2. Proof outline. Let L c { 0, } 2n be a language to be recognized by the agents P
and Q. Following Yao [16 ], we associated the "truth matrix" M(L) with L. The rows
ofM(L) are labeled with the inputs for agent P, and its columns are labeled with inputs
for agent Q. The entry (x, y) ofM(L) is defined to be 1, whenever (x, y) belongs to L.
Otherwise, we assign the value 0.

Let P be a probabilistic bounded error protocol that recognizes L. Following 7 ],
we can demand that P generates its messages according to the uniform distribution, and
we can restrict our attention to the worst-case message length, since expected message
length and worst-case message length are of the same order of growth. Therefore, if m is
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the worst-case message length of P, we can interpret P as a collection D, D.m of
equally likely deterministic protocols with worst-case message length m. Let e (0 < e < 1/2
be the error probability of P. Then, for each input (x, y), all but e2 protocols Di
compute correctly.

We now focus on a particular deterministic protocol Di. First, we demand that the
last bit of each exchange of messages indicates acceptance or rejection. Therefore each
fixed exchange of messages induces a submatrix ofM(L) and the deterministic protocol
partitions M(L) into "accepting," respectively, "rejecting," submatrices 16 ]. Let us
define the error ratio ei ofDi as the proportion of all entries ofM(L) that are incorrectly

2covered by accepting or rejecting submatrices. We obtain that Z i= e; =< e2 m.
This observation led Yao [15] to introduce the distributional complexity De(L). It

is defined to be the minimum (over all deterministic protocols recognizing L with error
ratio at most e) of the worst-case message length. (Yao’s original definition is relative to
the average message length.) We obtain, analogous to [15], that C(L) >= D2(L).

We extend Yao’s technique by restricting our attention to certain special entries.
We define those special entries using a restriction matrix A of the same dimension as
M(L). If an entry in A is 1, then the corresponding entry in M(L) is one of the special
entries in which we are interested.

For a restriction matrix A, let 0n(L) (respectively, In(L)) be the number of 0s
(respectively s) appearing as special entries of M(L). Given a submatrix M of M(L),
we define On (M) and n (M) analogously.

We would like to evaluate the error of a probabilistic protocol P relative to a re-
striction matrix A. For a rejecting submatrix M (induced by P), we define en(M) :=
n(M)/ n(L))" (0n(L)/On(M)). This quantity measures the ratio of incorrectly covered

1-entries divided by the ratio of correctly covered 0-entries. Obviously, en (M) should be
small for most rejecting matrices M. For a given constant 6, we evaluate P by

OA(M)
size(A, P) max

0n (L)
eA (M) < 6 and M is a rejecting submatrix induced by P}.

Intuitively, size(A, P) is proportional to the "size" ofthe largest submatrix Mthat does
not introduce (relative to A) many errors.

LEMMA 2.1. Let e < 1/2 and 6 > e e) be given constants. Assume that a prob-
abilistic protocol P recognizes L with error ratio at most e and worst-case message length
m. Then, for any restriction matrix A, rn ft(-log (size(A, P))).

Proof Let P be some probabilistic protocol with error probability e and worst-case
message length m. Also, let D, D2, ..., D2 be its induced deterministic protocols. Let
A be some assigned restriction matrix.

We first compute the ratio E of incorrectly covered 1-entries (Ri denotes the set of
rejecting submatrices of Di as follows:

mt2lE=
ln(M)

UR ln(L)

2m

2m Me Ri,eA(M 2_

On(M)
O(L)

(by definition of eA (M)).

On the other hand, the ratio of incorrectly covered 0-entries is bounded by e. Therefore

2m

2 Z OA(M)>--l--e.
i=lMRi 0A(L)
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Since E -< e, we can conclude that
2m

2
--y , , OA(M) >= e- e/6 > O.

MeRi,eA(M)< OA(L)

Consequently,
2m

2--
, size(L >= 1- e

MRi

Since #R =< 2 m, we get that 2 size(L)
We now consider set intersection as defined on a subset INPUT INPUT of

{ 0, } 2n { 0, } 2n. INPUT consists of all words of length n over the alphabet
{ 00, 01, 10 } with the letter 00 occurring exactly n / 2 times and the remaining two letters
occurring exactly n/4 times. We form the truth matrix set. The rows and columns of set
are labeled with words from the set INPUT. An entry of set in row x and column y has
value if and only if there exists an such that xi Yi 01 or x; Yi 10.

To find a lower bound for C,(set intersection), we must find a suitable restriction
matrix A. For our language set intersection, we introduce the notion ofa reason assignment
as a first step toward finding a proper restriction matrix.

DEFINiTiON 2.1. (a) We call an element r e { 0, } a "reason";
(b) A function R with R :INPUT -- 0, } is called a "reason assignment" for

rows if and only if, for each x e INPUT,
R(x) is a reason,

(2) if Xi 01, then R(x)i 1,
3 if xi 10, then R(x)i 0.

(4) R is unrestricted for the letter 00;
(c) Analogously, we define a reason assignment for columns, but now 01 must be

mapped into 0, and 10 must be mapped into 1.
Let reasonr (respectively, reasonc) be a reason assignment for the rows (respectively,

columns). Observe that reasonr(X) reasons(y) s implies that x and y have an empty
set intersection. We interpret s as a "reason" for this empty set intersection.

DEFINITION 2.2. Let reason and reason be reason assignments for the rows and
for the columns, respectively.

(a) An entry (x, y) in the matrix set is called correct if and only if reasonr(X)
reasonc(y);

(b) We say that the entry (x, y) is incorrect if and only if there exists a position j
such that

reasonr(X) and reasonc(y) only differ in position j, and
(2) x and y intersect.

Observe that any correct entry corresponds to an empty set intersection, whereas
an incorrect entry corresponds to an intersection in exactly one position. Finally, we
need the notion of Kolmogorov complexity [9 ].

DEFINITION 2.3. (a) Let U be an universal Turing machine;
(b) Let x and y be words over { 0, }. Then K(xly) is defined to be the length of

the shortest program p, so that U on input (p, y) outputs x;
(c) Let S be a finite set ofwords. An element x ofS is called Kolmogorov-random,

given y if and only if K(xly) >= log (#S).
We can now define the family of restriction matrices. Given a probabilistic protocol

P, we assign a pair of Kolmogorov-random reason assignments reasonr (for the rows of
set) and reason (for the columns of set). The correct and incorrect entries specify a
restriction matrix A := Ae, which we consider for the protocol P.
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The properties of random restrictions guarantee that the ratio of 1-entries to 0-
entries is bounded by O(n) (see Lemma 3.4). In other words, set intersection is now far
more balanced.

First, we describe the global structure of our proof. Let P be a probabilistic protocol
recognizing set intersection with error ratio at most e and worst-case message length at
most #n (e and t are sufficiently small constants). Choose 6 such that/5 > /( e).
Also, let A be the assigned random restriction. Assume that M is an induced rejecting
submatfix with

OA(M)
size A P and eA M) < 6.

OA (set intersection)
We prove in Lemma 3.4 that Kolmogorov-random reason assignments must generate

2(n-5/222n) correct entries. According to Lemma 2.1, OA(M) must be large (otherwise,
the message length would be large). Under this condition, we then show in 5 that, for
a Kolmogorov-random reason assignment R and its restriction matrix A, eA(M) > 6.
Therefore we have derived the desired contradiction.

Now we give a more detailed sketch of our argument. In the next section, we prove
some crucial technical properties of random reason assignments. In particular, we show
that any Kolmogorov-random reason assignment (random given the probabilistic protocol
P) forces almost all reasons to behave as expected in every submatrix induced by P, and
therefore the reasons behave as expected for the given submatrix M.

We then restrict our attention to those reasons r, which appear for rows and columns
of M, since only these reasons generate correct entries. We call a reason r crucial if a
large number ofrows and columns ofMcan be potentially assigned to r and if r behaves
as expected. We show in Lemma 4.1 that it suffices to restrict our attention to these
crucial reasons.

We obtain, in Lemma 4.2, the following property of a crucial reason r. For most
bit positions of r, a constant proportion of all rows and all columns that are assigned to
r possess the letter 00 in the corresponding position, and a constant proportion possesses
the remaining letter. Therefore crucial reasons are "unpredictable" in many bit positions.
We use this property in Lemma 4.3 to show that each crucial reason has f(n) crucial
"adjacent" reasons (adjacent when interpreted on the n-dimensional hypercube).

Therefore, for each crucial row reason r, we obtain fl(n) "adjacent" column reasons
r. The given random restriction produces a too-large error if r (as a row reason) and ri
(as a column reason) are both unpredictable in the differing bit position, and the column
reasons r and r are ofroughly same size. The protocol errs on too many incorrect entries,
since the number of incorrect entries covered by all pairs (r, r; is by a factor of f(n)
larger than the number of correct entries covered by the pair (r, r). This last step is
achieved in Lemma 5.1.

3. Expected behavior of reasons. We need the following versions of Chebyshev’s
inequality and Chernoff’s bound.

FACT 3.1. Consider N independent Bernoulli trials X, XN with probability
p(p > O) ofsuccess. Let X X + + XN.

(a) For c > 1, prob [IX- E(X)[ >_- E(Y)/c] < c/E(X);
(b) Ifrn > Npe2 then prob X >= m] <= e-m+ Np.
Proof (a) According to Chebyshev’s inequality, prob X E(X) >= t] <

t-2 Var (X). Let q p. Then E(X) Np and Var (X) Npq. Since Var (X) < E(X),
we have that

prob [IX- E(X)[ >_- E(X)/c] < cZVar(X)/(E(X)) < c2/E(X).
(b) This inequality is due to Chernoff 4 ].
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We now fix constants 3 2 -14 and/ 2 -18 where n is the worst-case message
length of the protocol P. Let (X, Y) denote the submatrix withX (respectively, Y) as
its set of rows (respectively, columns). We formulate definitions and claims for rows
only. The corresponding statements for columns are analogous.

DEFINITION 3.1. Let r be a reason.
(a) We say that r is valid for a row x of set if and only if there exists a reason

assignment that maps x into r;
(b) potential(r, X) is the set of those rows in X for which r is valid;
(c) actualR(r, X) is the set of rows in X that are actually mapped into r by the

assignment R;
(d) We call a reason rfat for Xifand only if#potential(r, X) >= 2(1-2/)n;
(e) Given X and a row reason assignment R, we say that the reason r is good for

X (and R) if and only if
(i) r is fat for X,
(ii) 1/2 #potential(r, X 2 -n/2 -< #actualR r X) -< #potential(r, Y 2 -n/2

(iii) For all positions _-< j =< n and for b e { 00, 01, 10 ), let p be the number of
rows in potential(r, X) with letter b in position j, and let a be the number of rows
assigned to r by R with letter b in position j. If p > 2l- 2)n, then

1/2 #p2 -"/2 __< #ajb. __< -32 #p2-n/2"
Fix a probabilistic protocol P. Next, we investigate the actual size of a reason when

restricted to submatrices induced by P. More precisely, we show that, for the purpose of
determining the error performance of P, we can restrict ourselves to good reasons.

The sample space used in the following is the set for all reason assignments. We
assume that all sample points are equally likely. Take a random reason assignment. We
have the following proposition.

PROPOSITION 3.2. Let r be a reason.
(a) Exactly 2 n/2 reasons can be assigned to a row x in INPUT;
(b) #potential(r, INPUT) O(n-12");
(c) With probability at least e-2"/2, for all reasons s, #actualR(S, INPUT) -<

e2n-2n/2.
d With probability at least 2 -4n/3 for every submatrix M (induced by P), at

most 2 t3/z-#)n rows are assigned to reasons whose potential is at most 2-)".
Proof (a) This is obvious, since we restrict our attention to words in the set INPUT.

All words in INPUT contain the letter 00 exactly n/2 times.
(b) The size of the potential is maximized for reasons with n2 0s and n2 s.

However, the number of rows that can be assigned to such a reason is

n/4 n

(c) The number ofinputs actually assigned to a reason r is maximal if the potential
of r is of maximal size. The size of potential(r, INPUT), however, is at most 2"/n.
Therefore we must consider 2"] n many independent Bernoulli trials with success prob-
ability 2 -n/2. Applying Chernoff’s bound, we get that

prob [#actual(r, INPUT) >= 2 n/2 -< e -2"/2.

Therefore

prob for every reason r, #actual(r, INPUT) < 2 n/2 >_- 2"e-2"/2.
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(d) We say that a reason is skinny if its potential is of size at most 2( -B)n. Now
let M (X, Y) be a submatrix induced by the probabilistic protocol. The expected
number of rows that can be assigned to skinny reasons is at most

2n,2(l-a)n
E 2(3/2-)n

2n/2

Now, by Fact 3.1, prob # rows in X with skinny reasons > 3E2 <= 4 /E.
Therefore, with probability at least 1-4/E= 1-4,2 -(3/2-)n, at most

O(2(3/2 -0)n) rows are assigned to skinny reasons. Since there are at most 2-" submatrices,
the probability that O(2 (3/9-- t)n) rows are assigned to skinny reasons in every submatrix
induced by the protocol is at least 4,2-(3/2--- >- 2 -4n/3 (by the choice of

fl and #). El
The following lemma in conjunction with Proposition 3.2(d) shows that we can

concentrate on good reasons only.
LEMMA 3.3. With probability at least 2-(l/-n,for every submatrix (X, Y)

induced by the probabilistic protocol P, all but 2-l/fat reasons are goodfor X.
Proof Consider a submatrix (X, Y) induced by P. The number of rows assigned to

the reason r is determined by the number of successes in a sequence of #potential(r, X)
independent Bernoulli trials (with success probability 2-/2). Assume that the reason r
is a fat reason. Then

3 #potential(r, X) ]#potential(r, X) < #actual(r, X) < - 2/2prob 2’/2

4 2 n/2

>= (by Fact 3.1(a))
#potential(r, X)

>- 4 2 -(l/2-2t)n (since #potential(r, X) >= 2(1-2)n).

For any reason and any position, the rows assigned to the reason contain only one of
the two possible letters. Since there are only n positions, we must consider 2n +
"potentials" for any reasons to determine whether it is good for X. Therefore the
probability that one of the 2n + "potentials" violates the given condition is at most

4(2n + 2 -(1/2 2t)n =< 2-( 1/2 33)n. Let RA be the set of reason assignments. Since the
probability that a fat reason is good for X is at least 2 -(l/z- 3)n, there are at least
#RA( 2 -(/2-3)n) reason assignments for which the fat reason is good for (X, Y).
Let F be the set of fat reasons that occur as row reason for the submatrix (X, Y). Let
us define a 0/1-matrix C, whose rows are the elements ofF and whose columns are the
elements in RA. An entry (r, R) in C is if and only if the reason r is good for (X, Y)
under the reason assignment R. Let RA * be the set of those reason assignments R with

r C( r, R) >_- #F- 2 21n/40 We are interested in estimating the number of reason assign-
ments in RA *. Observe that, , C(r, R) , , C(r, R) >= #F#RA(1 2-(l/2-3t)n).

rF RRA RRA rF

However,

E E C(r,R)= E E C(r,R)+ E E C(r,R)
ReRA reF ReRA* reF RRA-RA* reF

-< #RA* #F + (#RA #RA *)(#F- 221n/40).



552 B. KALYANASUNDARAM AND G. SCHNITGER

Therefore

#RA* #F + (#RA #RA*)(#F- 221n/4) > #F #RA( 2 -(1/2-3/3)n,

(#RA #RA*)221n/4 < #F #RA 2 -1/2-3/3)n,
#RA* 2 21n/40 -> #RA(22n/4 2 (/:z+3/3)n) (since #F-<_ 2n).

Therefore at most #RA 2 -/4-3/3)n reason assignments must be discarded because they
induce more than 2 21n/4 fat reasons that are not good for (X, Y). Since there are at
most 2 2.n submatrices, the number ofreason assignments to be discarded is at most #RA
2- 1/40- 3/3- 2/)n. Therefore, with probability at most 2 - 1/40-4/3)n, for all submatrices
induced by the probabilistic protocol, all but 2 21n/40 fat reasons are good.

We now fix a reason assignment R chosen at random given P. By the choice of
and #, the probability of satisfying all the conditions of Proposition 3.2 and Lemma 3.3
is at least 2-"/8). Therefore R also satisfies those conditions, and we can assume
that Proposition 3.2 and Lemma 3.3 are valid for every submatrix induced by the protocol.

LEMMA 3.4. For the matrix set (INPUT, INPUT),
(a) The number ofcorrect entries is (n-5/z22n), and
(b) The ratio of the number of incorrect entries over the number ofcorrect entries

is at most 4n.
Proof (a) There are t2(2 "/Vn reasons with exactly n / 2 s. Among those reasons,

at most 2,2n/4 are not good for the rows or columns of set. We restrict our attention
to those ft(2"/fn) 2,2 21n/4 good reasons. 2(n-12 n/2) rows are assigned to each such
reason, and hence each such reason covers 2 (n-22 n) correct entries. Therefore there are
(2n/V f(n-22 n) 2(n-/22 2n) correct entries.

(b) Observe that there are at most n (neighbor) reasons that induce incorrect entries
for a given reason. By Proposition 3.2(c), we have at most e2 n/2 incorrect entries per
row. Also, by Proposition 3.2(d), at most 0(2 (3/2-/3)n) rows are covered by reasons
whose potential is at most 2 (l -/3)". Therefore those reasons cover only O(2 (2-/3)n) incorrect
entries. Observe that this quantity is exponentially smaller than the number of correct
entries.

At most, 2,2 21n/4 fat reasons are not good for the rows or columns of set. By
Proposition 3.2(c), the actual size ofa reason is at most eZn-12 /2. Therefore the number
of incorrect entries covered by a reason is at most e4n-2 n. Consequently, the number
of incorrect entries covered by fat but not good reasons is at most 2 5"/3. Again, this
quantity is exponentially smaller than the number of correct entries. Therefore it suffices
to determine the ratio of the number of incorrect entries and correct entries covered by
reasons that are good for set.

Observe that, for a good reason r, the actual sizes with respect to rows and with
respect to columns vary only by a constant factor (because the size of its potential is the
same for rows and columns). A good reason r (for rows and columns) has at most n
neighbor reasons, and the actual size of each neighbor is larger by at most a factor of 3.
Therefore the number of incorrect entries covered by r is by a factor of at most 3n larger
than the number of correct entries it covers. Therefore, also considering the previously
discarded incorrect entries, the total number ofincorrect entries is at most 4n times larger
than the total number of correct entries in the matrix set.

4. Crucial reasons. In this section, we work with the reason assignment R fixed in
the previous section. We also pick one submatrix M (X, Y), which is induced by the
protocol P. Now we focus on a subclass of good reasons that produces, "most" correct
entries.
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DEFINITION 4.1. We call a reason r crucial for M if and only if
(a) #potential(r, X) > 2-e)n and #potential(r, Y) > 2-)n, and
(b) K(rI(X, Y), the reason assignment R) >- ln/20.
The following claim shows that it suffices to consider only crucial reasons.
LEMMA 4.1. (a) If r is a crucial reason for M, then r is good for the rows and

columns ofM;
(b) All but o(2( -u)zn) correct entries ofM are covered by crucial reasons.
Proof (a) Let r be a crucial reason for M. Then r is fat. Now assume that r is not

good for the rows of M. Then we can describe r by specifying r as one of the only
2 21n/40 fat reasons that are not good (Lemma 3.3). This gives us the desired contradiction,
since the resulting description is oflength less than 11 n / 20. With an analogous argument,
we can establish that r is good for the columns ofM.

(b) According to Proposition 3.2(d) at most E 0(2(3/2-)n) rows are covered
by skinny reasons, namely, those reasons whose potential is bounded by 2 ). According
to Proposition 3.2(c), every reason r has an actual size of at most eZn-2 n/2. Therefore
at most O(2n/2E) O(2 (2-t)n) correct entries are produced by skinny row reasons.
Similarly, not more than this number of correct entries are produced by skinny column
reasons.

Observe that only 21 /0 reasons whose potential is greater than 2-can violate
the Kolmogorov randomness condition in Definition 4.1. Since a reason can generate
at most O(2") correct entries, the number of correct entries covered by reasons violating
the randomness condition is at most O(23/). By the choice of gt and , all but
0(2 (-u)2n) correct entries are covered by crucial reasons. [2

Our final goal in this section is to introduce and investigate the unpredictability of
reasons. Intuitively, we would like to show that we can (almost) trust a set intersection
predicted by adjacent crucial reasons.

DEFINITION 4.2. (a) We say that position _-< _-< n) is u-unpredictable for X if
and only ifu#X=<#{seX’s; =00}_-<(1-u)#X;

(b) We call a reason r u-unpredictable in bit position (relative to R) if and only if

actualR(r, X) is u-unpredictable in position i.
LEMMA 4.2. Let r be a good reason with #potential(r, X) >= 2 (-)n. Then there is

a set U of( 2-)n positions such that
(a) potential(r, X) is 1/4 )-unpredictablefor all positions in U, and
(b) actualR( r, X) is )-unpredictablefor all positions in U.

Proof (a) Let F be the random variable that maps the rows of potential(r, X)to
themselves. Then, for the entropy H, we obtain that H(F) log2 #potential(r, X) >=

/)n. Assume that potential(r, X) is not ] )-unpredictable in 2-)n positions.
We obtain that

H(F) <-_ , H(Fi) <- (1 2-)n + H()2-1n,
i=1

where Fi is the ith projection of F.

Since H(1/4)<0.9, we get that H(F)=<(1-2-1/IO)n. Therefore (1-3)n=<
2-1/10)n. This, however, is impossible, since/3 2 -14.
(b) Let j be a position that is )-unpredictable for potential(r, X). It suffices to

show that j is (6)-unpredictable for actualR(r, X). Without loss of generality, let us
assume that only 00 and 01 can occur in position j. For b { 00, 01 ), we define

Pb := # { X potential(r, X) xj b and ab # { x actualR( r, X) xj b }.
Since r is a good reason, we get that

1/2 pb2-n/2 <= Ob <= Pb2-n/2
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Since potentials are ()-unpredictable, we have that Pb >= 1/4 (Poo + Po ). We also know
that ab >= 1/2 Pb2-n/2 > (P00 + P01 )2 -n/2. Therefore

ab >---- - (P0o + P0 2 -n 2
19/00 _[_ a01 ). [-’]

DEFINITION 4.3. Let r and s be reasons. We say that s is a neighbor of r if and
only if

(a) r and s differ in exactly one bit position, and
(b) The differing bit position is (-)-unpredictable for potential(r, X) and poten-

tial(r, Y).
Observe that our definition is not symmetric concerning the unpredictability of the

differing bit position. Now assume that s is a neighbor of a crucial reason r. Then

4#potential(s, X) >= #potential(r, X) and 4#potential(s, Y) >= #potential(r, Y).

Since the description complexity of r (given (X, Y) and the reason assignment R) is at
least 11 n / 20, the description complexity of s must be larger than 11 n / 20 O(log n).
Therefore we can repeat the argument of Lemma 4.1 (a) and obtain that s is good
for X and Y. We obtain that 12#actual(s, X) >= #actual(r, X) and 12#actual(s, Y) >=
#actual(r, Y).

We define if(M) to be the number of correct entries covered by the submatrix M.
We set d := 2-.

LEMMA 4.3. Assume that b(M) 2(2(-u)zn). Then all but o(p(M)) correct entries
are covered by crucial reasons, where each such reason has at least 2d)n crucial
reasons as neighbors.

Proof Let r be a crucial reason. A position is strongly unpredictable if both poten-
tial(r, X) and potential(r, Y) are )-unpredictable in this position. If a reason s differs
from r only in position k, then we call s a k-neighbor of r.

We say that a crucial reason r is unreliable if there is one strongly unpredictable
position j such that the j-neighbor s of r is not crucial. Observe that (by Lemma 4.2)
there are at least (1 2d)n strongly unpredictable positions. Since all but o(ff(M))
correct entries are covered by crucial reasons (by Lemma 4.1 ), the claim follows if we
show that only o(ff(M)) correct entries are covered by unreliable reasons.

Now let us assume that the crucial reason r is strongly unpredictable in position j,
but its j-neighbor s is not crucial. Since j is strongly unpredictable, we obtain that

4#potential(s, X) >= #potential(r, X) and 4#potential(s, Y) >= #potential(r, Y).

As a consequence of the argument preceding this lemma, we have that

12#actual(s, X) >= #actual(r, X) and 12#actual(s, Y) >= #actual(r, Y).

Therefore the expected number E of correct entries covered by noncrucial neighbors is
at least proportional to the expected number E_ of correct entries covered by unreliable
reasons. We know from Lemma 4.1, however, that all but o(2n/22un) o(b(M)) correct
entries are covered by crucial reasons. Since E2 O(E) o((M)), only o(p(M))
correct entries are covered by unreliable reasons.

5. Error accounting. Assume that an adversary presents a probabilistic protocol P
with error ratio < d4 and worst-case message length m < n. Choose 2e/( e).
We pick a Kolmogorov-random restriction A such that Proposition 3.2 and Lemma 3.3
are valid. Our adversary counters by selecting a rejecting submatrix M that is induced
by P. Next, we determine the "size" ofM relative to A. If OA(M) O(2(-")2"), then
we have won.
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Why? By Lemma 3.4(b), we know that the truth matrix set possesses 2(n-5/222n)
correct entries (relative to A). So, if OA(M) O(2(-")2n), then the message length rn
must be at least #n (according to Lemma 2.1 ). Otherwise, applying Lemma 2.1 again,
we can defeat our adversary by showing that eA(M) > 6, since this shows that his last
move was illegal.

Our objective is now to estimate the number of incorrect entries inside a submatrix
M that contains at least 2 ( -,)2n correct entries. More precisely, we must show that M
covers f(n) times as many incorrect entries as there are correct entries. By Lemma 4.3,
we know that almost all correct entries are covered by crucial reasons that have at least

2d)n crucial reasons as neighbors. Unfortunately, a row assigned to a row reason
r and a column assigned to a neighbor reason s need not produce an incorrect entry. The
danger is that s may contain only the letter 00 in the differing bit position. We now
strengthen Lemma 4.3 by showing a constant proportion ofthe correct entries is covered
by crucial reasons that have f(n) neighbors, where the differing bit position is unpre-
dictable for all involved reasons. First we must introduce some notation.

DEFINITION 5.1. Two crucial reasons r and s are adjacent if and only if
(a) The two reasons differ in exactly one bit position;
(b) The differing bit position is ()-unpredictable for potential(r, X) and poten-

tial(r, Y); and
(c) The differing bit position is (1/4)-unpredictable for potential(s, X) and poten-

tial(s, Y).
We now summarize the properties of crucial reasons.
Property (a). Each crucial reason is predictable in at most dn positions.
Property (b). All but o(q(M)) correct entries are covered by crucial reasons, where

each such crucial reason has at least 2d)n crucial reasons as neighbors.
Property (c). If s is a neighbor of a crucial reason r, then

12 #actual(s, X) >= #actual(r, X) and 12actual(s, Y) >= #actual(r, Y).

Property (d). If r and s are adjacent, then they cover at least

)2(#actual(r, X)#actual(s, Y) + #actual(s, X)#actual(r, Y))

incorrect entries. (We may lose a factor of )2 because, according to Lemma 4.2(b),
the actual sets are )-unpredictable in the differing bit position.)

Our goal is to find a set of crucial reasons coveting a constant proportion of the
correct entries ofM such that each crucial reason in the set is adjacent to 2(n) crucial
reasons. Our construction is graph theoretical.

We construct a directed graph G(M) (V, E) with crucial reasons as its set of
vertices. We insert an arc (r, s) if and only if s is a neighbor of r. We define weight(r)
to be the number of correct entries ofM covered by reason r. We also define the weight
ofan edge e to be the weight of its tail. The directed graph G(M) has the following weight
restrictions.

Restriction (a). The set of vertices ofoutdegree less than 2 d)n has a cumulative
weight of at most o((M)) (by Lemma 4.3 ).

Restriction (b). As a consequence of Property (c), if s is a neighbor of r, then 144
weight(s) >= weight(r).

Set o := (d/3 ). As a first step, we prove in the following lemma that the cumulative
weight of all vertices of indegree greater than 2d + o n is ft(p(M) ). By Restriction (a),
however, the cumulative weight of vertices ofoutdegree less than 2 d) n is o(q(M)).
Observe that if a vertex has indegree larger than (2d + )n and outdegree larger than
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2d)n, then its corresponding reason is adjacent (in the sense of Definition 5.1 to
at least on reasons. Therefore we have reached our goal.

We need the following definition. Let S { v e V" indegree(v) < (2dn + 0n) } and
B=V-S.

LEMMA 5.1. It holds that a B weight(a) >= 2-9 v weight(a).
Proof Set W’= Z v weight(a). By Restriction (a),, weight(e) >= ()(1 2d)nW >= (0.8 2d)nW.

eE

However, the total weight of those edges that are directed into vertices in S is at most
144(2dn + on)W because of Restriction (b) and the indegree bound on the vertices in
S. Therefore the total weight of those edges that are directed into vertices in B is at least
(0.8 2d- 288d 144o)nW. Since the indegree of any vertex is at most n, we
have that

weight(a)>= (-4)(0.8- 290d- 144o)W
aB

>_- (-4)(0.8- 350d)W

> 2-9W, since 350d < 0.35 < 0.8.

Consider a crucial reason r that is adjacent to on crucial reasons r, , rpn. Observe
that the bit position in which r and ri differ is/3-unpredictable for both r and ri. Now we
must observe that, for each ri, 12#actual( ri, X) >= #actual(r, X).

To avoid double counting of incorrect entries, we count incorrect entries induced
by the column reason ri and the row reason r for each crucial reason r that is adjacent
to on crucial reasons. The number of incorrect entries induced by the pair (r, r;) of
reasons is by a factor off= (6)2(2)(f> 2 -2) larger than the number of correct entries
covered by r. (Since the actuals are -unpredictable for both the reasons, we may lose
a factor of at most (6) 2 We may also lose a factor of up to () due to the difference in
the size of the two actuals.) Therefore, for each such crucial reason r, we obtain at least
(2-20n. weight(r)) incorrect entries as compared to weight(r)correct entries. Therefore,
as a consequence of Lemma 5.1, there are at least 2-2+9+)onp(M >= 8d4n(M)
incorrect entries in the submatrix M (X, Y).

Therefore we have that 1A(M) > 8d4nOA(M) and 1A(L) -< 4nOA(L) (by Lemma
3.4). Hence eA(M) >--_ 2d4 > 2e > 6.
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A TIGHT LOWER BOUND ON THE SIZE OF PLANAR
PERMUTATION NETWORKS*

MARIA KLAWEf AND TOM LEIGHTON

Abstract. A tight lower bound is proved on the minimum number of vertices in a planar graph in which
any permutation between distinguished vertices can be realized by vertex disjoint paths.

Key words, planar graphs, permutation layouts, switching, circuits
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1. Introduction. We define a t-permutation network to be a graph G with distin-
guished vertices called terminals, with the property that, for any one-to-one pairing
{ (Xi, Yi)} among the terminals, there is a set { Pi } of vertex-disjoint paths in G with Pi
joining xi to Yi for each i. Permutation networks obviously have many applications in
communication networks, but they have also received substantial attention in the context
of permutation layouts, a basic tool in the layout of printed circuits and large scale
integrated chips (see CS ], KKF], S ], TK], AKLLW ], AKLLW2 ], AKS ).

A permutation layout is a permutation network where the graph G is a rectangular
(two-dimensional) grid graph. The definition of permutation layout sometimes includes
additional assumptions, such as the assumption that the terminals are partitioned into
inputs and outputs with only one-to-one pairings between inputs and outputs considered.
Since it is possible to modify our definition and result in a straightforward manner to
correspond to these variants, we restrict our attention to the case described here.

One of the key questions concerning permutation layouts is how large a rectangle
is needed to construct a t-permutation layout, since this influences how densely circuits
can be laid out on chips. Examples of rectangular grids with O(t3) area that contain t-
permutation layouts (and simple algorithms for finding the routings of the connecting
paths) were given by Cutler and Shiloach in [CS], who also proved that, ifall the terminals
lie on at most two horizontal lines of the grid, then the rectangle must have area at least
2(t25). Techniques very similar to those given by Cutler and Shiloach are commonly
used in circuit layout. In [AKLLW1], Aggarwal et al. proved an ft(t 3) lower bound on
the area of t-permutation layouts, showing that the Cutler-Shiloach techniques are
asymptotically optimal. This result raises two obvious questions. Can the area needed
be reduced by using multiple layers of grids, or by using some other planar graph instead
of rectangular grids? Since area is not an appropriate measure for planar graphs, in the
second question, area is replaced by number of vertices as these two measures essentially
agree on grids.

The first question is addressed in AKLLW2 ], where the f( lower bound on area
is extended to multilayer grid permutation networks with the restriction that some (ar-
bitrarily small) fixed fraction ofthe connecting paths do not change layers. The restriction
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that a fixed fraction of the paths do not change layers is essential, since the standard
crosspoint switch is a two layer t-permutation layout with O(t2) area, in which every
routing path changes layers once. Despite the reduction of area obtainable with the use
of layer changes, the practical advantages of avoiding layer changes continue to make
planar permutation networks a useful tool in circuit layout. Thus the second question
remains a significant issue. The purpose of this paper is to answer the second question
by proving an f(t3) lower bound on the number of vertices in a planar t-permutation
network, showing that the current grid-based techniques are asymptotically optimal.

Like the lower bound for t-permutation grid graphs in [AKLLW ], [AKLLW2 ],
our proof uses the permutation property of the graph to simulate a planar embedding of
an expanding graph on f(t) vertices and then applies the quadratic lower bound on the
crossing number of expanding graphs to get the desired 2(t3) lower bound. However,
we also use an additional tool, namely, the existence of weight-balanced separators for
planar graphs. Combining these two techniques results in a proof that is more general
and simpler than the ones for grid graphs given in [AKLLW 1] and [AKLLW2 ].

2. The lower bound. Let G be a t-permutation network with n vertices. We first
note that we may assume that G has maximum degree 3, since replacing the edges adjacent
to each vertex of higher degree with a binary tree connecting the vertex to its neighbours
only increases the number of vertices by at most a constant factor, and does not affect
the permutation property. In addition, we may assume that G is connected since all the
terminals must lie in the same connected component of a permutation network, and the
connected component will itself be a permutation network. Finally, we may assume that
each terminal has degree 1, since, if necessary, we can hang a new terminal vertex from
each original terminal.

We start the section by describing the weight-balanced separator theorem (Theorem
2.1 and one of its corollaries, culminating with the formulation we will actually apply,
the balanced terminal separator lemma (Lemma 2.2). We then give the version of the
lower bound on crossing number (Lemma 2.3 ), which we need, and close with the proof
of the lower bound on the number of vertices in a planar permutation network (Theo-
rem 2.4).

The weight-balanced separator is a generalization of the weighted version of the
planar separator theorem given in LT ]. Specifically, the original theorem in LT proves
that, if every vertex in an n-vertex planar graph has a weight, then there is a set of
O(Vn) edges and vertices whose removal splits the graph into two subsets so that each
subset contains at most half the total weight. In the generalization, vertices have several
different weights, and we seek a separator that simultaneously splits all the weights in
half. The precise statement is as follows.

THEOREM 2.1 (weight-balanced separator). Given an n-vertex planar graph where
each vertex has a k-vector ofweights, the graph can be split into two subsets by removing
O(kr) edges and vertices, such that,for each component ofthe weight vector, the total
component weight ofeach subset is at most halfthe total component weight ofthe graph.

A weaker form of this theorem was first proved by Leighton in L2], using a com-
binatorial result on splitting necklaces of coloured beads. A stronger and very elegant
form of the necklace-splitting result was proved by Goldberg and West [GW], though
with a rather lengthy and involved proof. Alon and West [AW] later gave a very simple
proof based on the Borsuk-Ulam "ham sandwich" theorem from topology. The proof
of the weight-balanced separator theorem in its full generality can be found in the last
two lectures of [LLS], though, in fact, the special cases found in [L2], [BL], and [GW,
Thm. 4, p. 104] would suffice for our purposes.
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It is well known and easy to prove by iteratively applying the original weighted
planar separator theorem that, for any p and any weighted planar graph G of bounded
degree, there exist O(pn) edges whose removal splits G into p pieces each having at
most 1/p of the total weight. Similarly, by using the weight-balanced separator theorem
and assigning each vertex a pair of weights (one being the vertex’s original weight, and
the second, the number of removed edges that are adjacent to the vertex), it is easy to
prove the following stro_n,&e_r result. For any p and any weighted planar graph G ofbounded
degree, there exist O(Vpn) edges whose removal splits G into p pieces each having at
most 1/p of the total weight, and such that each piece is adjacent to O( 1/p) of the
removed edges. More precisely, we begin by finding O(fn) edges whose removal splits
G into two pieces, each having half of the vertices. At the next step, an additional
O( fn/ 2) edges are removed from each piece to produce a total of four pieces, with each
piece containing quarter of the vertices, and with each piece adjacent to at most half of
the edges removed at the first stage. At the next stage, O(fn) edges are removed from
each piece to produce a total of eight pieces, with each piece containing one-eighth of
the vertices. Moreover, each piece is adjacent to at most halfofthe edges removed during
the first two stages that were adjacent to its "parent" piece at the second stage. Thus
the piece is adjacent to at most O( fn/4 + Vn/ 2 / 2) edges. After iterating this procedure
k times, we obtain 2 k pieces with each piece containing 1/2 k of the vertices, and with
each piece adjacent to O( _-- fn/ 2i/2 k-i) of the edges that have been removed. Such
decompositions are called fully balanced decompositions and are discussed in detail in
the last two lectures of [LL3 and in [BL]. Applying the fully balanced decomposition
result in the context of planar permutation networks yields the following lemma.

LEMMA 2.2 (balanced terminal separator). Given a bounded degree n-vertexplanar
graph with terminals each having degree 1, there exist O(f-nt) edges whose removal
results in a graph such that each connected component is incident to O(v--n) removed
edges and each terminal is its own component.

Proof. First, remove the edges adjacent to terminals. Assign each vertex a weight
equal to the number of removed edges adjacent to it. Now taking p t, a fully balanced
decomposition of this weighted graph has the desired properties.

LEMMA 2.3 (crossing pairs). There exists a constant c > 0 such that, for each s,
there is an s-vertex graph H ofdegree at most 3, such that,for each planar embedding of
H, there are at least cs 2 distinct pairs ofedges that cross each other.

Proof. We first note that in any planar embedding of a graph H with the minimum
number of edge-crossings, each pair of edges crosses at most once. To see this, suppose
that we have an embedding and that e and e’ are edges that cross each other more than
once. Let x and y be consecutive crossings between e and e’. The crossings at x and y
can be eliminated by rerouting e’ and e so that each follows the other’s path between x
and y (see Fig. ), and hence the embedding could not have had the minimum number
ofcrossings. Given this observation the lemma follows immediately from the well-known
fact that there are expanding graphs of degree 3 and Leighton’s quadratic lower bound
on the crossing number of expanding graphs [L3].

We are now ready to prove the desired lower bound.
THEOREM 2.4. IfG is a connected n-vertex planar t-permutation network ofdegree

at most 3, then n ft(t3).
Proof. By the terminal separator lemma, there is a set R of O(rn-) edges of G

whose removal results in a graph such that each connected component is incident to
O(f) removed edges and each terminal is its own component. Let G\R be the graph
obtained by removing the edges in R from G, and let Gc be the graph obtained from G
by contracting every edge of G that is not in R, and then removing multiple edges. An
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example is shown in Fig. 2. It is easy to see that each vertex of G corresponds to a
connected component of G\R and that G is a connected planar graph with O(V)
maximal degree. We will refer to a vertex of G as a terminal node if the corresponding
connected component ofG\R is a terminal. We will assume that we have a fixed embed-
ding of G in the plane.

Let T be a subtree of G whose leaves are the terminal nodes. Such a tree can be
obtained, for example, by taking a spanning tree of G and chopping off all branches
that contain no terminal nodes. Since each terminal node has degree in G and hence
in Gc, it must be a leaf of any spanning tree of Gc, and hence the leaves of this tree will
be exactly the terminal nodes. Let T be a subtree of G that maps onto TC; i.e., T is
obtained by replacing each edge of T with a representative edge in R and replacing each
vertex of Tc with a subtree of the component corresponding to that vertex in Gc. An
example is shown in Fig. 3. Note that the leaves of T are the terminals.

Let Q be a simple curve in the plane connecting the terminals, with Q running
alongside the induced embedding ofthe edges of Tin the plane, picking up the terminals
as illustrated in Fig. 4. Q is assumed to be routed sufficiently closely to T so that it only
intersects edges of G when it runs past a vertex of T, where it may have to cross an edge
in G\ T that is adjacent to the vertex. We label the terminals z, zt in the order in
which they are first visited by Q.

We will call each portion of Q joining a pair of consecutive terminals a link and
say that a link runs through a component of G\R if it runs past some vertex in the
component. It will be important to keep in mind that links are not part of any of the
graphs but merely simple curves lying in the plane in which the graphs are embedded.
Since each link starts and ends at a terminal, and at most two links can run alongside
any edge in T, it is easy to see that, if y is a vertex of degree d in T, then at most 2d
links can run through the component Cy represented by y. Let CI, Cm be the

denotes terminals

denotes edges in R

FIG. 2
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FIG. 3

components of G\R, and, for each i, let ni be the number of links that run through C;.
We now show that Zn>4 ni =< 6t. Let d; be the degree of the vertex representing Ci in
Tc. We already noted that n <- 2di, and hence it suffices to prove that Eat> 2 di <= 3t.
First, note that A, the number ofvertices ofdegree at least 3 in T, is at most the number
of leaves of Tc and that Tc has exactly leaves since its leaves are the terminal nodes.
Next, since the average degree in any tree is less than 2, we have Z (d 2) < 0. Now
Z (d; 2) -t + ,d>2 (di 2) -t + -di>2 d- 2A, and hence di>2 di < +
24 =< 3t, as desired.

Now, taking s t/3 in Lemma 2.3, suppose that H is a degree-3 graph on t/3
vertices vl,"’, l)t/3 such that, for each planar embedding of H, there are at least
c(t/ 3 2 distinct pairs ofedges that cross each other. We want to use the planar embeddings
of G and Q to produce an embedding of H in the plane. We use Z3h- to represent Vh
for each h. Let Zh { Z3h- 2, Z3h-1, Z3h }. Now let { (xi, Yi) } be a one-to-one pairing of
the terminals of G such that, for each edge (vj, vk) in H, there is some such that xi

Z. and y; Zk. This is easy to do, since H is of degree at most 3 and zhi 3 for each
h. Now each edge (v., v) ofH is embedded as the corresponding permutation path Pi,
plus possibly a link at one or both ends to complete the connection to its endpoints.
Note that each link is used by at most one edge of H. Since the Pi are mutually disjoint
and the links are also mutually disjoint except at possibly the vertices ofH, two embedded
edges ofH can only cross if one of the edges’ permutation paths crosses a link used by
the other edge. Thus there are f(t) distinct pairs of permutation paths and links that
cross each other. By the choice of Q, each such crossing can only occur when the link
runs past a vertex that is an endpoint of an edge in the permutation path. We will say a
permutation path and link cross inside a component of G\R if the vertex is in that
component.

For each i, let r be the number of edges in R incident to the connected component
C;. Since there is at most one permutation path using each edge in R, the number of

zl T

6

- denotes Q

z2

FIG. 4
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permutation paths that pass through C is at most ri, and hence the number of distinct
pairs of permutation paths and links that cross inside Ci is at most niri. Let a be the
total number of distinct pairs that cross. We have

a <- niri<=4 , ri+ , niri.
ni_4 ni>4

Clearly, we have 7] rg _-< 2[ R[, and we proved earlier that .,ni>4 ng <= 6t. In addition, we
have [R[ o(fn-) and max { r } o(fn-). Thus we have 4 E=<,i rg O([R[)
O(fn-) and Z,>4 niri <- 6t max { ri } O(fn-) also. Hence a O(V). Finally, com-
bining this with the lower bound a (/2) implies that n f(t3), as desired, ff]
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Abstract. This paper presents sufficient conditions for a grid graph to be Hamiltonian. It is proved that
all finite grid graphs of positive width have Hamiltonian line graphs.
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1. Introduction. The interest in subgraphs of the graph determined by the square
lattice in It 2 is mainly explained by the importance of the lattice itself, due, in turn, to
its frequent occurrence in various mathematical fields. Hamiltonian properties of such
graphs have been previously examined by several authors (see, for example, [2 ]-[ 6 ]).
Their relevance for applications (such as automatic moves in a warehouse) is obvious.

Here we use the following (more restrictive) notion of a grid graph. Let c be the
infinite graph embedded in Re, with 7/2 as vertex set and with an edge between any two
vertices at Euclidean distance 1. A grid graph is a connected subgraph of f, whose
intersection with any infinite path of vertex set {. } 7/or 7/ (. } is connected or
empty. For two graphs .4, B, the graph .4 B denotes as usual, the graph obtained from
.4 by deleting every vertex ofB that is in .4 and any edge of.4 incident to such a vertex.
The union ofthe boundaries ofall unbounded domains of determined by a grid graph
G is called boundary of G. Any vertex of degree 2 in a grid graph is called a corner. For
a connected graph G we also define its width w(G) as the smallest number n for which
there exists a path P of length n in G such that G P is disconnected and the diameter
of each component of G P is at least n (n 0 allowed). Note that not all connected
graphs and not even all grid graphs possess a width. However, all finite grid graphs except
PI, P_, and C4--which for our purposes present little interest and will henceforth be
excluded--do have a width. A tour in a finite graph G is a finite sequence ofnot necessarily
distinct vertices

Xl, X2, X3, Xn, Xn + Xl

such that all { x, x + ) ’s are distinct edges of G =< _-< n) and every edge of G has at
least one endpoint in the sequence.

In this paper, we present sufficient conditions for a grid graph to be Hamiltonian.
Also, we prove that all finite grid graphs of positive width have Hamiltonian line graphs.

2. Hamiltonian finite grid graphs. Let G be a finite grid graph of positive width.
This restriction on the width is natural because every graph with vanishing width has
connectivity and is therefore non-Hamiltonian.

Let

W=min{x:(x,y)G}, E=max{x:(x,y)G},

S=min{y:(x,y)eG}, N=max{y:(x,y)eG).
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The corners of G, considered in their natural order on the boundary of G, are

(xI,Yl), ,(Xn,Yn),

(Xn+l,Yn+l),

(Xe+l,Ye+l), ,(Xs,Ys),

,(Xw,yw),

where X Xw W, Yn Yn +1 N, Xe Xe+ E, Ys Ys + S. For all indices i,
except n + and s + 1, the above vertices (x;, Yi) will be called special and receive
auxiliary coordinates , i as follows:

Xi + xi

i- xi xi

xi + --Xi +

fori-< n lore+ <=iNs- 1,

forn + 2 <= <= eor

_
s + 2,

for n or s;

I Yi + for i<=e,

y,. for i>_- e+ 1.

THEOREM 1. Let G be a finite grid graph with w( G) > 2. Ifat every special vertex
the product ofits auxiliary coordinates is even, then G is Hamiltonian.

Proof. First, we allow G to have smaller width, but still assume that w(G) > 0.
Also, we assume that rt is even at all special vertices, of auxiliary coordinates ((, 7).
Consider the height h N- S. Then, clearly, h is odd. We prove that G has a Hamiltonian
circuit containing the path on y N by induction on h. Indeed, the assertion is true if
h 1. Now suppose it is true for height h; we prove it for height h + 2. There are three
possible situations at the left end of the path in G with y N, shown below:

(Yn-1 ( N- 2 or n 1 (Y-1 N- 2) (n 1 and y- Yw 1)
and Y Yw > 1)

There are three analogous situations at the fight end of the path. Consider now the
subgraph HofG spanned by the vertices (x, y) with y <= N- 2. Hsatisfies the requirements
of our induction hypotheses, as we can easily verify. So there is a Hamiltonian circuit in
H, which can be transformed into one ofG--here we also use w(G) > 0--as the following
illustration shows:
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Now, to prove the theorem in its general form, let I ri is odd } and denote
by Q the set of all points (x, Yi with I and

X .X<Xi+ ifi<n,

XnXXn + if n,

Xi_l<XX ifn+2<=i<-e,

Xi+l<XX if e<i<s,

Xs + . X - Xs if s,

Xi X<Xi- ifi>=s+2.

It is readily seen that G Q is a graph G’ with w(G’) > 0 and r/even at all special vertices.
Thus it is Hamiltonian, and (from the proof) it is clear that the constructed Hamiltonian
circuit contains all of the paths with vertex sets, respectively,

{(x, yi--1):Xi<=X<Xi+l} ifiIandi<n,

((x,y,,-1):x,<x<=x,+l} ifn6I,

{ (x, Yi xi <x -< X } if e I and n + 2 -<_ =< e,

{(x, yi+ 1):xi+<x<-xi} ifiIande<i<s,

{(X, ys+ 1):xs+ <=x<=Xs} ifseI,

{(X, Yiq- 1)’.Xi<=X<Xi-} ifiIandi>=s+2.

Then it suffices to change each ofthem appropriately to obtain a Hamiltonian circuit in
G. For instance, the path with consecutive vertices

(xi,Yi- 1),(xi + 1,yi- 1), ,(xi+ - 1,yi- 1),

where I and < n, will be replaced by the path with consecutive vertices

Xi, Yi ), xi, Yi ), xi + 1, Yi ), Xi -- l, Yi ), (Xi + 2, Yi ), x + 2, Yi ),

", (xi + 1, Yi), (xi + 1, Yi 1).
This concludes the proof.

Theorem possibly provides a useful sufficient condition for G to be Hamiltonian,
but is unfortunately far from being a characterization. For an example of a graph that is
Hamiltonian but does not satisfy the hypotheses ofTheorem 1, see Fig. in the following
section.

3. Hamiltonian infinite grid graphs. We call an infinite graph Hamiltonian if it has
a Hamiltonian two-way infinite path. There are several different types of infinite grid
graphs. Some ofthem certainly do not contain any Hamiltonian graphs. This is the case,
for instance, ifthe boundary has more than two components. We systematically consider
all possible types in a subsequent paper; here we only mention two of them.

First, we investigate those infinite grid graphs with connected boundary for which
the intersection with any infinite path of vertex set Z {. } or {. } 7/is a one-way
infinite path or empty. We may suppose without loss of generality that their vertex sets
include 7// 7/_; we call these graphs SE-grid graphs.

Let G be an SE-grid graph. Let P be the boundary two-way infinite path of G. A
(finite or infinite) subpath of P is called a step if its endpoints, and only its endpoints,
have degree 4 in G. Such a step S must then have a corner (xc, yc) among its vertices.
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FIG.

Let

kx card { x (x, Yc) has degree 3 },

ky card { y: (xc, y) has degree 3 }.
Then we say that the step S at (Xc, Yc) is oftype (kx + 1, ky + ). Clearly, a step of type
(s, t) has length s + t. A step of type 1, is called a unit step.

Obviously, if G has only unit steps, it is not Hamiltonian. This is also the case if P
only contains a one-way infinite path including just unit steps. We will prove the following
theorem.

THEOREM 2. Every SE-gridgraph withjustfinitely many unit steps is Hamiltonian.
Proof. We consider the SE-grid graph G and use all notation above. We may

suppose, without loss of generality, that the natural ordering on P induces an increase
of both Cartesian coordinates. If it has just one corner, then G is easily shown to be
Hamiltonian. Let (v, w) be a corner of G and consider the following conditions:

(a) there is a step of type (s, So) at some corner (x*, y*) -< (v, w);
(b) for infinitely many corners (x, y) -< (v, w), the step at (x, y) is of type (s, t)

with >= 2;
(a’) there is a step of type (s0, t) at some corner (x**, y**) >= (v, w);
(b’) for infinitely many corners (x, y) >= (v, w), the step at (x, y) is of type (s, t)

with s >= 2.
The Hamiltonian path will be composed of a one-way infinite path A and infinitely

many finite paths B1, Cl, B2, C2, . To describe the Hamiltonian path, let us say that
a path in G is close to another if they are disjoint but no point of the first is at Euclidean
distance more than ]/r from the second.

Construction ofA. We simply take A to be a one-way infinite subpath of P ending
(supposing that we come from infinity) at a point (x0, Y0) chosen as follows:

If(a) is satisfied, let (x0, Yo) (x*, y*). If not, let (x0, Yo) be a corner of type (So,
to) with to >= 2 lying below all unit steps of G if(b) is satisfied, and a corner of type (So,

lying below all unit steps and below all corners of type (s, t) with >= 2 if (b) is not
satisfied.

Construction ofBn. Bn begins at (xn 1, Y. 1), goes through (xn 1, Y ), then
goes close to A tO Ui<n (B; U C) up to a point (M,, y,) such that if (a’) is satisfied,
y, + y**; if not, (x 1, y, + is a corner above all unit steps of G, of type
(s,, t,) with s >- 2 if (b’) is satisfied, and s, if (b’) is not satisfied.

Construction of C. C. begins at (x,, y,), goes through (x, + 1, y,), then turns
down and goes close to B until a point (Xn- 1, Y) is reached. Then if (a) is true, C. ends
at (x., yn) (xn- 1, Y) (xn_ 1, y.- 2). Otherwise, C. again follows P downward
until the next corner (x., yn) of type (Sn, t) with t. >- 2 if (b) is fulfilled, and tn if
(b) is not fulfilled.

The proof that the mechanism works presents an interest only if (a) and (a’) are
not satisfied, and essentially differs between having (b) (or (b’)) satisfied or unsatisfied.
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While, in the case where (b) and (b’) are satisfied, all Bn and Cn are coordinate-monotone,
this is not the case when (b) or (b’) is not satisfied. It works close to the previous path,
essentially because G contains, together with a vertex (x, y), all vertices (x + z, y z),
z 6 . This is enough when (b) and (b’) are fulfilled. If not, the algorithm still works,
essentially because, in that situation, for some corner (x_, y_) and any corner (x, y) _-<
(x_, y_ ), (x z, y z) G (z ) if (b) is not satisfied, and for some corner (x+, y+
and any corner (x, y) >= (x+, y+), (x + z, y + z) e G (z e N) if (b’) is not satisfied.
Hence the theorem is proved.

Although Theorem 2 provides an excitingly weak sufficient condition for an SE-
grid graph to be Hamiltonian, it fails, however, to be a characterization.

Now we mention a sufficient condition for a grid graph G to be Hamiltonian, in
the case where its intersection with any infinite path of vertex set 7/ { } is a finite path
or empty and its intersection with any path of vertex set { ’ is a one-way infinite
path or empty. In such a case, G is called an N-grid graph. The easy proof is left to the
reader.

TNORM 3. If, for every corner (x, y) ofan N-grid graph G, y is even, then G is
Hamiltonian

In and 2 we made little progress toward a satisfactory answer to the following
problem.

Problem. Provide a characterization of Hamiltonian grid graphs.
Among the cases treated here, we consider that of an SE-grid graph as the most

hopeful, since our Theorem 2 already comes rather close to being a characterization.

4. Hamiltonian line graphs of grid graphs. Clearly, a finite grid graph G is Eulerian
if and only if it has no vertices of degrees or 3; see Fig. 2. The line-graph L(G) of G is
Eulerian if and only if all vertex degrees in G are of the same parity, which also means
that vertices of degree or 3 must fail, with the remarkable exception illustrated in Fig.
3. In short, G is Eulerian precisely when it is as shown in Fig. 2, and L(G) is Eulerian if
and only if G is as shown in Fig. 2 or 3. Much more often, L(G) is Hamiltonian, as
already demonstrated by the following corollary.

COROLLARY TO THEOREM 1. IfG is afinite grid graph with w( G) > 2, then L( G)
is Hamiltonian.

Proof. We use the terminology of 1. Let k be the number of all special vertices of
G having at least one of its auxiliary coordinates 1. We prove by induction on k the
following assertion: G has a tour visiting all special vertices (i, i with ii even.

TTTTT

FIG. 2
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FIG. 3

For k 0, delete all special vertices (;, n; with ir/i odd. The resulting graph has,
by Theorem 1, a Hamiltonian path, which is a tour in G visiting all special vertices of G
that were not deleted.

Suppose now that the assertion is true for at most k special vertices with at least
one auxiliary coordinate 1; we prove it for k + such vertices.

Case 1. There exists a special vertex (xi, Yi with auxiliary coordinates (1, ).
Suppose that -< n. Delete (xi, Yi ). If the previous corner (xi- 1, Y;- 1) had i- even
and r/i- odd, it also must be deleted. If, moreover, r/i- 1, we must look at the corner
(xi- 2, Yi-2) and delete it, also, in the case where i--2 is even and r/i-2 odd, and so
forth. If the corner (xi /1, Yi +1) had i +1 odd and r/i +1 even, delete it. If, moreover,
i + 1, we look at (xi / 2, Yi + 2), and delete it, provided that i / 2 is odd and r/i + 2 even,
and so forth. If n + 2 =< =< e or e + -< -< s or >= s + 2, proceed similarly.

Case 2. There is a special vertex (xi, Yi with auxiliary coordinates (;,
(i 4:1 ). If =< n, delete that vertex. If the previous corner (xi- 1, Yi- 1) had i- even
and r/i- odd, delete it, also. If, moreover, ?i- 1, look at (xi- 2, Yi- 2) and delete it if

i- 2 is even and r/i- 2 odd, and so forth. Proceed similarly if n + 2 =< e or e + =<
=< s or >= s + 2, instead ofi =< n.

Case 3. There is a special vertex xi Yi with auxiliary coordinates 1, r/i r/i 4
(analogous to Case 2).

After the deletions, there will be at most k special vertices with at least one auxiliary
coordinate 1. The induction hypothesis guarantees the existence in the graph obtained
after deletions ofa tour T containing all special vertices whose (new) auxiliary coordinates
have even products. This ensures that T is a tour of the same kind in the original
graph, also.

Now the following known result finishes the proof.
LEMMA (see ]). For any finite graph G, L( G) is Hamiltonian ifand only if G

has a tour.
The restriction w(G) > 2 is not natural, merely imposed by the proof method. This

is shown by the following strengthening, which has, however, a less elegant proof.
THEOREM 4. For everyfinite grid graph G ofpositive width, L(G) is Hamiltonian.
Proof. Let Pk(G) be the path of all vertices (x, k) in G. We prove that G has a tour

T such that PN(G) T consists (if not empty) of isolated vertices. We proceed again by
induction on the height h N- S. Indeed, the assertion is true for h 1. We suppose
it to be true for height h and prove it for height h + 1.

Consider the subgraph H ofthe grid graph G ofheight h + 1, spanned by the vertices
(x, y) with y =< N- 1. If H has vertices of degree 1, they must lie on the line y N-
1, and will be deleted. If the resulting graph has vertices of degree 1, delete them also.
Repeat the procedure until the remaining graph H’ has no vertices of degree 1. Then H’
is a grid graph of height h and therefore has a tour T’ such that PN-I(H) T’ consists
of isolated vertices, at most.

Let us consider a connected component P’ ofPN- I(H’) fq T’. Observe that P’ must
exist because w(G) > 0, and that P’ must be a path. Let

P"= {x:(x,N- )6P’ and (x,N)6G}.
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If P" 4: and u min P" is different from v max P", then we replace the subpath of
P’ spanned by P" by the path ex (P’) spanned by

(u,N- 1),(u,N),(u+ 1,N),(u+ 1,N- 1),(u+2,N- 1),(u+2,N),

(u+3,N),(u+3,N- 1), ,(v- 1,N- 1),(v- 1,N),(v,N),(v,N- 1)

for v u odd, or by

(u,N- ),(u,N),(u+ 1,N), (u + 1,N- ),(u+ 2,N- ),(u+ 3,N- ),(u+ 3,N),

(u+4,N),(u+4,N- 1), ,(v- 1,N- 1),(v- 1,N),(v,N),(v,N- 1)

for v u even. Let

Q [..J ex (P’).
p,

Now, if (x, y,) Q (remember that y, N), we extend Q by replacing its edge
{ (x, N ), (x, N) with minimal x by the path spanned by

(x,N- ), (x- 1,N- ), ..., (xn,N- ), (Xn,N), (Xn + 1,N), ..-, (x,N).

Similarly, if (x, + , y + Q (remember also that y, + N), we extend Q by replacing
its edge { (x, N ), (x, N) with maximal x by the path spanned by

(x,N- 1), (x + 1,N- 1), (x, + ,N- 1), (x, + ,N), (Xx + 1,N), ,(x,N).

Suppose now that (x0, N- PN-(H’) T’. Then, since

(xo,N- 1),(xo,N)Q,

we replace for every such Xo the edge { (Xo + 1, N- 1), (Xo + 1, N)} by the path
spanned by

(Xo + 1,N- ), (xo,N- ), (xo,N), (Xo + 1,N).

Thus we transformed T’ into a tour of G. By the lemma, L(G) is Hamiltonian.
Remark. Concerning the width, Theorem 4 is the best possible, because finite grid

graphs ofvanishing width may have non-Hamiltonian line graphs; P3 is a suitable example.

Acknowledgment. Thanks are due to the referee for his comments.
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ROOTS OF THE RELIABILITY POLYNOMIAL*
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Abstract. The reliability of a graph G is the probability that G is connected, given that edges
are independently operational with probability p. This is known to be a polynomial in p, and the
location of the roots of these functions is discussed. In particular, it is conjectured that the roots of
the reliability polynomial of any connected graph lie in the disc Iz- 11

_
1, and evidence for this

conjecture is provided. It is shown that all real roots lie in {0} t2 (1, 2] and that every graph has a
subdivision for which the roots of the reliability polynomial lie in the conjectured disc.

Key words, reliability polynomial, graphs, matroid, roots, H-vector, Enestrhm-Kakeya theorem
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1. Introduction. Let G be a connected undirected graph (with possibly multi-
ple edges and loops) of order n and size m (i.e., IV(G)I n and IE(G)I m). The
reliability of G, Rel(G, p), is the probability that G is connected, where each edge of G
is independently operational with probability p. It is easy to see that Rel(G, p) is al-
ways a polynomial in p (the reliability polynomial of G). As examples, the reliability of
any tree of order n is pn-1, and the reliability of a cycle of order n is npn-l-(n 1)pn.
Much work has been done on calculating and approximating Rel(G,p)(cf. [12]), and
a number of sequences associated with the polynomial have been conjectured to be
unimodal (see [8]-[10], [12]). In providing evidence for the latter [10], the problem of
locating the roots of the reliability polynomial arose. It may be surprising that the
roots of reliability polynomials do not appear to be spread out in the complex plane.
(Figure 1 shows the location of the roots of the reliability polynomials of all 143 simple
graphs of order at most 6.) In fact, we propose here that, for any connected graph G,
the roots of Rel(G, p) lie in the unit disc centered at 1 in the complex plane.

CONJECTURE 1.1. The roots of the reliability polynomial of a connected graph G
lie in Iz- 11

_
1 in the complex plane.

Such a result would be the best possible, as, for example, the graph of order
2 with # parallel edges has reliability polynomial 1- (1- p) and hence has all
its roots on Iz 11 1. We show that all real roots of reliability polynomials lie in
{0} t(1, 2] and that every graph has a subdivision for which the roots of the reliability
polynomial lie in the prescribed disc. It suffices to consider the conjecture only for
2-connected graphs, as it is easy to see that the reliability of a graph is the product
of the reliabilities of its blocks [8].

It has been conjectured that for any graph G, the S, F, H, N, and C sequences [12]
are unimodal (i.e., first nondecreasing, then nonincreasing); this conjecture includes
the restriction to cographic matroids of Welsh’s [25] well-known conjecture for uni-
modality of the the independence numbers for matroids. In [10] strong evidence was
provided for the conjectures, and the arguments centered on determining sufficient
conditions for the reliability polynomial to have only real roots. In fact, as Gern-
ert [15] has observed, if a polynomial f(x) has positive coefficients and every root z
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satisfies Rez _< 0 and 3(Rez)2 _> (Imz)2, then the coefficients of f form a unimodal
sequence. This suggests that locating the roots of the reliability polynomial would be
useful in studying the unimodal conjectures.

FIG.

An investigation of the location of the roots of another graph polynomial, the
chromatic polynomial, has attracted some attention, but much of the work remains as
conjecture. Berman and Tutte [4] noted that certain families of chromatic polynomials
had their roots clustered in a cardioid-like curve. Farrell [14] plotted the roots of all
chromatic polynomials of graphs of order at most 8 and observed that there are
certain complex numbers that appear often as roots and that each is surrounded
by a small neighbourhood that is free of such roots. Recently, Thier (see [15]) has
found bounded regions in the complex plane containing the roots of all chromatic
polynomials of graphs of order n and size m. Some other results can be found in [5],
and [20], [21] survey roots of chromatic polynomials.

2. Reliability and H-vectors. There are a number of expansions for the reli-
ability polynomial (cf. [12]), two of which are

m--n+l

Rel(G,p) E Fpm-i(1 p)i (F-form)
i--0

m-n+l

pn-1 E Hi(1 -p)i (H-form).
i=0

Here {Fi} is the face vector (or F-vector) of 9r, the cographic matroid of G (the co-
graphic matroid of a connected graph G has underlying set E(G) with S c_ E(G)
independent if and only if G- S is connected). {Hi} is the H-vector of 5r [6], [23] and



ROOTS OF THE RELIABILITY POLYNOMIAL 573

is defined by

j=o
-n+ 1-i

Fj, (O <_i <_m-n+ l).

The F- and H-vectors of a graph refer throughout to the corresponding vectors of the
associated cographic matroid.

We find the H-form of the reliability polynomial the most useful here, for Con-
jecture 1.1 is equivalent to stating that, for any connected graph G with reliability
pn-1EHi( 1 p)i, the roots of h(z) =_ -Hiz lie in the unit disc Izl _< 1. The
H-vector can be interpreted in the following sense. A complex on a finite set X is a
nonempty set of subsets of X (called simplices) that is closed under containment. A
complex is pure if all bases (i.e., maximal simplices) are of the same cardinality (the
dimension of such a complex is the cardinality of any facet). For any sets L and U
with L C_ U, the interval [L, U] is {S" L C_ S c_ U}. A pure complex C is partitionable
if its simplices can be partitioned into intervals

ILl, U1],..., ILl, Ul],
where each Ui is a facet of C. In such a case, we can derive that
(Hi} is known as the H-vector of the partitionable complex. Every matroid is parti-
tionable [24] (see also [12]). It follows that (Hi} is a sequence of nonnegative integers.
We can also view H-vectors another way. A multicomplex (or generalized complex)
is a collection of multisets closed under multiset containment; its F-vector is defined
analogously to the definition for complexes. We can also consider a multicomplex as
a set of monomials that is closed under division. The important fact (see [12]) is that
every H-vector is the F-vector of a multicomplex.

For later, we must prove the following result showing that H-vectors of matroids
have no internal zeros (we follow [25] for most matroidal terminology). If x is an
element of a matroid M on ground set S and T S- {x}, then MIT denotes the
(restriction) matroid on ground set T whose independent sets are those of M contained
in T, and M.T denotes the (contraction) matroid on ground set T whose independent
sets are those sets I c T such that I t2 {x} is independent in M.

LEMMA 2.1. Let M be a matroid of rankd on a set S with H-vector (HoM,. ,H}.
Then H 0 if and only if M has a coloop (i.e., an element in every base) and
{HoM, MHd has no internal zeros.

Proof. If e is a coloop of M, consider a partition ILl, U1],..., ILk, Uk] of M.T
MIT where T S- {e}. As e belongs to every base of M, we see that
{e}],..., ILk, Uk [2 {e}] is an interval partition of M. Then, for all i,

HM.T I{j ILjl i}l HM.
In particular, as H2.T o (since M.T has rank d- 1), we see that HdM 0. It also
follows by induction on d that the H-vector of M.T, and hence the H-vector of M,
has no internal zeros.

On the other hand, assume that M has no coloop. If d 0 or IS] 0, then
H0 1; so the results are true. Thus assume that d > 0 and > 0. Pick any e that is
not a loop of M and set T S- {e}. As e is not a coloop, M.T and MIT have ranks
d- 1 and d, respectively. As in [9], we define for any pure complex N of dimension r
on a ground set of cardinality # a two variable polynomial as follows:

a(N,p,q) E q[YIP"-[Y["
YN
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As noted there, if N is partitionable, then

p, q) +
j=O

where {Hj} is the H-vector of N. We use Theorem 2.2 of [9] (with q 1- p) to
calculate the H-vector as follows:

It follows that

(1) Hi={ 1, ,, if i-0,
Hi_ +H ifi 1,...,d.

By induction, we have that the H-vectors of both M.T and MIT have no internal
zeros, so from (1) (and the fact that the sequences consist of nonnegative integers) we
see that M also has no internal zeros. If M.T or MIT has no coloops, then we see by
induction on d and that either H_ > 0 or H > 0; so, as each term is nonegative,
it follows from above that Hd> 0. The only case remaining is that M.T has a coloop
f and MIT has a coloop g. Let bl,...,bk be the bases of M.T and let cl,...,c be
the bases of MIT. Consider any ci {g} t_J A, where g A and pick a by such that
g bj (if g E bj for every j, then g would be a coloop of M, a contradiction). Now,
by the exchange property of matroids, for each 1,..., k there is an x bj J {e}
such that A tJ {x} is a base of M. As x - g, A U {x} bt tJ {e} for some l; as e A,
we must havex e, and so f A. Thus f is acoloopofMITaswell, so it is a
coloop of M, a contradiction. Thus we conclude that this case cannot occur, so indeed
H>0.

Note that, if x is a coloop of M, then y x is a coloop of M if and only if y is a
coloop of M.(S- {x}). From this we can conclude the following.

COROLLARY 2.2. IfM has exactly r coloops, then the last r terms in (H0,..., Hd}
are zero (and Hi > 0 for 0,...,d- r).

The fact that the H-vector has no internal zeros also follows from the fact that
they form the F-vector of a multicomplex.

3. The real roots of reliability polynomials. If G is connected, then it is
easy to see (from the H-form) that Rel(G, p) has zero as a root of multiplicity n- 1,
has sign (--1)n-1 on (-c, 0), and is positive in (0, 1]. Thus all real nonzero roots of
Rel(G,p) lie in (1, c), and, by considering the reliability of cycles, we see that 1 is a
limit point of the roots of reliability polynomials. In concurrence with Conjecture 1.1,
we show that the real roots of the reliability polynomial always lie in the unit disc
centered at 1 and, in fact, lie in {0} V (1, 2].

Let G be a connected, loopless graph with n vertices and m edges, and hence with
dimension (or "cyclomatic number") d m- n + 1. From Corollary 2.2, it follows
that (H0,..., Hd) are the nonzero terms of the H-vector of G. We take Hi 0 for
i<Oori>d.
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THEOREM 3.1. For any H-vector (H0,...,Hd) of a connected, loopless multi-
graph, any real number b >_ 1, and any integer j,

J
-.(_b)iHi { >_ 0 if min(j, d) is even,

<0 if min(j,d) is odd.
i--O

Equality holds only if b- 1 or j < O.
Proof. The proof proceeds by induction on the dimension d of G and the number

of vertices n. The statement is trivial if the dimension is zero, since the H-vector
is then (H0 1). If n 1, the dimension is necessarily zero. So suppose that the
statement of the theorem holds for all integer values of j for all connected, loopless
multigraphs of dimension less than d and for all those of dimension d having fewer
than n vertices. Suppose that G is a connected, loopless multigraph having n vertices
and dimension d, with H-vector (H0,..., Hd).

Fix j to be some integer. Let e be an edge in a bundle of t parallel edges in G.
Define G+ to be the connected, loopless multigraph obtained from G by contracting e
and removing the t 1 loops that result; let the H-vector of G+ be (Ho+,... ,Hd_t+l)+
(the dimension of G+ is easily computed to be d- t + 1). For 0 < r < t, let G-r

be the loopless multigraph obtained from G by deleting r of the t edges parallel to e
(including e itself); let the H-vector of G-r be (H-r,..., Hd-__). The dimension of
G- is d- r if G-r is connected.

We use the identity

r-1

x--0

which holds for 0 _< r _< t and all (by repeatedly applying deletion and contraction
to each edge, in turn, in the bundle of t edges).

We consider the resulting identity

i=0 i=0 i=0 x=O

and show, for suitable selections of r, that the two sums on the right-hand side agree
in sign with (--1)min(j’d) or 0.

We treat two cases. First, suppose that either (i) t is odd and j _< d- t + 1 or
j>d, or(ii) d-t+l<j<dandjd-t+l (mod2). Then, takingr=linthe
identity gives

j j--1 j

(,) E(-b)iHi (-b)E(-b)H: + E(-b)iHi+.
i=0 i=0 i=0

The second sum on the right side has sign (--1)min(j’d-t+l) or zero by induction, with
sign zero only if b 1 or j < 0; we also see that, in the former case, the sign is
identical to that of (-1)rain(i’d) by considering the value of j and cases (i) and (ii). If
G-1 is connected, the first sum has sign (--1) min(j-l’d-1) or zero by induction, and
hence, upon multiplication by -b, has sign (--1)min(j’d) or zero as required. If G-1 is
disconnected, the second sum is identically zero. As the sums on the right side of (,)
do not have opposite signs, we see that if the left side is zero, so are each sum on the
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right. Thus we conclude that (.) has sign (-1)min(j’d) or zero, and the latter implies
that b= l or j < 0.

On the other hand, suppose that either (iii) t is even and j < d- t + 1 or j > d,
or (iv) d-t+l <j <d (whencet > 1) andjd-t+l (mod2). Then taking
r 2 in the identity yields

E=0(_b)(H+ + H+_I)+ (_b)2 j-2E=o (-b)iH[-2(**) }--=o(-b)iHi= J

Ei=o( b)Hi+ + (-b) 2 2(-b)JHf + (1 b) J-1 j-2

Now (-b)JH? has sign zero if and only if j < 0 or j > d- t + 1; otherwise, it has

sign (-1)j. By induction, the first sum has sign (--1) min(j-l’d-t+l) or zero, with zero
occurring only ifb 1 or j-1 < 0. Similarly, 1-bhas sign-1 unless b 1, in
which case the sign is zero. Thus, if b > 1 and j > 0, the sign of (l-b) j-1E =0 +

is (--1) min(j’d-t+2), which (by considering the value of j once again) is the same as
the sign of (--1) min(j’d), as required. When j 0 and b > 1, the sum simplifies to
(-b)Ho+, which is strictly greater than zero. Now consider the second sum in the right
side of (**). If G-2 is disconnected, the sum is identically zero. If G-2 is connected,
by induction the sum has sign (-1)min(j-2’d-) or zero; upon multiplication by (-b)2,
the sign is (-1)min(j,d) or zero, as required. Again, we conclude that (**) has sign
(-1)min(j’d) or zero, and the latter implies that b 1 or j < 0.

COROLLARY 3.2. The reliability polynomial of a connected, loopless multigraph
{0} (1, el.

Proof. Consider the H-form of reliability polynomial, below:

d

H (1
i=0

There is a root of multiplicity n- 1 at q 1. All other roots are roots of h(q)
d qi=0H (here q- 1 -p). If q 0 is real, the sum is strictly positive (it is at least

H0 1). Thus all remaining real roots are negative. Now suppose that q -b is a
dreal root. Then i=o(-b) Hi 0, and hence, by Theorem 3.1, b 1. Therefore such

a q lies in [-1, 0), and this is equivalent to p (1, 2].
One of the best techniques for estimating reliability is the Ball-Provan method [2]

(see also [12]), which relies on Stanley’s bounds (see [12]) for the terms of successive
terms in the H-vectors of certain pure complexes (which include matroids). These
bounds are the only ones known for terms of the H-vectors of shellable complexes.
Theorem 3.1 establishes that the H-vectors arising in reliability problems are much
more constrained than those of shellable complexes in general. Hence the above the-
orem underlies an improvement to the Ball-Proven bounds for reliability. In fact,
the inequalities given in Theorem 3.1 can be used in conjunction with Stanley’s con-
straints as well as with other bounds on individual coefficients [11] to tighten the
bounds on reliability further.

4. Complex roots of the reliability polynomial. The Enestrd’m-Kakeya
theorem [13], [18], [17] (see also [19, eq. (22), p. 107] and [3, eq. (6b), p. 180]) states

that, if a polynomial g(z) d=o biz has 0 < bo b ... bd, then all the roots
of g lie in lzl 1. By considering the H-form of the reliability polynomial, we derive
the following sufficient condition for the conjecture to hold for a particular graph G.

PROPOSITION 4.1. If the H-vector of a connected graph G is nondecreasing, then
the roots of the reliability polynomial all lie in lz- 1 1.
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FG. 2

1,2,3,2
FG. 3

Since the reliability of a graph is the product of the reliabilities of its blocks [8], the
proposition implies that, if every block of a graph G has its H-vector nondecreasing,
the roots of Rel(G, p) lie in the desired disc (although the H-vector of G itself may not
be nondecreasing; for example, the graph G in Fig. 2 has H-vector (1,2, 1), but has
its roots in Iz 11 _< 1 as each of its two blocks has H-vector (1, 1)). Thus it suffices
to only consider 2-connected graphs G.

Examples of graphs for which the H-vectors are nondecreasing include all 2-
connected graphs of order n and size at most n + 1. Any such graph G is either
a tree (of order 1 or 2), cycle, or theta graph, and the H-vectors for each are (1),
(1, n 1), and (1, a + b + c 2, ab + ac + bc a b c + 1) (where the theta graph
has two vertices joined by paths of lengths a, b, and c n + 1 a b). For the first
two cases, the H-vectors are clearly nondecreasing. For the third, we can check (via
elementary calculus) that it is nondecreasing as well for all a, b, and c. It follows that
Conjecture 1.1 holds for any connected graph of order n and size at most n + 1.

On the other hand, there are many 2-connected graphs for which the H-vector
fails to be nondecreasing. The smallest 2-connected graph whose H-vector is not
nondecreasing is shown in Fig. 3, and the only simple graphs of order at most 5 whose
H-vectors are not nondecreasing are shown in Fig. 4 (the corresponding H-vectors
are listed); we have verified though, that, for each of these graphs, the reliability
polynomial has all its roots in the unit disc centered at 1. Also, we now show that
every complete graph of order at least 5 has its H-vector not nondecreasing (and we
do not know whether Conjecture 1.1 holds for all complete graphs).

PROPOSITION 4.2. The H-vector of Kn is nondecreasing if and only if n <_ 4.

Proof. The H-vectors of gl, g2, K3, K4, and K5 are (1), (1), (1, 2), (1, 3, 6, 6),
and (1, 4, 10,20, 30,36,24); so we may assume that n _> 6. From the H-form of the
reliability polynomial of a connected loopless graph G of order n and size m >_ n,

m--n+1

Rel(G,p) pn-1 E Hi(1 p)i
i--O
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(1,4,10,16,14) 1,4,9, 14, 12) 1,4,10,18,24, 18) 1,4, 10,20,30,36,24)

FIG. 4

the coefficients of pm and pro-1 are, respectively, (--1)grid and (--1)d-I(Hd_ / dHd)
(where d m- n + 1). The reliability of complete graphs can be calculated from a
recursive formula of Gilbert [16] (see also [12, p. 34]) as follows:

j (-1)Rel(Kj p)qj(n-j)1=
1..__

Let Hlast (Kn) and Hsecond last (Kn) denote the last and second last nonzero terms

in the H-vector of Kn, respectively. By comparing the coefficients of p(), we derive
from Gilbert’s formula that

for n >_ 2, and hence

Hlast(Kn (n- 1)Hlast(Kn_)

Hlast(Kn (n- 1)!

for all n >_ 1 (this fact has also been proved in [7] in the context of reliability domina-

tion). Moreover, by comparing the coefficients of p()- and using our newly found
formula for Hlast (K), we can, with a bit of work, see that

Hsecond last(Kn) 1/2(n- 1)! + (n- 1)Hsecond last(Kn_)

for n _> 4. From this last formula and the formula for Hlast (Kn), we find that

Hsecond last (Kn
n-2 n-2

2
(n- 1)! Hlast(Kn)2

for n >_ 4. In particular, Hsecond last(Kn) > Hlast(Kn) for all n 5, so we are
done. F1

Thus there are many 2-connected graphs for which Proposition 4.1 fails to show
whether the roots lie in the disc Iz- 11 <_ 1. We can show in support of Conjecture 1.1
that every graph is homeomorphic to a graph for which we can apply the proposition.

THEOREM 4.3. If G is any connected graph of order n with size m, then there is
a subdivision of G such that Rel((,p) has all its roots in Iz- 11 <_ 1.

To prove this, we consider the general setting of matroids. Let M be a matroid
of rank d on set S with independent sets in 2". Given an element e E S, we define an
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1-thickening of M at e to be the matroid M(e, l) on set S- {e} 2 {el,..., el} (where
el,...,e are not in S) with collection of independent sets :Y(e,/) {I E :Y" e
I}t2{(I-e) t2{ej} e e I e27, j 1,...,1}. An/-thickening of M at ecanbe
achieved as well by a sequence of 2-thickenings of M. We can consider this operation
as replacing e by copies of itself. A thickening of M [10] is a matroid arising by a
sequence of thickenings of M (i.e., by replacing each point in S by a number of copies
of itself). It is easy to see that a thickening of a cographic matroid corresponds to
a subdivision of the corresponding graph (while a thickening of a graphic matroid
corresponds to replacing each edge by a set of prallel edges). Recall that we define
a two variable polynomial a(M, p, q) on the matroid M of dimension d by

d d

a(M, p, q) q[I[p]S[-[I[ Fip[S[-iqi p[S[-d Hiqi.
IZ =o =o

(Here (F} and (H} are, respectively, the F- and H-vectors of M.) Note that, if M is
the cographic matroid of a connected graph G, then a(M, p, 1 -p) Rel(G, p).

PROPOSITION 4.4. If M is any matroid, there is an N such that, if we thicken
each point of the matroid into at least N points, then, in the resulting matroid M, the
H-vector is nondecreasing (and hence all the roots of a(M,p, l-p) lie in ]z- 1] 1).

Proo Let M have dimension d and ground set S of cardinality . If d 0, then
the H-vector of M is (1} with any thickening of M having the same H-vector (s all
elements of M are loops). If 0, then d 0. Thus assume that d, > 0. Let M
have underlying set S.

Assume first that M has a point e that is neither a loop nor coloop. By
induction on d and , we can subdivide each point of S-{e} enough (say into at least
N0 points) so that, in the resulting matroid M0, Mo.T, nd Mo]T have no coloops,
and the H-vectors (H,..., H_} and (H,..., H} of Mo.T and Mo]T, respectively,
are nondecreasing (as usual, T S0- {e}, where S0 is the underlying set of M0). Let
M be the matroid formed by thickening e of M0 into points. It is easy to see that

a(Mt,p, 1 p) pt-l(1 p) a(Mo.T,p, 1 p) + pt a(MoT,p, 1 p),

and we derive

1 ifi 0,
Hi= 1H_ + H’ ifi-1,...,d,

where {H0,..., Ha} is the H-vector of M. The Net that this sequence is nondecreasing
follows, so take N0 and N I.

The only case remaining is that every point of M is either a loop or a coloop;
that is, M is a d-simplex together with some loops. We may assume that there are
no loops, as these do not affect the H-vector. Thus, without loss, S {1,..., d}, and
M is the power set of S. or {0,..., d}, let () denote the set of/-subsets of S. If
we thicken each point of M into k points to form Mk ( (,..., ke)), then the
number of faces of cardinality is re() er k. It follows that

d

a(Mk, p, q) (p + kjq)
j=l

d

j=l
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(where kj kj 1), and thus

Let > 1 and consider any term in this sum, say kk2.., k. If, without loss,
min{k, k,..., k} and k > i, then

It follows that, if each kj kj 1 is at least d, then the H-vector of Mk__ is nonde-
creasing. Therefore we take N d + 1, and we are done. [3

As thickenings in the cographic matroid correspond to subdivisions of the asso-
ciated graph and the alpha poynomial of the former equals the reliability poynomial
of the latter, we derive Theorem 4.3. In fact, we show in the following theorem that
all large subdivisions of any graph have their roots in the desired disc.

THEOREM 4.5. If G is any graph, there is an N such that, if we subdivide each
edge of the graph into a path of length at least N, then, in the resulting graph , all
the roots of Rel(G,p) lie in Iz- 11 <_ 1.

This theorem implies that, to prove Conjecture 1.1, we need only show that the
property of having its roots in the disc Iz- 11 _< 1 is preserved under a degree-2
reduction in loopless graphs (a degree-2 reduction is the removal of a vertex of degree
2 and adding an edge between its two neighbours).

We conclude this section by showing that the roots of the reliability polynomial
of any connected graph of order n >_ 2 are bounded away from z 1.

THEOREM 4.6. If G is a connected graph of order n >_ 2, then the roots z of
Rel(G,p) satisfy Iz- 11 >_ 1/(n- 1).

Proof. The result is true if n 2, as then G is a collection of parallel edges
between two vertices; we check that all the roots of Rel(G, p) satisfy Iz- 11 1. Thus
n _> 3. If G has a cut edge, then, using the facts that G is not 2-connected and that
the reliability of G is the product of the reliabilities of its blocks, we can conclude the
result by induction on n. Thus we can assume that G has no cut edges. Let G have
m edges, let

d

Rel(G,p) p-E Hi(1 p)i,
i=0

d wi"and set h(w) =_ }--i=o Hi It clearly suffices to show that all roots w of H satisfy
Iw] > 1/(n-1). Now, by a well-known theorem on polynomials (cf. [3, eq. (6c),
p. 181]) if p(x) k’-i=0 aix is a polynomial of degree k with positive coefficients,
then the roots z of p satisfy Iwl _> u, where

min
ai

u
ai+l

0,...,k- 1}
Thus, returning to H, it suffices to show that Ho/H1 < Hi/Hi+ for all 1,... ,d-1.
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It holds that F0 1, and that, as G has no cut edges, F1 m. From the formula

j=0
-n+l-i

Fj, (0 < <_ m-n+ 1),

mentioned earlier, we calculate that H0 1 and H1 n- 1. Thus we must show
that

Hi+ (n- 1)Hi, (1 < i <_ d- 1).

Now a result of Stanley [22] (see also [12]) states the following bound on H-vectors
of a family of pure complexes that includes all matroids. Let (H0,..., Hd) be the
H-vector of such a complex. Fix E {0,..., d- 1}. The i-canonical form of a positive
integer r is the integer-valued vector (ai,ai-,... ,aj), where

and

ai > ai- >... aj >_ j >_ 1

(such a representation exists for all r, and and is unique). Stanley has shown that,
if Hi has/-canonical form (ai, ai-1,..., aj), then Hi+ <_ Hi+/i>, where

(ai+11} (ai-l+l)--\i+ + +’"+
+1

Thus, to show Hi+l _< (n- 1)Hi, it suffices to show that

H<i+l/i> <_ (n- 1)Hi, (1 <_ i <_ d- 1).

As above, let Hi have/-canonical form (ai, ai-l,..., aj). Then

H/<i+/i>- ai + 1’ (ai-li + 1)...
so we must show that

i.e.,

(n_l)()_(+l 1)
To prove this, we show that

for i,..., j. Now, by some elementary simplifications, this holds if and only if

(***) ak (n-1)(k+l)-i
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for k i,..., j. To prove this, we show first that

(****) ak <_ n- 2 + k.

Consider first k i. Hi is the number of multisets of cardinality in a multicom-
plex on a set of size IHll n- 1. There are at most (n-+i) of such multisets, and
hence

This implies that ai <_ n-2+i, and we have shown (****) for k i. For k j,..., i-1,
we see that, from the definition of the/-canonical form, we have

ak _< ai- (i- k),

so that ak _< n 2 + (i k) n 2 + k; we have proved (. **). Now n 2 + k
(n- 1)(k + 1) 1 as n _> 2, so (. .) follows as well, and we are done.

The cycle of order n illustrates that equality can occur in the theorem above
Nfor every n _> 2. Also, in [1] it is shown that a polynomial -i=o bizi with positive

coefficients has a root on Izl min{bi/bi+ 0 _< < N} only if gcd({i
1,2,...,N+l bi--abi > 0}) > 1, where bN+ _---- 0. From the proof of Theorem 4.6,
if n _> 3 (i.e., G is not a collection of parallel edges), then n-2+k < (n-1)(k+ 1)-1,
so that the minimum of Hi/Hi+l occurs only at 0. Thus, in this case, if we
consider the polynomial Rel(G, p), we see that, with the notation above, that a
gcd({2, 3,..., d + 1}) 1 if d _> 3. It follows that, if G is a loopless graph of order at
least 3 with cyclomatic number at least 2, then, in fact, the roots of Rel(G, p) satisfy

11 > 1/(n- 1).
5. Conclusion. In an attempt to further investigate Conjecture 1.1, perhaps we

might somehow be able to utilize Rouch’s theorem. We could also attempt to prove
the conjecture for some interesting families of graphs. We do not know if the conjecture
holds even for all complete graphs, and the approach of the previous sections do not
appear to apply, as the H-vectors of complete graphs need not be nondecreasing.

It would be interesting as well to discover more about the nature of the roots of
reliability polynomials as well. Can we find a bounded region that is guaranteed to
contain all the roots of the reliability polynomials? Are the roots of the reliability
polynomials dense in ]z- 11 _< 1? We show that the answer to the latter is in the
affirmative. For x E C and real r > 0, let D(x, r) be the open disc in the complex
plane centered at x with radius r.

PROPOSITION 5.1. Let S be the collection of all roots of reliability polynomials of
graphs, and let T be the subcollection of all real roots of reliability polynomials. Then
S

_
D(1, 1) and T {0} [2 [1,2].
Proof. It suffices to show that, if w is a complex number in D and > 0 have

the property that D(w, ) C_ D(1, 1), then D(w, ) contains a root of some reliability
polynomial. Let 1- w- rei, where r > 0 and 0 _> 0.

Consider the graph C formed from the cycle Cn of order n by replacing each
edge by parallel edges. It is easy to see that

Rel(Cln,p) Rel(Cn, 1- (1 p)l).

As Rel(en,p) upn-1 -(n- 1)pn has root 1 + 1/(n- 1), we see that the nonzero
roots of C are precisely those z such that 1 -(1 z) 1 + 1/(n 1); i.e., 1 z is an
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/th root of-1/(n- 1). It follows that 1 z has modulus (1In- 1) 1// and argument
(2k + 1)r/1 for some k 0,..., l- 1. Now, for all sufficiently large integers l, there
is an integer n >_ 2 such that

i)/*.:1_: <r+-.(*****) - <
2

Let 6 > 0 be such that {yED(1,r-e/2) gD(1, r+/2)’0-5<arg(y) <0+5}C_
D(w, ). Choose so large that (. .) holds for some n >_ 2, and (2k + 1)Tel1 lies
between 0 6 and 0 + 5 for some k 0,..., 1, as well. Then, for such choices of
and n, Rel(Cn,p) will have a root in D(w,). This shows that _D D(1, 1).

Finally, note that that one of the roots of Cn for odd is the real number 1 /

(1In 1) 1/I. By the argument above, { (1/n 1) 1/l _> 1 odd, n >_ 2} is dense in

[0, 1],and hence {1 + (1In- 1)i/t’n >_ 2,/> 1 odd} is dense in [1,2]. It follows that
7 _D {0} m [1, 2], and, as 7 C_ [1, 2] by Corollary 3.2, 7 is dense in {0} m [1, 2]. []

Another interesting question relates to what real numbers appear often as roots
of reliability polynomials of 2-connected graphs. Along these lines, we have found the
following curious result concerning complete bipartite graphs.

4PROPOSITION 5.2. i8 a root of Rel(K2,m,p) if and only if m is even (and this
is the only possible nonzero real root of Rel(K2,m,p)). Also, the H-vector of K2,m
explicitly is

( (n), (n) + (7)’’"’ (n) + (n) +...+ (mm
so the H-vector of K2,m is increasing, and hence Rel(K2,,,p) has its roots in the
conjectured disc.

Proof. We begin first by finding a closed form for the reliability of such a graph.
First, we show that

;Rel(K.,,,p) p’+((1 + q)m (2q)m),

where q 1 p and m _> 0 (and hence Rel(K2,m,;) pro((1 + q)m (2q)m)).
The proof of this proceeds by induction on m. For m 0 or 1, the result is easy

to verify, so we assume that m _> 2 and that the result holds for all smaller values
of m. From [12, p. 34], the reliability of K2,m can be calculated recursively from the
formula

2 m

( 1 )(.)
i=1 j=O

Rel(Ki,j, p)qi(m-j)+j(2-)

Noting that Rel(Kl,j,p) pJ, we derive
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It follows by induction that

We derive now that Rel(K,r,p) pro((1 + q)m (2q)m). If p - 0 is a real root
of Rel(K2,m, p), then

(1 + q)’ (2q)m.
If m is odd, then this implies that 1 / q 2q, i.e., p O, which we ignore. If m is
even, then we derive that

1 + q :t:(2q),
4which is equivalent to p 0 or 5"

Finally, from above,

pRel(K2,,,p)=pm+l ((l+q)’-qm- (()+ ()+’"+ (mm_ 1) ) q’)

so it follows that

Rel(K:,., p) pm+
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The H-vector can immediately be read from the last equation.
Finally, we note that, if we subdivide every edge of a connected graph G into

a path with k edges to form a graph G’, then Rel(G’,p) (pk + kpk-l(1_ p))
Rel(G, pk/(pk + kpk-(1- p))). It then follows from this and Proposition 5.2 that,
for every k >_ 1, 4k/4k 1 is a root of infinitely many 2-connected graphs.
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LABELLING GRAPHS WITH A CONDITION AT DISTANCE 2*

JERROLD R. GRIGGS AND ROGER K. YEHt$

Abstract. Given a simple graph G (V, E) and a positive number d, an Ld(2, 1)-labelling of
G is a function f V(G) [0, oc) such that whenever x, y E V are adjacent, If(x)- f(Y)l >- 2d,
and whenever the distance between x and y is two, If(x) f(Y)l >- d. The Ld(2, 1)-labelling number
A(G, d) is the smallest number m such that G has an Ld(2, 1)-labelling f with max{f(v) v E V} m.

It is shown that to determine A(G, d), it suffices to study the case when d 1 and the labelling is
nonnegative integral-valued. Let A(G) A(G, 1). The labelling numbers of special classes of graphs,
e.g., A(C) 4 for any cycle C, are described. It is shown that for graphs of maximum degree A,
A(G)

_
A + 2A. If G is diameter 2, A(G)

_
A2, a sharp bound for some A. Determining A(G) is

shown to be NP-complete by relating it to the problem of finding Hamilton paths.

Key words. T-coloring, channel assignments, graph coloring, NP-completeness

AMS(MOS) subject classifications. 05C15, 05C35, 05C78, 05C85, 68R10

1. Introduction. There has been a considerable effort (cf. [CR], [CW], [FGK],
[G], [HI, [al], [R2], [Roll, and IT]) to study properties of "T-colorings" of graphs,
which is motivated by the task of assigning channel frequencies without interference.
Roberts [Ro2] proposed the problem of efficiently assigning radio channels to trans-
mitters at several locations, using nonnegative integers to represent channels, so that
close locations receive different channels, and channels for very close locations are at
least two apart. Therefore these channels would not interfere with each other.

We propose an analogous problem for simple graph G (V, E). Given a real num-
ber d > 0, an Ld(2,1)-labelling of G is a nonnegative real-valued function

f V(G) [0, cx) such that, whenever x and y are two adjacent vertices in V,
then If(x)- f(Y)l >- 2d, and, whenever the distance between x and y is 2, then
If(x) f(Y)l >- d. The Ld(2, 1)-labelling number of G is the smallest number m
such that G has an Ld(2, 1)-labelling with no label greater than rn and is denoted by
/k(G, d). If f is an Ld(2, 1)-labelling of G, then we say that f E Ld(2, 1)(G).

Let G be a graph and f e Ld(2, 1)(G). Define IIf(G)ll max{f(v):v e V(G)}.
Then A(G,d) min IIf(G)ll, where the minimum runs over all f e Ld(2, 1)(G). In
the language of Roberts [Ro3], we are trying to minimize the span of an Ld(2, 1)-
labelling. However, we allow 0 to be a label, unlike most other analogous parameters,
because we can then nicely characterize A(G,d) in terms of A(G, 1). We describe
this in 2, where we also show that for A(G, 1) it suffices to consider integral-valued
labellings. Thereafter we confine our study to (G, 1), which we denote simply by
/k (G). Similarly, L(2, 1) L(2, 1)(G) denotes L1(2, 1)(G). We let [0, k] denote
the set {0, 1,...,k}.

In 3-5 we consider the labelling numbers of some fundamental classes of graphs.
In 6 we present general upper bounds on in terms of the maximum degree A. We
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find that A is never much larger than/k2 Diameter 2 graphs are studied in the next
section, and the sharp upper bound/k2 is obtained for A in this case. Infinite families
of graphs with A close to/k2 are described in 8. After investigating the complexity
of the L1(2, 1)-labelling problem in 9, we conclude by proposing some problems for
further research.

2. Reduction to integral-valued labellings. First, we want to characterize
ik(G, d) in terms of A(G, 1). Furthermore, we show that to determine A(G, 1) it suffices
to study the case when the labelling is integral-valued.

LEMMA 2.1. It holds that A(G, d) d. A(G, 1).
Proof. We prove the lemma with the following claims.
Claim 1. We have that (G, d) >_ d. (G, 1).
Let f e Ld(2, 1)(G). Define fl(x) f(x)/d, for all x e V(G). It follows eas-

ily that fl e L (2,1) (G). This implies that IIf(G)ll/d IIf(G)I >_ (G, 1). By
compactness, some f attains A(G, d), and the claim follows.

Claim 2. We have that A(G, d) _< d. A(G, 1).
The proof is similar to Claim 1. Therefore the result follows.
LEMMA 2.2. Let x, y >_ O, d > 0 and k E Z+. If Ix- Yl >- kd, then Ix’-Y’I >- kd,

where x’= [x/dJd and y’= [y/did.
The two lemmas above imply the following theorem.
THEOREM 2.3. Given a graph G, there is an f L(2, 1)(G) such that f is

integral-valued and IIf(G)ll (G, 1).
For general d, we see that A(G,d) is attained by some f nd(2, 1)(G) whose

values are all multiples of d, i.e., f d. f’, where f’ e L (2, 1)(G) is integral-valued
(by Lemma 2.1). Therefore it suffices to study the case where d 1 and to consider
in what follows only integral-valued f L1 (2, 1)(G).

3. Paths cycles and cubes. First, let us look at the L(2, 1)-labelling of an
elementary graph, the path. We have the following easy result (cf. [Y]).

PROPOSITION 3.1. Let P be a path on n vertices. Then (i) A(P2) 2, (ii)
(P3) (Pd) 3, and (iii) (Pn) 4, for n >_ 5.

If we join the first vertex and the last vertex of a path, then we have a cycle. So
what is the labelling number of a cycle?

PROPOSITION 3.2. Let Cn be a cycle of length n. Then i(Cn) 4, for any n.

Proof. If n _< 4, then it is easy to verify the result. Thus suppose that n _> 5.
For all n _> 5, Cn must contain a P5 as a subgraph. Hence (C) _> (Ph) 4, by
Proposition 3.1.

Now we want to show that A(C) <_ 4, n >_ 5. It suffices to show that there is
an n(2, 1)-labelling f such that tlI(C)II-- 4. Let vo,..., v_ be vertices of C such
that vi is adjacent to vi+, 0 _< _< n- 2 and v0 is adjacent to v,_. Consider the
following labelling:

(1) If n--0 (mod 3), then define

f(v) 2,
4,

if 0 (mod 3),
if i--1 (mod3),
if i--2 (mod3);

(2) If n 1 (mod 3), then redefine the above f at v-4,..., v_ as
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0, ifi=n-4,

f(vi)=
3, ifi=n-3,
1, ifi-n-2,
4, ifi=n-1;

(3) If n 2 (mod 3), then redefine the f in (1) at Vn-2 and vn-1 as

1, ifi=n-2,
f(vi)=

3, ifi=n-1.

It is easy to show that f, defined above, is in L(2, 1)(Cn) for every n, for each
case. Hence A(C) <_ 4. Therefore the theorem is proved. 71

If we take a cycle Cn joined by a vertex, then we have a graph Wn called a wheel
of length n, i.e., Wn C V KI. In [Y] it is shown that A(Wn) n + 1.

Next, consider the n-cube Qn, which has 2’ vertices v (v,... ,Vn), where each
vi is 0 or 1, and edges join vertices v, w when there exists a unique such that vi wi.

This bipartite graph is regular of degree n.
THEOREM 3.3. Let Qn be the n-cube. Then, for all n _> 5, n+3 _< A(Q) _< 2n+l.
Proof. The following modular labelling implies the stated upper bound for n _> 1"

f(v) (i + l) (mod2n+2),
i:vi--1

where all labels are chosen to belong to [0, 2n + 1]. To verify this, consider adjacent
vertices v and w. We may assume that vi- wi 1 (0, respectively) when a (i a,
respectively). Then f(v) f(w) a + 1 (mod 2n + 2), so that If(v) f(w)l >_ 2.
Similarly, if v and w are at distance 2, we may assume that vi wi is 1 when a, 1
or-1 when b, and 0 otherwise. Then f(v)- f(w) a + b+ 2 or a-b (mod 2n+ 2),
so that f(v) # f(w).

The lower bound of n + 3 is due to Jonas [J]. Suppose for contradiction that
A(Qn) _< n + 2 for some n _>_ 5 and let f be an optimal labelling for such Q. Some
vertex v is labelled 0 in an optimal labelling. The n vertices adjacent to v receive
labels that are distinct and greater than 1; i.e., each of 2, 3,..., n + 2 is used with just
one exception i. Since n >_ 5, if the labelling f does not use the label 3, it must use
the label n- 1. In the later case, we may "reflect" f and instead consider another
optimal labelling, n + 2- f. By permuting vertices, we may assume that our optimal
labelling f assigns 3 to vertex w. Let W denote the set of vertices at distance from
w. The vertices in W1 must receive the distinct labels 0, 1, 5, 6,..., n + 2. There are
() vertices in W2, each adjacent to two vertices in W1. If x e W2 is adjacent to the
vertex in W with label j, then f(x) j- 1,j,j / 1. Two vertices in W2 with the
same label have no neighbors in common. It follows that label is used on W2 at most
[(n 2)/2J times when 0, 1, 5, n + 2; [(n 1)/2J times when 2, 4; /(n 3)/2J
times when 6,..., n / 1. Label 3 cannot be used on W2. Adding up the possible
labels does not account for all () vertices in W2, a contradiction.

With considerable effort, we have determined the first several values as follows:
A(Q0) 0, A(Q) 2, A(Q2) 4, A(Q3) 6, A(Q4) 7, A(Qh) 8. No pattern
is yet evident in the labellings that attain these values. Jonas recently showed that
A(Qn) _> n + 4 for n 8 and 16. Using methods from coding theory, it was recently
shown by Jonas and by Georges, Mauro, and Whittlesey that lim inf_ A(Q)/n 1.
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4. Trees. We next discuss the labelling numbers of connected graphs without
cycles, that is, trees. The maximum degree nearly determines the labelling number.

THEOREM 4.1. Let T be a tree with maximum degree A >_ 1. Then A(T) is either
A+I or A+2.

Proof. Since T contains the star KI,, we have A(T) _> A(K1,/x) A + 1. We
obtain the upper bound by a first-fit (greedy) labelling. First, order V(T) so that
V(T) {v,..., vn}, where, for all > 1, vi is attached just once to {v,..., vi_}.
This can be done since T is a tree. Now we describe an L(2, 1)-labelling of T: Label Vl
as 0; then successively label v2, v3,..., v, by the lowest available element of [0, A + 2].
Since each v, 2 _< <_ n, is adjacent to only one vj, j < and is distance 2 away from
at most A- 1 v.’s with j < i, there are at most A + 2 labels that cannot be used for
v. Hence at least one label in [0, A + 2] is available to v when its turn comes to be
labeled. Thus the labelling number is at most A + 2, and the theorem follows.

Vertex of degree ,, other pendant leaves not shown

r’l Vertex of degree /-2

0 Vertex

FIG. 1. Critical trees with labelling number A + 2, A >_ 3.

Both values can occur. The value A + 1 holds for many trees, e.g., the star K1,A.
We exhibit several trees in Fig. 1 with A A + 2. All trees shown are, in fact, A-
critical; i.e., deleting any vertex (or edge) drops A. It seems that characterizing all
trees with A A + 2 is very difficult (see 10).

5. k-colorable graphs. Before considering the labelling number of general
graphs G, we want to look at graphs with specified chromatic number x(G).

THEOREM 5.1. Let G be a graph with x(G) k and IV(G)I . Then A(G) <_
+k-2.

Proof. Since x(G) k, we can partition G into GI U.. "UGk, where IV(G)I-
and each G is an independent set. Let V V(G) {v,l, v,2,..., vi,.}, 1 _< _< k.
Now consider the labelling f defined by

f(vl,j j 1, 1 <_ j <_ ,
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i-1

f(vi,j) Zu / /j 2, 1 < j < ui, for 2 _< _< k.
t--1

It is easily verified that f is in L(2, 1)(G). Hence (G) _< III(G)II-, / k- 2. [5

COROLLARY 5.2. Let G be a complete k-partite graph with IV(G)[ . Then
(a) =. +- 2.

Proof. Since G is a k-partite graph, x(G) k. By Theorem 5.1, A(G) _< u+ k-2.
On the other hand, since the distance between any two vertices in G is at most 2, the
labels must be distinct. Furthermore, consecutive labels cannot be used at vertices
from different parts. Since we have k components, we find that A(G) _> u + k- 2, and
the result follows.

6. Upper bounds on A in terms of the maximum degree. In this section,
we determine the upper bound on A(G) in terms of the maximum degree of G. The
upper bound we have is analogous to the Brooks theorem.

THEOREM 6.1 (Brooks [Br]). Let G be a connected graph of maximum degree A.
If G is not a complete graph or an odd cycle, then x(G)

Before showing the result, whose proof is analogous to that of Theorem 6.1, we
give the following simple result, which uses a first-fit (greedy) labelling to provide a
bound on A in terms of the maximum degree A for any graph.

THEOREM 6.2. Let G be a graph with maximum degree A. Then (G) <_ A2 +2A.
Proof. Arbitrarily order the vertices of G, and label them in succession by the

lowest allowed integer. A vertex v E V is adjacent to at most A vertices, and there
are at most A2 A vertices, which are distance 2 away from v. So, when we want
to label v, there are at most 3A + A2 _/k A2 / 2A numbers to be avoided. Thus
the labelling number/k(G) is at most A2 + 2A. (Since we can use 0 to label a vertex,
there are /2 / 2A / 1 numbers that can be used.)

We can improve the bound above when G is 3-connected. The argument of the
next theorem is analogous to the proof, which is due to Lovsz IBM] of the Brooks
theorem.

THEOREM 6.3. If G is a 3-connected graph, then/(G) _< A2 / 2A- 3.
Proof. If G is complete, then it is trivial, since it is easy to see that A(G) 2A.

Suppose that G is not complete. Then there exist three vertices u, v, w in V such that
{u,v} and {v,w} are in Ebut {u,w} is not in E. Set vl u andv2 w and let
v3, v4,..., v v (u IYl) be any ordering of the vertices of Y- {u, w} such that
each vi, 3 _< _< u- 1 is adjacent to some vy with j > i; e.g., order the vertices by
nonincreasing distance from v in G- {u, w}. We can now describe an L(2, 1)-labelling
of G: Label vl as 0 and v2 as 1; then successively label v3, v4,..., v with the lowest
available label > 0. Each vertex vi, 1 < _< u- 1 is adjacent to at most A- 1 vertices
vj with j < i. Each such vj eliminates at most three possible choices for the label at
vi. Furthermore, there are at most A(A- 1) vertices vk, k < i, at distance 2 from
vi, and each such vk eliminates at most one choice for the label at vi. It follows that,
when its turn comes to be labeled, some label in [0, A: + 2A- 3] will be available for
vi. Finally, since v v is adjacent to two vertices with labels 0 and 1, there is some
label in [0, A2 + 2A- 3] available for v.

We can show that the first-fit labelling given in the above proof uses label A2 /
2A- 3 at most once, so it is likely that a more careful argument can improve the
bound.

Sakai IS] observed that the bound in Theorem 6.2 can be improved for chordal
graphs, which are graphs that contain no induced cycles of length at least 4. The idea
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is order the vertices carefully: A chordal graph has an ordering {vl, v2,... } of V such
that, for all i, the neighbors of v among {vl,..., v_} form a clique. An analysis of
the first-fit coloring for this sequence yields her result.

THEOREM 6.4 (Sakai IS]). Let G be a chordal graph with maximum degree A.
Then A(G) <_ (A + 3)2/4.

7. Diameter 2 graphs. We have a better upper bound for a class of graphs
that is important in our study, namely, the diameter 2 graphs. The upper bound for
this case, A, is sharp for some A.

Now we present the following lemma, which will allow us to prove the result
mentioned above and to determine the complexity of the L(2, 1)-labelling problem in
the next section.

LEMMA 7.1. The following two statements are equivalent:
(1) There exists an injection f" V(G) [0, IYl-1] such that If(x)- f(y)l >_

2 for all {x, y} e E(G);
(2) Gc contains a Hamilton path.

Proof. (1) = (2)" Let f be an injection defined on V that satisfies the condition
in (1). Since f is injective, f- exists. Order the vertices of V as follows" vi f-l(i),
0 _< _< IVI- 1. Then v is adjacent to v+ in Gc for 0 _< _< IVI- 1. Therefore the
path {v0, v,..., Vlyl_ } is a Hamilton path of G.

(2) =a (1)" Let P {v0, Vl,..., Vlyl_l } be a Hamilton path of G. Define the
function f" V(G) [0, IVI- 1] by f(vi) i, 0 _< _< IVI- 1. Then it is easy to see
that f is injective. Let (x, y} e E(G). Then f(x) f(vi) and f(y) f(vj) j
for some i, j with li-Jl -> 2 since x is not adjacent to y in G. Hence f is the injection
we need.

To prove Theorem 7.3, we also need the following theorem due to Dirac [D] (see
also IBM]).

THEOREM 7.2. Let G be a simple graph with IVI >_ 3 and minimum degree
>_ IVI/2. Then G is Hamiltonian.
Now we present our bound for diameter 2 graphs.
THEOREM 7.3. If G is a graph with diameter 2, then )(G) <_ A2.

Proof. If A 2, then we can verify the result directly, since, in this case, G is
either C4, C5 or a path of length 2. Thus assume that A >_ 3.

Suppose that A >_
2A + 1 + A- 2 3A- 1 </k2, since A >_ 3.

Now suppose that A < (IYl- 1)/2. Then 5(G) >_ IVI/2. Since diam(G)=2,
obviously IVI >_ 3. Hence, by Theorem 7.2, G is Hamiltonian; i.e., G contains
a Hamilton path. By Lemma 7.1, there is an injection f V [0, IYl- 1] such
that If(x)- f(Y)l >- 2, for all {x,y} e E(G). From here, it is easy to see that
f e L(2, 1)(G) and IIf(G)ll IYl- 1. G is a diameter 2 graph, so ]Yl _< Z2 - 1.
Therefore A(G) _<

Note that the upper bound A2 is the best possible only when A 2, 3, 7, and
possibly 57 because a diameter 2 graph with IVI A2 + 1 can exist only if A is
one of these numbers (cf. [HS]). When A 2, the graph is C5; when A 3, it is
the Petersen graph. For the graph when A 7, it is called the Hoffman-Singleton
graph (see [HS] or IBM]). Since diam(G)=2, all labels in V must be distinct. Hence
A(G) >_ IVI- 1 A2. On the other hand, by Theorem 7.3, A _< A2. Thus A(G) A2

only if A(G) 2, 3, 7, and possibly 57.
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According to the proof of Theorem 7.3, if A >_ 3, we also know that A < A
whenever IV < A2 + 1. Hence, in general, except for those extremal graphs mentioned
above and C4, whose labelling number also is A2(=4), A2 1 is n upper bound on
A for a diameter 2 graph.

8. Two special classes of graphs. In this section, we will present two classes
of graphs with A that is close to the bound we have in Theorem 6.2.

First, let us give some definitions. We say a graph G is an incidence graph of a
projective plane H(n) of order n, if G (A, B, E) is a bipartite graph such that

(i) IAI=IBI=n2+n+l,
(2) each a E A corresponds to a point Pa in II(n) and each b E B corresponds to

a line tb in H(n), and
(3) E {{a, b}" a e A, b e B such that pa e tb in H(n)}.
By the definition of II(n), we know that such G is (n / 1)-regular, for every

x,y E A, d(x,y) 2, and for every u,v e B, d(u,v) 2. Also, if a e A, b e B
such that a is not adjacent to b, then dc(a, b) 3. In [Y] we have the following
theorem.

THEOREM 8.1. If G i8 the incidence graph of a projective plane of order n, then
)(G) n2 + n A2 A, where A n + 1, the maximum degree of G.

Before the next theorem, let us recall the definition of the Galois plane. Let K
be the Galois field of order n and let P {(Xl,X2, X3) x e K}\{(0,0,0)}. Define
an equivalence relation on P in the following manner: (Xl,X2,X3) (yl,y2, y3) if
and only if there exists c K, c = 0 for which yl CXl, y2 cx2, y3 cx3. Let
these equivalence classes be called points. The set of all points defined by an equation
alXl + a2x2 + a3x3 O, where al, a2, a3 E K and not all are zero, will be called a
line, which is denoted by [al, a2, a3].

The projective plane determined above will be called a Galois plane (over the
coordinate field GF(n)) and will be denoted by PG2(n) (cf. [K]).

Next, we construct another class of graphs from the Galois plane PG2(n) (cf.
[B]). Let V(H) be the set of points of PG2(n) and join a point (x, y,z) to a point
(x’, y’, z’) if xx’+ yy’+ zz’= 0, i.e., if (x’, y’, z’) lies on the line Ix, y, z]. We call such
a graph H the polarity graph of PG2(n). Then by the properties of PG2(n), we know
that IV(H)I n2 + n + 1, the maximum degree A(H) n + 1, the minimum degree
6(H) n and the diameter is 2 (cf. [B]). Now we present the following theorem from

THEOREM 8.2. If H is the polarity graph of the Galois plane, PG2(n) then
/k(H) n2 + n A2 A, where A is the maximum degree of H.

9. The complexity of the L(2l)-labelling problem. It is well known that
the coloring problem is an NP-complete problem. Since our L(2, 1)-labelling problem
is similar to the coloring problem, we may guess it is also NP-complete. In this section,
we verify this claim.

We need to consider the following special form of the L(2, 1)-labelling problem,
where (DL) denotes distance 2 labelling:

(DL)
Instance: Graph G (V, E) with diameter 2.

Question: Is (G) <_ IVI?
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THEOREM 9.1. (DL) is NP-complete.
Proof. To show that (DL) is NP-complete, we study the following decision prob-

lem, where (IDL) denotes injective distance 2 labelling:

Instance: Graph G (V, E).
(IDL) Question: Is there an injection f: V [0, IVI- 1] such that

f( )l >_ :

In view of Lemma 7.1, the NP-completeness of (IDL) follows as an immediate
consequence of the well-known NP-completeness of the Hamilton path problem (HP)
(see [GJ]) below:

(HP)
Instance: Graph G (V, E),
Question: Is there a Hamilton path in G?

Next, we observe that (DL) is in NP. A graph G (V, E) can be input in time

O(IY + [El) and clearly we can verify in polynomial time that G has diameter 2, that
a labelling f is in n(2, 1)(G), and that

We now show that (DL) is NP-complete by transformation from (IDL) to (DL).
Let G (V, E) be any graph in the instance of (IDL). Construct a graph G’ as follows:
Add a vertex x to V and let x be adjacent to every vertex of V, i.e., G’ (V, E),
whereV’=Yt2{x}andE’=EU {{x,v}: for allveV}. ThenlV’l=lVl+l and
diam(G’)=2.

The NP-completeness of (DL) then follows from the NP-completeness of (IDL)
and from the following claim.

Claim. There is an injection f: V(G) [0, IV 1] such that If(u)- f(v)l >_ 2
for every {u, v} E E(G) if and only if A(G’) _< IV’I.

Proof of claim. Suppose that there exists an injective function f defined on V
that satisfies the condition above. Define g(v) f(v) for all v E V and g(x)
IUl + 1 IV, I. Then easily g E L(2,1)(G’) and IIg(G,)ll IVI + 1 IV, Hence

_< IV’l.
Conversely, suppose that A(G’) _< Iv’l, i.e., there is a g in L(2, X)(G’) such that

IIg(G’)ll _< IYl + 1. Suppose that g(x) 0 or IVI 4- 1. By the property of n(2, 1)(G’),
there is no v in Y such that g(v) g(x)4- 1 or g(x) 1. This implies that we must
use IYl + 3 numbers to label Y’, which is a contradiction, since IIg(G’)ll <_ IVI + 1 and
all labels are distinct.

Hence g(x) is either 0 or IVI + 1. If g(x) IVI + 1, then restricting g to V
gives the desired injection f. Similarly, if g(x) 0, then restricting g- 2 to V
gives f.

10. Further research. Inspired by the more general proximity-interference
problems, a more general context would be to study labellings f, where N is a pos-
itive integer and rnl >_ rn2 >_ >_ rnN > 0 are given numbers. We require that
If(x)- f(y)[ >_ mi if da(x,y) i, 1

_ _
N. If N 1 and ml 1, then we have or-

dinary graph coloring. If N 2, rnl 2, and rn2 1, then it is the L(2, 1)-labelling.
If N 2, m 1 m2, then we have the L(1, 1)-labelling, which has been studied in

Recall from the proof of Theorem 7.3 that, if A _> 3 and A _> (IV[- 1)/2, then
we have A _< A2, regardless of whether G has diameter 2. Therefore it is reasonable
to propose the following conjecture.
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CONJECTURE 10.1. For any graph G with maximum degree A >_ 2, A(G)

_
A2.

This conjecture holds for A 2 in view of Propositions 3.1 and 3.2.
In 9 we proved that the problem (DL) is NP-complete, but was not a fixed

value there. Consider the following decision problem for fixed , where (DLk) denotes
distance 2 labelling with upper bound k:

(DLk)
Instance: Graph G (V, E).
Question: Is A(G) _< k?

CONJECTURE 10.2. For k >_ 4, (DLk) is NP-complete.
For nontrivial trees T, we saw in 4 that A(T) is either A + 1 or A + 2. It seems

to be quite difficult to determine which of the two values holds, somewhat analogous
to the situation for edge-colorings of graphs. Consider this decision problem for trees:

(TREE)
Instance: Tree T (V, E).
Question: Is )(T) A(T)+ 1?

CONJECTURE 10.3. The problem (TREE) is NP-complete.
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IMPLICIT REPRESENTATION OF GRAPHS*

SAMPATH KANNANt, MONI NAOR$, AND STEVEN RUDICH

Abstract. How to represent a graph in memory is a fundamental data structuring question. In
the usual representations of an n-vertex graph, the names of the vertices (i.e., integers from 1 to n)
betray nothing about the graph itself. Indeed, the names (or labels) on the n vertices are just log n
bit place holders to allow data on the edges to encode the structure of. the graph. In this scenario,
there is no such waste. By assigning O(logn) bit labels to the vertices, the structure of the graph
is completely encoded, so that, given the labels of two vertices, one can test if they are adjacent in
time linear in the size of the labels. Furthermore, given an arbitrary original labeling of the vertices,
structure coding labels are found (as above) that are no more than a small constant factor larger
than the original labels. These notions are intimately related to vertex-induced universal graphs
of polynomial size. For example, planar graphs can be labeled with structure coding labels of size

4 log n, which implies the existence of a graph with na vertices that contains all n-vertex planar
graphs as vertex-induced subgraphs. The theorems on finite graphs extend to a theorem about the
constrained labeling of infinite graphs.

Key words, graph representation, universal graphs, arboricity, intersection graphs, data struc-
tures

AMS(MOS) subject classifications. 05C75 68P05 68R10

1. Introduction. We will consider graphs G (V, E) with vertex set V and
edge set E C_ (V x V). The graphs we consider will not have any self-loops, i.e., edges
of the form (v, v). We will also disallow parallel edges between two vertices, as the
definition of E, above, indicates.

DEFINITION 1. A vertex-induced subgraph or simply an induced subgraph G of G
is a vertex set V c_ V together with the edge set E

DEFINITION 2. An edge-induced subgraph or simply a subgraph is a subset V c_ V
together with an edge set E C_ E gl (V x

Consider the following problems.
Problem 1. Label the vertices of an n-vertex tree with labels that are O(log n) bits

long such that, given the name of two vertices, we can determine adjacency quickly.
Solution 1. Root the tree. Prelabel each vertex with arbitrary, distinct, positive

integers. Let the label on each vertex be its prelabel appended with the prelabel of
its parent. The same procedure works for infinite trees with infinite degrees as well.

Problem 2. Given a tree prelabeled with distinct positive integers (imagine an
adversary choosing the prelabels), label the vertex prelabeled with O(log i) bits, so
that, given two vertices, we can determine adjacency quickly.

Solution 2. Root the tree. Each vertex will receive a two-part label. For the
first part of its label, each vertex takes on the prelabel of its smallest child or itself,
whichever is smaller. There is also a flag bit in the first part to indicate if the prelabel
remembered is its own or a child’s. The second part of each vertex’s label will be
the first part of its parent’s label. A vertex with prelabel is labeled with at most
2(log + 1) bits. Given any two vertices, there is a linear time procedure to tell
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adjacency. Two vertices are adjacent if and only if the first part of one vertex’s label
is the same as the second part of the other vertex’s label.

Problem 3. Give an efficient construction of an O(n2) graph that contains all
n-vertex trees as vertex-induced subgraphs.

Solution 3. The following works for forests as well" Let the vertices be the ordered
pairs (i, j), where 1 <_ i, j <_ n. Place an edge between (i, j) and (i’, j’), if and only if

j or j i’.
For a wide variety of graphs, the above three problems are essentially equivalent.

We will formalize the above notions and present them in a more general setting.

2. Definitions. DEFINITION 3. A family F of finite graphs has a k-labeling
scheme if there is a polynomial time Turing machine T and a function f, which labels
the vertices of each graph G in F with distinct labels of no more than k log n bits (n
is the number of vertices of G) such that, given two vertex labels of a graph G in F,
T will correctly decide adjacency of the corresponding vertices in G.

If a family F has a k-labeling scheme for some k, we say that it has a labeling
scheme.

For a family of graphs to have a labeling scheme is clearly a desirable property. It
enables representing graphs that are members of the family implicitly, just by having
available the vertex names. For instance, in a distributed system, the graph need not
be stored in one place. Whenever a processor needs to determine adjacency, however,
it can do so only by looking at the names of the two vertices. If the vertices of a
graph were ordered by the frequency of their usage, we would want to assign the more
frequent vertices a shorter label. In general, we could have other constraints on the
size of the vertex labels. Hence we define constrained labeling.

DEFINITION 4. A family of graphs F has a constrained k-labeling scheme if for all
G E F, IGI n, for all p such that p assigns distinct positive integers to the vertices of
G, we can associate klogp(v)l bits with each vertex v and use these labels to decide
adjacency efficiently.

As mentioned above, labeling schemes are related to vertex induced universal
graphs, which we define below.

DEFINITION 5. Given a finite set of graphs S, a graph G is vertex-induced uni-
versal for S if every graph in S is a vertex induced subgraph of G. We say a family
F has universal graphs of size g(n) if, for every n, there is a graph of size less than or
equal to g(n), which is vertex-induced universal for the set of all graphs in F with n
or fewer vertices.

It is possible to define the edge-induced universal graph of a set of graphs S as a
graph G that contains each graph in S as an edge-induced subgraph. However, in our
paper, we focus on vertex-induced universal graphs. So we refer to vertex-induced
universal graphs simply as universal graphs.

The remainder of the paper deals with the relationship among the three concepts
defined above. In 3 we give labeling schemes for a wide variety of graph families.
Section 4 discusses constrained labeling and shows that, under a very weak hypothesis,
all families that have labeling schemes also have constrained labeling schemes. Section
5 deals with the implications of labeling on the construction of universal graphs.
Sections 6 and 7 outline some of the related work and open problems.

3. Labelable families. In this section, we show that a wide variety of families of
graph have labeling schemes. We start by showing that trees and transitive closures
of trees have labeling schemes. These two schemes will be very useful as building
blocks in labeling schemes we give for other families. We then give a labeling scheme
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for graphs of bounded arboricity, which can be viewed as "uniformly sparse" graphs.
This yields a 4-labeling scheme for planar graphs. Next, we present a general technique
that applies to many families of intersection graphs. Finally, we give a labeling scheme
for c-decomposable graphs, i.e., graphs that have small separators, which decompose
the graph.

Not all families of graphs are labelable. Since we allow only O(n log n) bits to
represent an n-vertex graph, we can represent at most 2O(nlgn) graphs. Hence we
have the following proposition.

PROPOSITION 1. A family of graphs that contains more than 2a(n ogn) n-vertex
graphs cannot be labeled.

As a corollary, bipartite graphs and chordal graphs are not labelable.

3.1. Trees and transitive closures of trees. In this section, we give a 2-
labeling scheme for trees and transitive closures of trees. These two schemes will be
used extensively as building blocks in the rest of 3.

Finite trees. We give a 2-labeling scheme for trees (not necessarily bounded
degree): Given an n-vertex tree, arbitrarily choose a root, and arbitrarily prelabel the
vertices with the integers from 1 to n. For each vertex, concatenate the prelabel of its
parent (if any) to its own prelabel. The new vertex labels have no more than 2 log n
bits. We can now quickly decide parenthood given two vertex labels by checking if
the first half of one is the second half of the other. Thus we can decide adjacency.
This also works for finite forests.

Transitive closures of trees. Often we are interested in the ancestorhood relation
in trees rather than the adjacency relation. Let F be the family of transitive closures
of rooted finite trees. The adjacency relation in F is the same as the ancestorhood
relation in rooted finite trees. We can find a 2-labeling scheme for F: Let T be a tree
and let T be the transitive closure of T. The label we assign each vertex is an interval
on the integer line. We traverse T in post-order. To each vertex, we assign the interval
between its smallest numbered descendant and its largest numbered descendant. A
vertex u is an ancestor of v if and only if the interval for u contains the interval for v.

3.2. Sparse graphs or graphs with bounded arboricity. Let G be a graph
and let H range over all possible vertex induced subgraphs of G. Then the arboricity
of G is defined to be

IE(H)[
max
S ]V(H)l- 1’

where [E(H)[ is the number of edges in H and IV(H)[ is the number of vertices in
H. Nash-Williams [11] showed that the edges of a graph G with arboricity k can
be decomposed into k forests. This means that there is a k + 1 labeling scheme for
graphs of arboricity k. Prelabel the vertices arbitrarily with distinct integers from
1 to n. Concatenate to each vertex label, the label of its parent in each of the k
forests. The ordered (k + 1)-tuple is then the label of the vertex. To decide adjacency
of two vertices, just check if one is the parent of the other in any of the forests. It
is clear that adjacency can be tested efficiently. Using flow techniques, Picard and
Queyranne [13] have shown that the forest decomposition of a graph and thus its
labels can be computed efficiently.

Several families fall into this category and hence have labeling schemes; see below:
1. Graphs of bounded degree d clearly have arboricity bounded by [d/2J + 1;
2. Graphs of bounded genus g fall in this category, since they have at most

6(g- 1) + 3n edges and hence can be labeled succinctly;
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3. In the special case of planar graphs that have arboricity 3, this technique
yields a 4-1abeling scheme.

3.3. Intersection graphs. In this section, we consider many families of graphs,
which are characterized as intersection graphs for certain types of sets. The general
method used is to try to find a succinct representation for the sets representing the
vertices.

DEFINITION 6. An interval graph is a graph where each vertex can be represented
by an interval on the real line such that two vertices are adjacent if and only if the
interval representing one vertex intersects the interval representing the other.

The technique for labeling interval graphs is similar to the one for labeling tran-
sitive closures of trees. This yields a 2-1abeling scheme. Adjacency can be tested in
linear time in the length of the labels. In this case, the definition of the sets gives
us a labeling scheme. This is so for a number of families: circle graphs, circular arc
graphs, permutation graphs, graphs with bounded interval number. See Golumbic for
definitions of these families [8].

Path graphs. Path graphs are graphs where each vertex is represented by a path in
a tree. Two vertices are adjacent if and only if the paths representing them intersect.
There are several kinds of path graphs mentioned in the literature. See Monma and
Wei [10] for details. We will show how to label path graphs where the paths are
undirected and two paths intersect if they have a vertex in common. Similar methods
will work for all path graph families, provided the path representation is given. To
label path graphs, we first label the transitive closure of the tree containing all the
paths. Now we can decide ancestorhood in the tree quickly.

To label the vertices of the path graph, we concatenate the labels of the beginning,
the apex, and the end of the path representing that vertex. Here the apex of a path
is the vertex along the path closest to the root. To test adjacency of two vertices, we
must test if the apex of one vertex is sandwiched between the apex and an end vertex
of the other path. This requires, at most, six adjacency tests in a transitive closure
of a tree. Finding the path representation and thus the labeling of a graph can be
done efficiently [7]. It is interesting to note that the closely related family of chordal
graphs, which can be characterized as the intersection of subtrees in a tree, cannot be
labeled.

3.4. c-decomposable graphs. DEFINITION 7. A graph G is c-decomposable
if, for all subgraphs H with more than c vertices, there exist c vertices such that
their removal causes H to be disconnected with no component containing more than
21HI/3 vertices [6].

To label a c-decomposable graph G, we construct a tree decomposition T of G in
the following manner. Let S be a c-separator for G. Then S is assigned to the root
of T. If H1 and H2 are the two components obtained by removing S from G, the left
subtree will be the tree for HI, and the right subtree will be the tree for H2.

Every vertex v of G occurs in a vertex t(v) in T. T is binary, has depth no greater
than log3/ n, and each vertex of T is assigned at most c vertices of G. Assume an
arbitrary ordering among the vertices of the graph assigned to the same vertex of T.
Two vertices in G can be adjacent only if they are assigned to two vertices of T such
that one is an ancestor of the other.

To label G, for each vertex v, we remember the following:
1. The path in the tree from the root to t(v), which is of length at most log3/ n,
2. The rank of v in t(v), which is an arbitrary number from 1 to c,
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3. For each vertex of the tree s, along the path from the root to t(v), a c-bit
vector giving adjacency information with all the vertices in G assigned to s. This is
at most c. log3/2 n bits.

Given two vertices u and v of G, we determine if t(u) is an ancestor of t(v) (or
vice versa). If so, we determine the depth of the ancestor, say u. The ith c-bit vector
in v’s label has a bit at the position corresponding to u’s rank, which tells if u and v
are adjacent. This is an efficient procedure to determine adjacency.

4. Constrained labeling schemes. In this section, we prove that any family
of graphs that has a labeling scheme also has a constrained labeling scheme as long as
it is closed under vertex deletion. For example, let F be the family of graphs bounded
by degree k. A constrained k-labeling scheme for F is obtained by associating with
each vertex its own prelabel concatenated with the prelabels of its neighbors with
smaller prelabels. We have already seen a constrained 2-labeling scheme for trees.
Since graphs of bounded arboricity can be decomposed into a constant number of
forests, we also have a constrained labeling scheme for these graphs. In fact, all the
families of graphs for which we have given labeling schemes also have constrained
labeling schemes.

THEOREM 1. A family of finite graphs that is closed under vertex deletion has a
labeling scheme if and only if it has a constrained labeling scheme.

Proof. We will call a family F of graphs hereditary if it is closed under vertex-
induced subgraphs, i.e., under vertex deletion. Let G (V, E) be a graph belonging
to a family F and let S (V’, E) be some subgraph of G. An extension X of S is
defined to be a subset of V V, such that, for all x, y X, the neighbor sets of x
and y in G intersect V in distinct sets.

For a family F, we define an extension function fF as follows: fF(n) is the
cardinality of the largest extension of any n-vertex, vertex-induced subgraph of any
graph G e F. With this definition, the proof of the theorem reduces to the proof of
the following two lemmas.

LEMMA 1. If F is hereditary, k-labelable, and fF(n) O(nk) then F is
constrained 4k k2-1abelable. Note that the constant is independent of the prelabeling
function and is entirely determined by graph-theoretic properties of the family F.

Proof. Let G F, a kl-labelable family. Let p(v) denote the prelabel associated
with vertex v. Let G denote the induced subgraph on the vertex set, {v 22- _<
p(v) < 22}. Define Go to be the singleton set consisting of the vertex with prelabel
1. The idea is that each vertex in Gj will remember its neighbors in G for all _< j.
In fact, the label for a vertex in (j will be a (j + 1)-tuple, the ith component of
which contains information about neighborhood with vertices in G, [0, 1,... ,j].
Starting with zero, we consider the graphs G in turn. We label G together with
a maximal extension E. The labels assigned here will be the ith component of the
vertex labels. For any vertex v, there is a vertex u E such that v and u have the
same neighborhood in G, since E is maximal. The ith component of v’s label will
then be the same as the ith component of u’s label. We now delete the vertices of G
and proceed to G+I.

It remains to prove that the labels assigned above satisfy the requirements of a
constrained labeling scheme. The ith component of a label comes from the labeling of
G with its extension. If G has n vertices, then, by our hypothesis on F, the maximal
extension contains at most nk vertices. Labeling a graph in F with n + nk2 vertices
requires kl (k2 / )logn bits, where -o 0 as n --. c, provided that k2

_
1. By the

definition of the G, n is less than 22 Hence the ith component of a label contains
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approximately klk22i bits. Hence a vertex in (j has in all J 2i=0 klk2 bits. This
sum is bounded by kk22j+l. The smallest prelabel in Gj, however, is 223-1 and the
log of this value is 2-. Hence the label size is bounded by 4klk2 times the size of
the prelabel.

Finally, these labels can be used to determine adjacency efficiently. Given two
labels, let the vertex with the smaller prelabel belong to Gi. Then adjacency can be
tested by looking at the ith components of both labels. [

Conversely, the following lemma shows that, if the extension function is super-
polynomial, then the family of graphs does not even have a labeling scheme.

LEMMA 2. If F is hereditary and the extension function is superpolynomial, then
F is not labelable.

Proof. Let F be a family of graphs with superpolynomial extension. Let fF(n)
be n(), where a(n) c as n -- cx. We have a sequence of graphs, G, G2,...
such that Gn contains a subgraph Hn with n vertices, and Hn has an extension of
cardinality at least n(n). We will prove that there are more than 2O(n log n) n vertex
graphs in F, thereby proving that F cannot be labeled.

To Hn, we can adjoin n vertices arbitrarily chosen from the extension. The
induced subgraph on these 2n vertices is in F. We can choose the n vertices from the
extension in

ns(n)
n

different ways. This is approximately n() choices of graphs. Some of the graphs we
obtain may be isomorphic. However, each isomorphic copy can occur at most (2n)n!n
times, since fixing the vertices of H determines the other vertices as well. Thus,
in all, we obtain approximately nna(n)/(2n)n distinct graphs with 2n vertices. This
number is n(()), which is 2(nlgn())

This concludes the proof of Theorem 1.
As a corollary, we have constrained labeling schemes for all families we have

discussed in 2. Theorem 1 has consequences for the labeling of infinite graphs.
THEOREM 2. Any infinite graph with the property that the family consisting of all

its finite, vertex-induced subgraphs has a labeling scheme, has a constrained labeling
scheme.

Proof. Let G be an infinite graph and let F be the family of all finite, vertex-
induced subgraphs of G. Clearly, F is hereditary. Therefore, by Theorem 1, F
has a constrained labeling scheme. Consider the sequence So of subgraphs of G,
G,G2,..., where G is the induced subgraph on all vertices with prelabels _< i.
We have constrained labelings for all the G; any vertex has a finite prelabel, and
therefore only finitely many possibilities for a label. Thus the vertex with prelabel 1
is labeled with the same label 11 infinitely often in S0. Define S1 to be the infinite
subsequence where vertex 1 gets label l. Vertex 1 is assigned the label l. Continuing
in this manner, for the vertex prelabeled i, we can find a subsequence in S_, where
it is labeled with some l infinitely often. Vertex gets the label l, and S is the
corresponding subsequence of S_.

COROLLARY 1. The infinite version of all the classes discussed above has a
constrained labeling scheme.

5. Labeling schemes and universal graphs. Labeling schemes and vertex-
induced universal graphs are closely related.
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THEOREM 3. If a family F has a k-labeling scheme, then it has universal graphs
of size nk constructible in polynomial time.

Proof. Consider the polynomial time Turing machine T to determine adjacency
given two vertex labels of a graph in F. Form the graph U with vertices labeled from
1 to nk, placing an edge between a and b if and only if T(a, b) says "adjacent." U
must contain all graphs in F with n or fewer vertices, since all these graphs receive
labels no greater than nk.

Note that we can determine adjacency in U in time polynomial in the length of
the vertex names. Hence families with labeling schemes have efficiently constructible
universal graphs. Furthermore, the labels on the vertices of the universal graph make
the embedding of a graph in the universal graph easy to find. To embed a graph
G in its universal graph, all that is required is to label G. The labels then give the
information about the embedding. As a nontrivial example, planar graphs have
4-labeling scheme and hence have n4-sized universal graphs.

6. Related work. Several authors have worked on related problems. Breuer [3]
and Breuer and Folkman [4] considered the problem of labeling vertices such that
adjacency would be determined by the Hamming distance of the labels. This is a
restricted labeling scheme. They prove that this can be done for any graph; however,
the length of the labels could be very large compared to log n.

Turan [15] considered the problem of representing a graph as succinctly as pos-
sible. The representation is global, however; it gives an efficient representation for
the whole graph without necessarily partitioning the information into small chunks
for each vertex. In this context, it is clear that our labeling schemes always yield
O(n log n)-bit representations of all graphs that belong to labelable families. Further-
more, from the representation of any graph, it is easy to derive the representation of
any of its vertex induced subgraphs.

Fredrickson and Janardan [6], Santoro and Khatib [14], and Peleg and Upfal [12]
considered the question of storing routing information at the vertices of a packet
switching network so as to compute near-optimal routes. Again, they look at the
overall storage requirements rather than the requirements on a per-vertex basis. This
work has recently been extended to limit the amount of storage in every processor [1].

Many papers have considered the question of universal graphs for a family of
graphs. Most of these papers have focused on edge-induced universal graphs, which
have often just been called universal graphs. In this paper, we reserve the term
"universal graph" for vertex-induced universal graphs, and we refer to edge-induced
universal graphs explicitly. A graph G is edge-induced universal for a set of graphs S
if every graph in S is a subgraph of G.

The important issue in constructing edge-induced universal graphs is minimizing
the number of edges. Bhatt et al. [2] consider the question of constructing n-vertex
edge-induced universal graphs for n-vertex bounded-degree trees and planar graphs.
They show that, for bounded-degree trees, there is an edge-induced universal graph
with cn edges, where c is a constant depending only on the degree bound. For bounded
degree planar graphs, they show an edge-induced universal graph with O(nlogn)
edges.

Recently, Chung [5] has shown how to construct an edge-induced universal graph
for n vertex trees having n vertices and O(n log n) edges. For planar graphs, [5] gives
a bound of 0(n3/2) on the number of edges in the edge-induced universal graph.
Reference [5] also combines these results with the techniques of our paper to improve
the bounds on the sizes of (vertex-induced) universal graphs for trees and planar
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graphs. Specifically, [5] proves that there is a graph with O(nlogn) vertices and
O(n2) edges that contains all n-vertex trees as induced subgraphs and that there is a
graph with O((n log n) 3) vertices and O(n6) edges that contains all planar graphs on
n vertices.

7. Open problems. We know from Proposition 1 that any labelable family has
at most 2O(n log n) n-vertex graphs. The natural question is whether all such families
that are hereditary have a labeling scheme.

Although this paper produces "small" universal graphs for various families, the
question of matching upper and lower bounds for the sizes of universal graphs for
these families still remains open.

All our results for labeling graphs are "static." It is often useful to consider
dynamically changing graphs where vertices get added and deleted. Can labeling be
done in such a manner as to permit quick updates of the labels?

Can the ideas for labeling graphs be extended to hypergraphs? If this could be
done dynamically as well, it would have applications to databases.
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